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Abstract

The problem of estimating a 3D scene and camera positions from im-
ages taken by this camera is known as simultaneous localization and mapping
(SLAM) in robotics. Many state-of-the-art methods are based on a two-step
approach where the pose and the depth are estimated sequentially. In this
thesis, we examine a SLAM approach that jointly estimates the camera pose
and a dense depth map. The approach uses a photometric data term and a
regularization of the depth map. The resulting optimization problem is non-
linear, non-convex and high-dimensional due to the dense approach. We solve
this optimization problem using the prox-linear approach, which yields an it-
eration of sub-problems by repeated linearization of parts of the cost function.
For the solution of the sub-problems, the primal-dual hybrid gradient (PDHG)
approach is employed. We evaluate the performance of the method as well as
the effect of different data loss functions using two synthetic data sets that
contain a ground truth. The experiments show that the joint approach works
well and that the results are comparable to the results of a pure depth or pose
estimation.

Zusammenfassung

Die Rekonstruktion einer 3D Szene und von Kamerapositionen mittels
Bilder, die von selbiger Kamera aufgenommen wurden, ist in der Robotik
als Simultaneous Localization And Mapping (SLAM) bekannt. Viele moderne
Methoden basieren auf einem zweistufigen Ansatz, in dem die Kamerapose
und die Tiefenkarte sequenziell geschätzt werden. In der vorliegenden Arbeit
wird ein SLAM Ansatz untersucht, in dem die Pose und eine dichte Tiefen-
karte simultan geschätzt werden. Dabei wird ein photometrischer Datenterm
verwendet und die Tiefenkarte wird zusätzlich regularisiert. Es resultiert ein
nicht-lineares und nicht-konvexes Optimierungsproblem, welches durch den
dichten Ansatz zudem sehr hochdimensional ist. Für die Optimierung wird der
Prox-Linear Ansatz verwendet, welcher durch wiederholte Linearisierung von
Teilen der Kostenfunktion eine Folge von Sub-Problemen liefert. Zur Lösung
der Sub-Probleme findet der Primal-Dual Hybrid Gradient (PDHG) Ansatz
Anwendung. Das Verhalten des Algorithmus sowie ein Vergleich von verschie-
denen Daten Loss Funktionen werden anhand zweier synthetischer Datensets
mit bekannter Ground Truth untersucht. Die Experimente zeigen, dass der si-
multane Ansatz gut funktioniert und die Ergebnisse vergleichbar zu Ansätzen
zur reinen Posen- bzw. Tiefenschätzung sind.

ii



Acknowledgments

First I, would like to thank my supervisors Nikolaus Demmel and Emanuel Laude
for providing me with this exciting topic and for supervising my thesis. I highly
appreciate the knowledge and experience they have shared with me and I am very
thankful for the productive and enlightening talks and discussions.

Second, I would like to thank the supervisor of my bachelor thesis, Dr. Daniel
Karrasch, from whom I have learned a lot about scientific writing and the value of
neat figures - both of which is hopefully showing in this thesis. Moreover, he has
become a mentor to me during my master studies, and I am very grateful for his
support and advice.

Finally, I am very grateful to my family and my beloved fiancée Rebecca for their
love and support. They have endured the hardships of my studies with me, and
without their patience, understanding and encouragement I would have struggled a
lot more.

iii



Contents

Abstract ii

1 Introduction 1

2 Modeling the image formation process 4
2.1 On Images and Depth Maps . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The Pinhole Camera . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Intrinsic Camera Parameters . . . . . . . . . . . . . . . . . . . 9
2.2.3 Radial distortion . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Camera Poses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Coordinate Transformations . . . . . . . . . . . . . . . . . . . 12
2.3.2 Parametrization of the rotation matrix R . . . . . . . . . . . . 13
2.3.3 Linearization of Functions of Rotation Matrices . . . . . . . . 14

2.4 Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Cost Function for the SLAM Approach 18
3.1 Photometric Dataterm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Lambertian Surfaces . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Invalid points . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Interpolation in the Second Image . . . . . . . . . . . . . . . . 20
3.1.4 Dataterm for Two Images . . . . . . . . . . . . . . . . . . . . 22

3.2 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Different Regularization Terms . . . . . . . . . . . . . . . . . 26
3.3.2 Image-Driven Adaptive Regularization Weights . . . . . . . . 29
3.3.3 A Probabilistic View on Regularization . . . . . . . . . . . . . 29

3.4 The SLAM Optimization Problem . . . . . . . . . . . . . . . . . . . . 30
3.5 Scale Freedom and Effects on the Cost Function . . . . . . . . . . . . 31

4 Optimization 33
4.1 The Proximal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 The Prox-Linear Algorithm . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 The Standard Algorithm . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Prox-Linear Algorithm for Quadratic Regression . . . . . . . . 36
4.2.3 Prox-Linear Algorithm with Weighted Prox Operator . . . . . 37

4.3 The Primal-Dual Hybrid Gradient Method . . . . . . . . . . . . . . . 37
4.3.1 Basics from Convex Analysis . . . . . . . . . . . . . . . . . . . 38
4.3.2 The PDHG Algorithm . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Preconditiong for the PDHG Algorithm . . . . . . . . . . . . . . . . . 40

5 Implementation 42
5.1 Vectorization of the depth map . . . . . . . . . . . . . . . . . . . . . 42
5.2 Application of the Prox-Linear Algorithm . . . . . . . . . . . . . . . 43

5.2.1 Linearization of c . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Choice of the Stepwidths . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Blurring to Increase the Stepwidths . . . . . . . . . . . . . . . 47

iv



5.2.4 Initial Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.5 Pseudo Code for the Application of the Prox-Linear Algorithm 48

5.3 Application of the PDHG Algorithm to the sub-problems . . . . . . . 48
5.4 Analytic Solution of the Sub-Problems - Special Case . . . . . . . . . 50

6 Results 52
6.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Standard Parameters . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Error Measures for the Results . . . . . . . . . . . . . . . . . . 53
6.1.3 Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Performance of the Joint Optimization . . . . . . . . . . . . . . . . . 56
6.2.1 Performance Experiment New Tsukuba . . . . . . . . . . . . 56
6.2.2 Discussion of Performance on the New Tsukuba Dataset . . . 57
6.2.3 Performance Experiment Carla . . . . . . . . . . . . . . . . . 62
6.2.4 Discussion of Performance on the Carla Dataset . . . . . . . . 62

6.3 Comparison of Data Loss Functions . . . . . . . . . . . . . . . . . . 67
6.4 Analysis of the Scale Factor Estimation . . . . . . . . . . . . . . . . 75
6.5 Evaluation of Scale Drift . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Conclusion 78

A Basic Results Calculus 80

B Supplementary Material for Implementation 80
B.1 Finite Difference Matrices . . . . . . . . . . . . . . . . . . . . . . . . 80
B.2 Image Gradient at the Warped Location . . . . . . . . . . . . . . . . 81
B.3 Derivation of the Prox Operators . . . . . . . . . . . . . . . . . . . . 82

B.3.1 Closed-Form Solutions for Convex Conjugates . . . . . . . . . 82
B.3.2 Closed-Form Solutions for Prox Operators . . . . . . . . . . . 87

B.4 Gaussian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.5 Gradient for the Isotropic Huber Regularization . . . . . . . . . . . . 93
B.6 Schur Complement to Solve the Linear System . . . . . . . . . . . . . 94

References 95

v



1 INTRODUCTION 1

1 Introduction

The ability of a technical system to understand its surroundings based on images
taken by an onboard camera is crucial for an abundance of modern technologies.
Prominent applications include autonomous driving of vehicles and robots, au-
tonomous flying of aerial vehicles like drones, and reconstruction from aerial images.
While a single image is never able to capture all the information of a scene since we
are projecting from 3 dimensions to only two, a sequence of images of the same scene
allows us to reconstruct a 3D model of that scene - often to an amazingly high accu-
racy. The approach of using subsequent images to reconstruct the scene is known as
structure from motion in the computer vision [20]. In the robotics community, the
term monocular SLAM (Simultaneous Localization and Mapping) is more common;
see e.g. [10]. In this thesis, we use the latter terminology.

The general setting for SLAM is shown in Figure 1. We have a camera that
moves around a scene and takes images from different positions and angles. In a
general setting, we do not have any knowledge of the movement of the camera. The
only data available are the images of the scene taken from unknown vantage points.
The goal is to reconstruct both the scene as well as the positions and the rotations
of the cameras. To do this, we need to model the process that created the images.
By inverting this model, we hope to be able to recover the scene and the camera
poses.

X0

Y0

Z0

Scene

Camera
Trajectory

Figure 1: Schematic of the SLAM problem. A camera moves through a scene and
takes images from different (unknown) positions. The goal is to estimate a set of
points describing the scene as well as the camera poses using the images as input
data. A world coordinate system X0Y0Z0 is used to describe positions and orienta-
tions.

We can use an arbitrary world coordinate system X0Y0Z0 to represent the camera
poses (position and orientation). The scene is usually represented by a depth map
defined in one of the camera frames, which we consider the reference frame. In the
case of a digital image, the depth map assigns each pixel a depth value. This value
is the distance from the camera to the structure in the real world that can be seen
in this pixel. Note that by coordinate transformation, we could transform the depth
map into a mesh of 3D world points in the reference frame. However, for applications
like autonomous driving, the depth information in the camera coordinate system is
much more useful, e.g. for obstacle avoidance.



1 INTRODUCTION 2

While in the past years plenty of methods have been proposed, they can be
categorized according to several criteria.

Geometric Methods Geometric models are based on a geometric error, i.e. we
try to find 3D wold point locations that have the best consistency given the data.
Working with geometric quantities requires a pre-processing step where we need to
establish point correspondences between the images. This often involves a keypoint
selection to obtain distinctive points that are easily traceable. Then the point po-
sitions and camera pose(s) can be estimated based on a geometric triangulation.
The positions of the cameras correspond to additional constraints that confine the
positions of the 3D points to lines. Therefore such methods are often referred to
as Bundle Adjustment. Successful examples of this approach include PTAM [24],
monoSLAM [11], ORB-SLAM [31].

The methods cited above are all sparse, i.e. we only estimate depth values for a
subset of all pixels. Sparsity is partly required by the feature point based approach
but also desired because it reduces the number of unknowns and therefore makes
these methods strikingly fast. Still, there are also dense photometric methods in
which a depth map for each pixel is estimated. Often regularized dense flow fields
are used for this; see e.g. [44, 39].

Photometric Methods In recent years photometric models have gained popu-
larity. In contrast to geometric methods, they work directly on the brightness of the
images and minimize a photometric error, i.e. a difference in these brightness val-
ues. Therefore no pre-processing step is required as we try to align the images such
that the intensity values are as consistent as possible. While geometric methods are
considered indirect due to the pre-processing step, photometric methods are direct
approaches as we are using the images directly. Again we can distinguish sparse and
dense methods.

Dense photometric methods are prominent in smaller environments as most of
them do not account for drifting effects that occur for longer camera movements.
Successful approaches include [42, 32, 25] which all use a regularization term on the
depth map.

To account for accumulating scale drifts, Engel et al. proposed the LSD-SLAM
method [17], which uses loop closuring. However, to stay real-time capable, this
method is only semi-dense, i.e. a depth map is only computed for pixels that show
a sufficient change in the brightness value.

The DSO approach by Engel et al. further reduces the number of depth values
that are considered and therefore is a sparse photometric approach [16]. It selects an
evenly spread set of pixels for which depth values are to be estimated. To increase
the robustness of the photometric error term, the approach uses a neighborhood
pattern that evaluates the intensity difference for a system of neighboring pixels for
each pixel that is to be assigned a depth value.

Methods Using Additional Data As many technical systems are equipped with
a variety of sensors, often more than only the image data is available for the SLAM
estimation problem. Inertial measurement units (IMUs) yield data on the move-
ment of the systems, and RGB-D cameras or laser systems provide additional depth
information to name just a few typical sensor technologies. This extra data can be
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fused into the estimation process to speed up convergence and improve reliability.
Successful approaches include [25], where a general method is proposed to incor-
porate sparse depth priors into a dense direct SLAM framework, and the work of
Quan et al. who integrated IMU measurements into a SLAM system based on an
extended Kalman filter [38].

Joint vs. Subsequent Estimation of Pose and Scene The estimated param-
eters can be split up into the pose and the depth. Many direct and dense approaches
estimate those two parameter sets subsequently [42, 25]. In the first stage, they use
a camera tracking method to estimate the camera movement. Those pose estimation
approaches are often sparse and feature-based and include a check for loop closures.
For example Stühmer [42] used PTAM [24] while Kuschk [25] employed LSD-SLAM
[17]. Based on the estimated pose, the depth map is estimated in a subsequent
step. In contrast to those two-stage methods, there are approaches like DSO which
optimize pose and depth map jointly [16].

Contributions and Outline

In this thesis, we examine a regularized dense photometric SLAM approach that
jointly optimizes pose and depth map. The method extends the work by Stühmer
and Kuschk by including the pose in the estimation. For the resulting non-linear
and non-convex optimization problem, the prox-linear approach, also called prox-
descend and the primal-dual hybrid gradient (PDHG) method are used. The focus
of this work is on proving the concept rather than on optimizing performance.

Section 2 covers the modeling of the image formation process. After the definition
of the term ”image” we proceed by the derivation of the pinhole camera model. Next,
we address the topic of camera poses before concluding the chapter by introducing
the warping function that relates multiple images of the same scene with each other.

In Section 3, we derive the cost function used for the estimation. First, we
discuss different aspects related to the photometric data term, which includes a
section on different loss functions. We then proceed by examining several choices
for the regularization term before stating the SLAM optimization problem.

Section 4 is devoted to the optimization methods used to solve the SLAM prob-
lem. For the prox-linear and the PDHG algorithm, all relevant concepts and results
are stated with references for the proofs.

Section 5 addresses the application of the optimization algorithms to the SLAM
problem as well as the aspects relevant for the implementation. The result of this
chapter is a pseudo-code, including all steps involved in solving the SLAM problem.
To be able to evaluate the performance of the main approach, we are discussing a
special case that can be solved partly analytically.

In Section 6, the numerical results are presented. First, we evaluate the per-
formance of the joint approach using two different data sets. Second, we compare
different data loss terms for the estimation. Finally, we investigate how scale drift
effects affect the approach.
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2 Modeling the image formation process

As we want to reverse the image formation process to recover the 3D scene and
the camera poses, we need to have a model of this process. In this chapter, we are
discussing the relevant concepts. After fixing the notion of an image for this thesis,
we start by modeling the camera. After making some assumptions, we derive the
model of the pinhole camera. Then we discuss how the same scene is observed in two
different cameras. Finally, by combining the previous results, we obtain the warping
function that describes the mapping from a point in the image plane of one camera
to the image plane of a second camera, given a depth map and the relative positions
of the camera. This warping function will be an integral part of the estimation
algorithm. Unless stated otherwise, most of this chapter is based on the book by
Ma et al. [28] with extensions and modifications of notations where it was deemed
necessary for this thesis.

2.1 On Images and Depth Maps

A camera captures images by directing light onto an imaging surface where the
incoming radiant flux (irradiance) is used to form the image. Accumulating the
irradiance over the exposure time results in the image intensity or brightness. As
the brightness corresponds to the incoming energy, it is a non-negative quantity.
Mathematically, an image can be modeled as a function that assigns a brightness to
each point of the image domain Ω.

In this thesis, we are dealing with images obtained from digital cameras exclu-
sively. In a digital camera, the imaging surface contains an image sensor that divides
the surface into a grid of many small sensors. Each small sensor integrates the irra-
diance reaching its surface over the exposure time to obtain a single brightness value
for the whole sub-surface. The small sub-surfaces are referred to as pixels, and the
number of pixels of the image sensor defines the resolution of the image - the more
pixel we have, the finer the discretization is. We assume the pixels to be square.

The information stored as the brightness value depends on the type of the image.
In the case of a grayscale image, the brightness is just a scalar value. For an RGB
image, 3 values are stored to describe the irradiance in the red, the green, and the
blue band of the spectrum. This concept can be extended further if the sensor of
the camera is capable of capturing other parts of the spectrum as well. In general,
the sensor captures c values per pixel, and we refer to that number as channels.

For storage reasons, the brightness values in digital images are usually quantized
as well. A common interval is [0, 255] ⊂ N0 as this allows to store each brightness
value in an unsigned 8-bit variable. However, as we are doing calculations with these
values, we treat them as positive real numbers in the context of this thesis.

To sum it up, a digital image stores brightness vectors with c entries for each
pixel. Therefore, we can represent a digital image taken by an image sensor with
m×n pixels as a matrix I ∈ Rm×n×c

+ , where each value corresponds to the integrated
irradiance measured by one pixel in the respective channel.

We now equip the image domain with a right-hand coordinate system. With a
suitable scaling, we can establish a direct connection to the matrix representation
of a digital image. Consider Figure 2, which shows part of the pixel grid on the
image domain Ω and three common choices of coordinate systems. Note that for all
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Figure 2: Pixel grid on an image domain Ω and three possible choices of image
coordinate systems. The red system has its origin on the top left corner of the image
while the origin of the blue system is half a pixel north-west of this corner. The
origin of the orange coordinate system is in the center of the top-left pixel. The
units in all images are 1 pixel. We index the pixels by tuples of column and row to
be consistent with the axes.

choices, the x axis aligns with increasing column number, and the y axis aligns with
increasing row number. As we usually write the x coordinate first, we index a pixel
by the tuple (column, row), as indicated in the figure. Note that this leads to a
somewhat unfamiliar indexing if we represent the image by a matrix as for matrices,
usually the row is given first.

First, consider the blue coordinate system. The origin is half a pixel north-west
of the top left corner of the image, and we have chosen the units to be 1 pixel. The
result is that the pixel centers coincide with the integer points in the coordinate
system, which makes addressing pixels very intuitive in this system. The drawback,
however, is that care must be taken at the boundaries. At the left and the top side
of the image, points having at least one component between 0 and 0.5 are not in
the image domain despite being positive. Likewise, at the right and the bottom side
points with coordinates up to 0.5 bigger than the number of pixels in the respective
direction are still in the image domain despite being bigger than the number of
pixels.

To avoid the problems at the boundary, some authors prefer the red coordinate
system shown in Figure 2. The origin is at the top left corner, and the units are 1
pixel again. Now the image domain is bounded by 0 and the number of pixels in
the respective direction, which makes the boundaries more intuitive. However, the
pixel centers are not aligned with the integer points anymore but shifted half a pixel
north-west of the respective point, which is the downside of this choice.

The orange coordinate system represents a third choice where the origin is placed
in the pixel center of the top-left pixel. This choice has advantages in programming
languages that use 0-indexing, like C++ since the integer points in the coordinate
system coincide with the indices of the matrix representation of the image.

As we will need to check if points are within the image domain, we use the
second (red) coordinate system in this thesis, thereby also staying consistent with
[28]. Note that we still use the indexing of the pixels as shown in Figure 2, e.g. for
addressing elements in the image matrix.
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Having chosen the coordinate system, we now define the mapping that assigns
an arbitrary point in the image plane the respective intensity value.

Definition 2.1 (Intensity Mapping in a Digital Image). Let I ∈ Rm×n×c
+ be a digital

image with c channels and x = (x, y) ∈ Ω a point in the respective image domain
equipped with the red coordinate system in Figure 2. Then the brightness value for
this point is given by

I (x) =
[
Idyedxe1, . . . , Idyedxec

]T
Where dxe is the ceiling function that returns the smallest integer number that is
bigger or equal to x and Iijk is the entry in the i-th row, the j-th column on the
k-th page of I.

We need the set of coordinates of all pixel centers which for the red coordinate
system reads

Definition 2.2. We denote the set of all pixel centers as

P = {(x, y) | x ∈ {0.5, 1.5, . . . , n− 0.5} , y ∈ {0.5, 1.5, . . . ,m− 0.5}}

The Depth Map

Analogously to the intensity, we can assign other quantities to the pixels. In this
thesis, we are interested in depth maps, i.e. we want to assign each pixel the z-
component of the 3D world point that is visible in this pixel given in the camera
coordinate system. Note that as for the brightness, this involves an averaging op-
eration since we do not see only one single point in a pixel. As the distances are
positive values, the depth map can be interpreted as an image with one channel. In
this thesis, we refer to a depth map as matrix h ∈ Rm×n

+ , where we use an analogous
mapping to the intensity mapping in Definition 2.1 to assign a depth value to an
arbitrary point x ∈ Ω.

2.2 The Camera Model

A standard camera is equipped with one or more lenses to focus the light onto the
imaging surface. Modern camera systems often have a complex system of multiple
lenses that serve a variety of purposes. Field of view and light sensitivity are only
two of many factors that are influencing the design of the optical system of a camera
system. Chapter 6.2 in the book by Born et al. [3] gives an overview of some classical
lens systems that are used for cameras.

Building a model for such lens systems is possible but highly complex. See
the first chapters and in particular, chapter 4 in [3] for a thorough discussion of the
underlying optical theory. As we need to invert the camera model as well as evaluate
it repeatedly, we need to make some assumptions to obtain a simpler model that is
computationally feasible.

Even the thin lens model, which is already a substantial simplification, does not
quite suit our purposes. For a discussion of this model and in particular, a distinction
to modeling thick lenses; see e.g. [19].
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Figure 3: Working principle of the camera obscura. The small hole (pinhole) in the
right wall of the box focuses the light rays originating from Big Ben onto the left wall
of the box, yielding an upside-down image. As the pinhole has a finite diameter, the
rays originating from a single point on Big Ben reach multiple points on the image
plane, which results in a blurring of the image.
Source image: https: // commons. wikimedia. org/ wiki/ File: Lochkamera_

prinzip. jpg , September 2019

2.2.1 The Pinhole Camera

The pinhole camera model is motivated by the camera obscura, one of the first
camera designs. A small hole (pinhole) in one of the sides of a box is used to focus
the light rays emitted from an object onto the opposite wall of the box, which is the
imaging surface, see Figure 3. Note that the image appears upside down. Since the
pinhole has a finite diameter, the image is blurry as the rays emitted from one point
on the object reach multiple points on the imaging surface. However, if we could
reduce the pinhole to a single point, only one ray per point on the object would reach
the imaging surface, which would result in a sharp image. Although this process is
physically impossible to realize, it still yields a convenient model that is a sufficient
approximation of a well-focused imaging system [28, section, 3.2.2] and therefore is
one of the standard models in computer vision [16], [32], [42].

We start modeling the pinhole camera by defining a local camera coordinate
system XY Z in the pinhole point which we will call optical center o from now on,
see Figure 4. We define the optical axis as the line through o that is perpendicular
to the image plane and orient the Z-axis along the optical axis. The X and the
Y -axis are oriented parallel to the width and the height of the image plane. As we
see shortly, this choice is the link to the image coordinate system already mentioned
in Section 2.1. The distance between the optical center o and the image plane is
referred to as the focal length f of the pinhole camera.

We define a (preliminary) image coordinate system ξη by projecting the X and
the Y axis to the image plane. By using similar triangles, it is easy to see that a
3D world point X in the local camera coordinate system XY Z is related to its 2D
image point xξη = [ξ, η]T in the image coordinate system via the so-called perspective
projection.

https://commons.wikimedia.org/wiki/File:Lochkamera_prinzip.jpg
https://commons.wikimedia.org/wiki/File:Lochkamera_prinzip.jpg
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X

Y

Z

o

Image Plane

f

X =

XY
Z


xξη

ξ η

Figure 4: The pinhole camera model. The local camera coordinate system XY Z
is located in the optical center o with the Z-axis along the dash-dotted optical axis
perpendicular to the imaging plane. The X and the Y axis are parallel to the width
and the height of the image plane, respectively. The distance of the optical center
to the image plane is the focal length f . The image coordinate system ξη is the
projection of the X and the Y -axis to the image plane. The image of the world point
X is at the intersection of the ray from X through o with the image plane. If we
observe the image plane in Z direction (from behind) we see an upside-down and
mirror-inverted image of the world scene.

ξ = −f X
Z

η = −f Y
Z

(2.1)

If we observe the image plane of the current model in Z direction (from behind),
the real-world scene is mapped upside down and mirror-inverted onto the image
plane, which is also showing in the negative signs in Equation (2.1). Images obtained
from digital camera systems are usually already flipped back. In the formula, we
can avoid these flips and therefore eliminate the minus signs by virtually placing the
image plane in front of the optical center with a distance of f , as shown in Figure 5.
It is easy to see that we obtain the same image as before but rotated by 180 degrees,
so if we now observe the image plan in Z direction, the image is oriented correctly.
The following formulas are referred to as the frontal pinhole model and are used in
the thesis.

ξ = f
X

Z

η = f
Y

Z

(2.2)
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f

X =

XY
Z


xξη

ξ η

Figure 5: The frontal pinhole camera model. The image plane is (virtually) placed
in front of the opitcal center at a distance of f . If we observe the image plane in Z
direction (from behind) we see a correctly oriented image of the world scene.

Using homogeneous coordinates for the image point, we can rewrite Equation (2.2)
in a matrix-vector form that we use frequently.

Z︸︷︷︸
:=h

ξη
1

 =

f 0
0 f 0
0 0 1

XY
Z

 = KfX (2.3)

As the Z coordinate is the depth of the 3D world point in the respective camera
frame, i.e. the value of the depth map, which will be part of our optimization
variable, we denote it by h from now on. Note that we re-name only the component
that we multiplied to the left. The vector on the right that also contains Z is a
representation of the actual 3D point that is replaced later. Therefore it remains
unchanged.

In some cases, it can be helpful to represent the 3D point X in homogeneous
coordinates as well. Therefore we introduce the canonical projection matrix Π0.

h

ξη
1

 = Kf

1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 = KfΠ0X̃ (2.4)

We denote a point in homogeneous coordinates by a tilde sign, i.e. for v ∈ Rn

we define ṽ ∈ Rn+1 as

ṽ =

[
v
1

]
2.2.2 Intrinsic Camera Parameters

So far the projected point is represented in the ξη coordinate system. We now want
to obtain the representation in the coordinate system introduced in Section 2.1. See
Figure 6 for a visualization of both coordinate systems. Note that since we are
observing the image in Z direction, the axes are already oriented the correct way.
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ξ

η

Figure 6: The pixel image coordinate system xy in red and the world units coordinate
system ξη in blue. The origin of the blue coordinate system in the xy system is
denoted by (ox, oy). Note that this point is not necessarily at the common vertex of
4 pixels.

The transformation between the coordinate systems is given by a shifting and a
re-scaling from world units to pixel units and can be written as

x = sxξ + ox

y = syη + oy
(2.5)

where sx and sy are the scaling parameters that transform world units to pixel units
and ox and oy are the coordinates of the image coordinate system ξη in the image
pixel coordinate system xy, see Figure 6.

Using homogeneous coordinates we can write the transformation in Equation (2.5)
as the following matrix vector operation.

x̃ =

xy
1

 =

sx sθ ox
0 sy oy
0 0 1

ξη
1

 = Ks

ξη
1

 (2.6)

The so-called skew factor sθ is a way to generalize the transformation and can be
used if the pixel coordinate axes are not perpendicular to each other. In that case,
the factor is proportional to cot (θ), where θ is the angle between the axes. However,
in this thesis, as well as in many relevant applications, the axes are perpendicular,
which results in sθ = 0.

We now can combine Equation (2.3) and Equation (2.6) to obtain the projection
from real world coordinates in the local camera coordinate system to image pixel
coordinates

hx̃ =

sx sθ ox
0 sy oy
0 0 1

f 0
0 f 0
0 0 1

XY
Z

 = KsKf︸ ︷︷ ︸
:=K

X (2.7)

The matrix K is called intrinsic parameter matrix and can be obtained by cali-
bration of the camera. The calibration process usually involves solving a parameter
estimation problem where the variables are the intrinsic parameters and the input
data are images of scenes with known patterns like checkerboards, see e.g. [19,
section 1.3].
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Figure 7: On the left an image which shows radial distortion. On the right the same
image agfter the undistortion.
Source image: https: // github. com/ bbenligiray/ lens-distortion-

rectification , October 2019

2.2.3 Radial distortion

As stated before, the pinhole camera model is an idealization that standard cameras
fulfill only to a certain extent. One major issue that we encounter frequently is
radial distortion, an effect that is present in particular in images taken by cameras
with a short focal length and cheap consumer electronic cameras. The effect causes
straight lines to appear curved in the resulting image. For an example of the effect,
see Figure 7. Note that in the example, straight lines appear curved towards the
outside, which is known as barrel distortion. Curving towards the inside is also
possible, which is known as pincushion distortion.

We can remove radial distortion from images in a pre-processing step. The
results are undistorted images that follow the pinhole camera model much better.
The distortion is caused by a radial change of the magnification around a center
of distortion. We can model this by extending the pinhole model by a radial shift
function that affects the projected points obtained by Equation (2.2). Depending
on the application, we can write the shift as a function that takes the distorted
coordinates and returns the undistorted ones or vice versa. For an undistortion of
the image, the latter approach is better suited.

We can add a model for radial distortion to the projection from real world coor-
dinates to pixel coordinates given in Equation (2.7) in the following way.

x̃ = K

[
L (π (X))

1

]
(2.8)

where π denotes the generic projection π (X) =
[
X
Z
, X
Z

]T
and L is the distortion

function. A radial distortion centered at c ∈ R is given by the function

L (x) = c+ f (‖x− c‖) (x− c)
f (r) = 1 + a1r + a2r

2 + a3r
3 + a4r

4 (2.9)

where f is one possible choice for a distortion factor with the distortion parameters
ai. To undistort an image we compute for each pixel in the undistorted image the
location in the distorted image and assign the undistorted pixel the brightness at
the location in the distorted image, which is usually interpolated bilinearly for that.1

1Bilinear interpolation will be discussed in Section 3.1.3

https://github.com/bbenligiray/lens-distortion-rectification
https://github.com/bbenligiray/lens-distortion-rectification
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Xi
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Zi
iX

Tji

Xj Yj

Zj

X
jX

Figure 8: Two coordinate systems i and j that haven an arbitrary orientation w.r.t
each other. The general point X has the coordinate representations iX and iX in
the respective coordinate system. The origin of the i-system given in the j-system is
denoted by Tji.

Given a pixel x in the undistorted image, the location in the distorted image xdist
can be calculated as

xdist = L

([
1 0 0
0 1 0

]
K−1

[
x
1

])
(2.10)

The distortion parameters are obtained by calibration, see e.g. [12].

2.3 Camera Poses

To make use of the information contained in multiple images of the same scene,
we need to understand how this scene is mapped to the different camera frames.
To be able to use our pinhole camera model to project an arbitrary 3D point into
different camera frames, we need to be able to represent this point in the different
local camera coordinate systems. The change between the representation in different
coordinate systems is achieved by a coordinate transformation.

2.3.1 Coordinate Transformations

The general setting is shown in Figure 8. We have an arbitrary 3D point X given
in the coordinates of the system XiYiZi, and we want to represent this point in the
coordinates of a system XjYjZj that is rotated and translated with respect to the
i system. We indicate the coordinate system that a point is represented in by a
subscript to the left. The transformation of iX to the representation in system j is
given by a translation and rotation, and we can write it as

jX = Rji iX + Tji (2.11)

where Tji ∈ R3 is a translation vector and Rji ∈ SO (3) is a rotation matrix. The
space SO (3) is the special orthogonal group of R3 which contains rotation matrices
and is defined as

SO (3) =
{
R ∈ R3×3 | RTR = I, det (R) = +1

}



2 MODELING THE IMAGE FORMATION PROCESS 13

The matrix Rji rotates the basis vectors of the coordinate system i to the sys-
tem j. Therefore, the columns of Rji consist of the basis vectors of the system i
represented in the system j. The translation vector Tji accounts for the difference
between the origins of the two coordinate systems and is the position of the origin
of the coordinate system i given in the coordinates of the system j.

In the SLAM context we will refer to the tuple (Rji, Tji) as pose of camera j
relative to camera i or simply as relative pose. For readability, we omit the indices
whenever it is clear in which coordinate systems we are working. For poses relative
to the reference frame 0, we only give the index of the second coordinate system.

The transformation in Equation (2.11) is still an affine transformation. By using
homogeneous coordinates, we can write it as a matrix-vector operation, which is
useful in some cases. [

jX
1

]
=

[
Rji Tji
0 1

] [
iX
1

]
(2.12)

Remark. The tuple (R, T ) that defines the transformation can also be identified as
an element of the special Euclidean group SE (3) which is defined as

SE (3) :=
{
g = (R, T ) | R ∈ SO (3) , T ∈ R3

}
Elements of this group are also known as rigid body transformations, which intu-

itively means that the object undergoing the transformation does not deform. The
group structure ensures that the concatenation of two rigid body transformation is
again a rigid body transformation and that we can invert any transformation.

2.3.2 Parametrization of the rotation matrix R

Although the matrix R has 9 entries, the conditions resulting from R ∈ SO (3) leave
only 3 of them as true free parameters. Therefore we need a parametrization of the
matrix that ensures that these conditions hold. We are using Rodrigues’ Formula.

A complete proof of this formula, as well as a rigorous definition of the concepts
involved, is beyond the scope of this thesis, and we refer to [28, section 2.3.2]. The
basic idea is to identify SO (3) as a Lie group for which the corresponding Lie algebra
is the space of 3×3 skew-symmetric matrices denoted by so (3).2Rodrigues’ formula
is a closed representation of the exponential map

exp : so (3)→ SO (3) ; ŵ 7→ eŵ (2.13)

from the Lie algebra to the Lie group.

Theorem 2.1 (Rodrigues’ Formula). Let R ∈ SO (3) be an arbitrary rotation
matrix. Then there is a w ∈ R3 such that

R = eŵ = I +
ŵ

‖w‖
sin (‖w‖) +

ŵ2

‖w‖2 (1− cos (‖w‖))

2Simply speaking, a Lie group is a group that is also a smooth manifold. The Lie algebra of
a Lie group is the tangential space at the identity element of the Lie group. Rigorous definitions
for Lie groups, Lie algebras and the exponential map can be found in any textbook on differential
geometry, e.g. [26].
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where ·̂ is the hat operator which for w ∈ R3 is defined as

ŵ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0


The vector w is not unique.

The inversion of the exponential map which is known as the logarithm is used
to find the (non-unique) vector w given the rotation matrix R.

Theorem 2.2 (Logarithm of SO (3)). Let R ∈ SO (3) be an arbitrary rotation
matrix. Then the (not necessarily unique) vector w ∈ R3 such that exp (ŵ) = R is
given by

w =
‖w‖

2 sin (‖w‖)

r32 − r23

r13 − r31

r21 − r12

 with ‖w‖ = cos−1

(
trace (R)− 1

2

)
(2.14)

where rij denotes the entries of the matrix R. We write w = log (R) to abbreviate
the formulas above.

The vector w also has the following physical interpretation. The rotation de-
scribed by R is the rotation around the axis w by the angle ‖w‖ in radians. This
also provides an intuitive understanding of the non-uniqueness. We can always scale
the w such that the length changes additively by an integer multiple of 2π. This does
not change the rotation axis and simply adds a full rotation. The result, however,
stays the same.

2.3.3 Linearization of Functions of Rotation Matrices

Many iterative optimization algorithms for non-linear problems depend on a lin-
earization at the current iterate (think e.g. Gauss-Newton). Based on the lineariza-
tion, we are then calculating a step on the optimization variable to obtain a new
iterate. Due to the group properties of the special orthogonal group, there are two
different possibilities to linearize a function of a rotation matrix.

Recall the linearization in the standard Euclidean setting. Consider a function
f : Rm → Rn which we want to linearize at the point xk. Using Taylor’s theorem
we can approximate the value of f at y = xk + δ for a small increment δ ∈ Rm by

f (y) = f
(
xk + δ

)
≈ f

(
xk
)

+ Jf
(
xk
)
δ (2.15)

where Jf is the Jacobian matrix of f , see Appendix A for the definition used in this
thesis.

We now transfer this concept to functions of rotation matrices. Consider the
function g : SO (3) → Rn. We want to linearize this function a the point Rk ∈
SO (3). Using Rodrigues’ formula to parametrize the rotation matrix we can also
consider the function g̃ : R3 → Rn with g̃ (w) = g (exp (ŵ)). The linearization
point of this function is wk ∈ R3 which is the corresponding parametrization of the
rotation matrix, i.e. Rk = exp

(
ŵk
)
.
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Increment in the Lie Algebra In this case we are working with the function
g̃ (w) = g (exp (ŵ)) which means that the increment δ is done in a standard Eu-
clidean space. Therefore this linearization is just the standard approach with a

composition of functions. For y = exp
(
ŵk + δ

)
we can approximate

g (y) = g̃
(
wk + δ

)
≈ g̃

(
wk
)

+ Jwg̃
(
wk
)
δ (2.16)

Note that for the Jacobian matrix we need to follow the chain rule, i.e.

Jwg̃
(
wk
)

= JRg
(
Rk
)
Jwe

ŵ
(
wk
)

(2.17)

When we have obtained an increment δ by the algorithm the update of the
variable is simply wk+1 = wk + δ.

Increment in the Lie Group Alternatively we can be work with the function g
directly. In this case defining an increment is not straightforward, as we do not have
+-operation in the group SO (3). It is common to define the encapsulation operator.

� : SO (3)× R3 → SO (3) ; R� w = eŵR (2.18)

This can be seen as a disturbance of the rotation matrix R. A detailed discussion
of the encapsulation operator with the extension to general manifolds can be found
e.g. in [21]. Fixing the linearization point we now consider the function f (δ) =
g
(
Rk � δ

)
. For y = Rk � δ we can approximate

g (y) = g
(
Rk � δ

)
= f (δ) ≈ f (0) + Jf (0) δ = g

(
Rk
)

+ Jδg
(
Rk � δ

)∣∣
δ=0

δ (2.19)

where we linearized f at the origin. For the Jacobian matrix we need again the
chain rule

Jg
(
Rk � δ

)∣∣
δ=0

= JRg
(
Rk
)
Jwe

ŵ (0) (2.20)

When we now obtain an increment δ the update reads wk+1 = log
(
Rk � δ

)
if we

use the representation in the Lie algebra as the optimization variable. If we use the
representation in the Lie group the update is Rk+1 = Rk � δ.

The advantage of doing the increment in the Lie algebra is that we can do a
direct update of w. The advantage of the Lie group is that we need to evaluate the
derivative of Rodrigues’ formula only at 0, which yields simple matrices that do not
require any computation. In this thesis, we use the increment in the Lie algebra.

2.4 Warping

We now combine the camera model with the camera pose to obtain the mapping
from one camera frame to another one. Consider Figure 9. For a general image
point ix in image i assume we are given the depth value ih of the corresponding 3D
point X in the local coordinate system XiYiZi. In our case of digital images we read
this value from a given depth matrix ih in the reference frame, i.e.

ih = ih (ix) (2.21)

Also, assume that we are given the pose of camera j relative to camera i. De-
pending on those two quantities, we want to find the coordinates jx of the projection
of X in image j.
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Figure 9: The general point X observed in the camera frames i and j. The warping
function ω

ix maps the the image point ix in the first image to the point jx in the
second image coordinate system, given the relative pose of j w.r.t. i and the depth
value ih (ix).

We start by un-projecting the image point ix to obtain the corresponding 3D
point in coordinates of system i. This is done using Equation (2.7).

iX = ihK
−1

ix̃ (2.22)

Using the coordinate transformation of Equation (2.11) we can represent the
point X in coordinate system j.

jX = Rji iX + Tji = ihRjiK
−1

ix̃ + Tji (2.23)

We now project this representation of the 3D point into the image coordinate
system j using again Equation (2.7). For readability, we omit the indices of the pose
variables. Also, note that we do not explicitly show the dependence of the rotation
matrix on its parameterization.

jhjx̃ = KjX = ihKRK
−1

ix̃ +KT (2.24)

In Equation (2.24), we still have the unknown depth jh of the 3D point in the
second coordinate system. However, as jx̃ is given in homogeneous coordinates
we see, that the third component of the vector on the right in Equation (2.24) is
precisely the unknown depth. We can, therefore, eliminate it by dividing the first
two rows by the third one. This yields the warping equation, that, given the relative
pose and the depth map, defines the mapping from one camera frame to another
one.

jx = ω
ix (R, T, ih) =

1

(ihKRK−1
ix̃ +KT )3

[
(ihKRK

−1
ix̃ +KT )1

(ihKRK
−1

ix̃ +KT )2

]
(2.25)

Note that we write the point ix as a subscript of the warping function rather
than as an argument. This keeps the notation clean when we calculate the derivative
of ω w.r.t the pose and the depth map later. Moreover, note that the warping is
smooth if the denominator is nonzero. Recall that the denominator is the depth of
the 3D world point in the coordinate system of the second camera. Therefore, the
case when the denominator is zero corresponds to a depth value of 0 in the image j,
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i.e. the second camera being exactly on the point, which is somewhat pathological
and can be ignored. In general, we need to treat points as invalid for which the
denominator is smaller than zero as this corresponds to a negative depth in the
second camera frame i.e. the point being behind the camera.
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Figure 10: The SLAM setting with two available camera frames - the reference frame
I0 in blue and the second frame I1 in orange. We want to estimate a depth value
for each pixel of the reference frame and the relative pose of the second frame. For
all valid 3D world points like X, the data term measures the difference in the image
intensities at 0x and 1x. Examples for invalid points are the point Y because it is
not visible in the second frame and the point W because it is occluded by X.

3 Cost Function for the SLAM Approach

Using the model for the image formation process from the last chapter, we now state
the SLAM problem more formally. As input data, we are given several images of
the same static scene taken from different angles. We define one of the images to
be the reference frame I0 and denote the set of the indices of all other images by I.
For the reference frame, we want to estimate a depth map h that assigns each pixel
a depth value.

Besides the depth map, we want to estimate the poses of the remaining camera
frames relative to I0. While for some applications, we might be interested in the
poses because they describe the movement of the camera, we will see that we need
the poses anyhow to be able to use the warping function for the photometric data
term. The poses are represented by the exponential coordinates wi of the rotation
matrices and by the translation vectors Ti where the index i means that this quantity
describes the pose of the i-th camera frame relative to the reference frame.

For the estimation of the depth map and the poses, we set up a cost function
evaluating how good the parameters fit the data contained in the images. We define
a photometric data term that compares the image intensities of the reference image
to the intensities of one or more other images taken from different angles. As the
purely data term based optimization turns out to be ill-posed, we introduce an
additional regularization term. At the end of this chapter, we can state a non-
linear, non-convex cost function for the estimation of the poses and the depth map.

3.1 Photometric Dataterm

We start with the more straightforward case of only two images of a scene taken
from different positions, as shown in Figure 10. We define one camera coordinate
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system to be the reference system X0Y0Z0. All estimated poses are relative to this
coordinate system, and the estimated depth map is given in this coordinate system.
This is an arbitrary choice, and we could choose any other system as the global
world reference system.

The idea behind a photometric data term is as follows. Consider an arbitrary
pixel 0x in the reference image with intensity I (0x). Depending on the pose of the
second camera and the depth map in the reference frame, we warp the location of
that pixel center into the second image and measure the intensity difference between
I (0x) and the intensity at the warped location. By doing this for all pixels in the
reference image and summing over the intensity differences, we obtain a total data
cost function. Then we try to find the pose and depth map that minimizes this cost.

The approach is called photometric because it measures the difference between
image intensities. This is in contrast to geometric approaches like Bundle Adjust-
ment, where a geometric error is minimized, see e.g. [43]. Before we can write down
the data term, we need to address a few aspects.

3.1.1 Lambertian Surfaces

The key to justifying the photometric approach is to assume so-called Labertian
surfaces. A surface is considered Lambertian if it does not change appearance when
changing the angle of view. This requires the incoming light to be reflected uniformly
in all directions. Matte surfaces come very close to the Lambertian model, while
shiny surfaces like metals and mirrors are examples for non-Lambertian surfaces
[28, Chapter 3.A]. While this assumption will rarely be fulfilled completely, it still
provides a very good foundation for the data term and has been used in several
photometric approaches, see e.g. [32], [42], [16] or [17]. However, we need to keep
this assumption in mind as a source of errors, especially if we are dealing with wide
camera baselines, changes in illumination, or if reflective surfaces are present.

3.1.2 Invalid points

It may happen that a 3D world point that is visible in the reference frame is not
visible in the second frame. For an example consider point Y in Figure 10. While
it is visible in the camera frame 0, it is outside of the field of view of camera 1. As
we cannot compute an intensity difference for the point 0y, we consider this point
to be invalid. For the computation of the total data cost, we need to check for all
points if they are valid so that we only use meaningful intensity differences in the
cost function. We call the set of valid pixel centers VI1 ⊂ P0 where the subscript
means that the pixels are valid with respect to image 1. This notation is helpful
when we consider more than two images because a point that is visible in the second
image might not be visible in a third one.

Another situation that might occur is that two points in the reference image map
to the same point in the second image. Consider the points 0x and 0w corresponding
to the 3D world points X and W in Figure 10. Although the warping equation maps
both image points from I0 to the same location in I1 in the actual physical image,
the point W is occluded, and only the point X is visible.

A naive approach would be to declare both points invalid. This method has
advantages when the object that the point W is on is only partly occluded because
X is on the edge of an object in the foreground. In that case, the pixels surrounding
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Figure 11: Bilinear interpolation in the pixel grid. The interpolation at the point x
can be seen as interpolation along the x direction (in blue) followed by interpolation
of the results at the orange points in y direction (in green).

1x did receive light emitted from both objects, and consequently, the intensities are
a mixture that might be very different from the intensity at 0x.

If the point W is fully occluded, however, considering both points as invalid
means rejecting information as the point 0x is, in fact, a valid point. Therefore a
second approach is used frequently. Whenever we detect an occlusion by detecting
that two points in the reference image have been warped to the same location in
the second image, we consider the corresponding depths in the second image and
add the point with the smallest depth to the set of valid points while discarding the
other one. Note that this approach adds some complexity and thus might not be
computationally feasible.

Since the points are never mapped to the exact same location, we need to employ
some proximity measure for both approaches for the occlusion detection.

3.1.3 Interpolation in the Second Image

To compute the photometric difference, we need the intensity at the warped location
in the second image. This value could be obtained using the intensity mapping in
Definition 2.1, i.e. we simply use the intensity value of the pixel in which the
warped point is located. However, this mapping is discontinuous, which is conveyed
to the cost function. As discontinuous cost functions are very hard to work with,
we interpolate the brightness values at the pixel centers to obtain an intensity map
that is at least continuous.

Although the interpolation is an approximation, we have to keep in mind that the
piecewise constant image we are approximating is not the ”correct” value either. It
is itself a subsampling of the real intensity map that can be observed on the imaging
surface. As this true intensity map is at least piecewise continuous, the interpolation
can be seen as an inversion of the subsampling to the pixel level, which is why it is
a reasonable approximation that proves reliable.

On an abstract level the interpolation J maps the intensity matrix I ∈ Rm×n

to a function J I ∈ Ck (Ω) where we require k ≥ 0. We will now state two common
interpolation methods.

Bilinear Interpolation One of the easiest approaches to obtain a C0 intensity
map is to use bilinear interpolation. Consider Figure 11. The arbitrary point x
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Figure 12: Bicubic interpolation in the pixel grid. First a convolution with W is
performed along the y direction (in blue). The results given at the orange points are
then convoluted with the same kernel along the x direction.

is located between the pixels (i, j), (i+ 1, j), (i, j + 1) and (i+ 1, j + 1) and we
want to interpolate the image intensity that is available at the pixel centers. The
interpolation equation reads

JlinI (x) = (yj+1 − y) [(x− xi) Ii+1,j + (xi+1 − x) Ii,j]

+ (y − yi) [(x− xi) Ii+1,j+1 + (xi+1 − x) Ii,j+1]
(3.1)

where (xi, yj) ∈ P are the coordinates of the center of the pixel (i, j). The terms
in the square brackets can be seen as one dimensional linear interpolations in x
direction, as shown in blue in Figure 11 which is followed by a one dimensional
interpolation of those two results in y direction, as shown in green.

Bicubic Convolution For some optimization methods we require the cost func-
tion to be at least C1 which can be achieved by a bicubic approach. Keys [23]
proposed an efficient convolution approach in which the interpolated value is ob-
tained by convolution in both x and y direction with the kernel

W (x) =


(a+ 2) |x|3 − (a+ 3) |x|2 + 1 for |x| ≤ 1

a |x|3 − 5a |x|2 + 8a |x| − 4a for 1 < |x| < 2

0 else

(3.2)

for a = −0.5.
A general 1 dimensional convolution f of a quantity p sampled at points ti with

a kernel K is given by

f (x) =
∑
i

p (ti)K (x− ti) (3.3)

For the bicubic convolution in the image consider Figure 12. As we use a separable
kernel (convolution in each direction independently) we are first convolving in x
direction along the blue lines. Afterwards, we convolve the results given at the
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orange points in the y direction along the green line to obtain the interpolated
value. The result reads

JcubI (x) =
∑
l

∑
k

IklW (x− xk)W (y − yk) (3.4)

where again (xi, yj) ∈ P are the coordinates of the center of the pixel (i, j).

3.1.4 Dataterm for Two Images

We now define the data term in the case of two images, where we restrict ourselves
to gray value images, i.e. images with only one channel. More channels are possi-
ble, but usually, the additional information does not compensate for the increased
computational load. To measure the intensity difference, we can use an arbitrary
loss function `. We discuss different choices for the loss function in Section 3.2.

The dataterm for two available images reads

Edata (w, T,h) =
∑
x∈VI1

` (J I1 (ωx (R (w) , T,h))− I0 (x)) (3.5)

Here ωx (R (w) , T, h) denotes the warping of the pixel center x with the associ-
ated depth h = h (x) from the reference image to image 1. As it is clear from the
first argument of the warping function which depth we are referring to, we shorten
the notation for the depth to keep the equation as clean as possible.

R and T denote the relative pose of camera 1 with the exponential coordinates w.
We omit the indices of the coordinate systems because the direction of the warping
is apparent in the case of two images. If we are using more than one channel, we
need to evaluate the loss function for the difference in each channel.

Dataterm for multiple images

We can easily extend this dataterm to multiple images. We simply add the dataterms
obtained by comparing the intensities of the individual images to the reference.
Recall that I denotes the indices of all available images without the reference image.
Then the dataterm for multiple images reads

Edata (w,T,h) =
∑
i∈I

∑
x∈VIi

` (J Ii (ωx (R (wi) , Ti,h))− I0 (x)) (3.6)

where w and T denote the stacked exponential coordinates and translation vec-
tors of all available camera frames, i.e.

w =

 w1
...

w|I|

 , T =

 T1
...
T|I|


Note that now the set of valid points VIi must be determined for each individual
image. Additionally, since it depends on w,T and h, it must be updated with the
optimization variables in iterative optimization methods. Depending on the chosen
validity approach, this might require some computational effort.
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3.2 Loss Functions

A loss function (or cost function) is usually used to set up an optimization problem
for a parameter estimation where we want to find the best parameters for a model
given a set of observations. The loss function assigns a real value (cost) to a given
parameter hypothesis to evaluate how good the model fits the data for this hypoth-
esis. Often the different data points can be treated individually, and we sum the
losses for each observation to obtain a total cost. Depending on the context, the
estimation problem is either written as a minimization or a maximization. To obtain
well-posed problems, the loss functions must be lower or upper bound, respectively.

Depending on the problem at hand, we distinguish between loss functions for
classification and regression. In classification, we want to obtain a model to cate-
gorize data, and therefore the loss function is constructed to be an indicator that
shows if the categorization of a sample with known category is correct or not. Due
to the categories, this is a discrete setting. In regression, on the other hand, we try
to fit a functional dependence to the observed data, and therefore the loss function
measures how good the current parameter hypothesis fits the observed data in a
more continuous sense.

For this thesis, it is clear that we are in the setting of regression. The parameters
to estimate are the pose and the depth map, the model is the warping followed by
the interpolation of the brightness, and the available data we compare the model to
is the brightness in the reference image. Therefore we focus on the regression case
only and do not discuss classification loss functions in this thesis.

In the following, we introduce 3 popular choices of regression loss functions for
minimization problems. In general, we have a model f parameterized by a vector θ
and a set of data points (xi, yi) where the xi are the inputs and the yi the outputs
of the model. We are interested in regression loss functions ` that assign a positive
value to the difference between the prediction of the model and the observed data.
We sum the loss for each available data point to obtain an overall cost function

E (θ) =
∑
i

` (yi − f (xi, θ)) (3.7)

By minimizing this cost function, we obtain the optimal parameter θ.

Quadratic Loss

This is the classical choice resulting in the least-squares approach. The loss function
reads

`2 (x) =
1

2
x2 (3.8)

and is shown in blue in Figure 13. It is immediate that this cost function is differen-
tiable, which allows using methods from smooth optimization. The downside of this
loss is that it is not robust against outliers. As seen in the plot, larger differences
are penalized drastically due to the quadratic growth of the function. This means
that erroneous measurements have a huge impact on the optimization.

Absolute Loss

A robust loss function is given by the absolute loss

`1 (x) = |x| (3.9)
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Figure 13: Comparison of different regression loss functions ` (x). The quadratic
loss is shown in yellow, the absolute loss in blue and the Huber loss with Huber
parameter h = 0.7 in red.

which is shown in red in Figure 13. Due to the linear growth, outliers have much less
impact on the optimization, which is the reason for the robustness. The disadvan-
tage of this loss is that it is not differentiable any more, and therefore non-smooth
optimization techniques need to be applied.

Also, we see that the slope is constant, even as we are approaching the minimum.
That means that when we apply an iterative optimization method, we cannot base
the step width on this slope alone as we would still make huge steps near the
minimum, which results in overshooting. Instead, we need to apply a step width rule
since there is no natural step width reduction. Note the contrast to the quadratic
loss where the slope goes to zero as we are approaching the minimum.

Huber Loss

The Huber loss combines the advantages of both the quadratic and the absolute loss.
For deviations smaller than a threshold h it is quadratic and for bigger deviations
it transitions to a linear growth. This is achieved by the following loss function

`h (x) = |x|h =

{
1

2h
x2 if |x| ≤ h

|x| − h
2

else
(3.10)

which is shown in yellow in Figure 13. The result is a differentiable loss function with
decreasing gradient towards the minimum, that still has the robustness properties
of the absolute loss.

A Probabilistic View on Regression

In the following we will shortly discuss regression from a probabilistic point of view.
This will provide a different motivation for the loss functions. Assume that the data
points (xi, yi) are independent and that we can model the errors e.g. due to noise
by an additive normal distribution with zero mean and constant variance σ2. Then
we can write

yi = f (xi, θ) + εi (3.11)
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with εi ∼ N (0, σ2). From the transformation rule it follows that the yi are again
normally distributed with

yi
iid∼ N

(
f (xi, θ) , σ

2
)

(3.12)

We use a maximum likelihood approach to estimate the optimal parameter vector

θ. Recall that the pdf of the Gaussian distribution reads f (x) = 1√
2πσ2

exp
{
− (x−µ)2

2σ2

}
.

Therefore, due to the independence, the likelihood function can be written as

L
(
θ, σ2; y

)
=

n∏
i=1

1√
2πσ2

exp

{
−(yi − f (xi, θ))

2

2σ2

}

=

(
1√

2πσ2

)n
exp

{
−
∑n

i=1 (yi − f (xi, θ))
2

2σ2

} (3.13)

Instead of maximizing the likelihood function we can maximize the log-likelihood
function

l
(
θ, σ2; y

)
= ln

(
L
(
θ, σ2; y

))
= −n

2
ln
(
2πσ2

)
− 1

2σ2

n∑
i=1

(yi − f (xi, θ))
2 (3.14)

The maximization of the log-likelihood function is equivalent to the minimization

min
θ

{
− ln

(
L
(
θ, σ2; y

))}
(3.15)

which in case of the quadratic loss becomes

min
θ

1

2

n∑
i=1

(yi − f (xi, θ))
2 (3.16)

This is exactly the regression problem with the quadratic loss.
We obtain the absolute loss function if we model the error as iid Laplace dis-

tributed. The pdf of the Laplace distribution reads f (x) = 1
2b

exp
{
− |x−µ|

b

}
with

the parameters µ and b. Analogously to before we construct the likelihood function

L (θ, b; y) =

(
1

2b

)n
exp

{
−
∑n

i=1 |yi − f (xi, θ)|
b

}
(3.17)

and obtain

min
θ

n∑
i=1

|yi − f (xi, θ)| (3.18)

which is the regression with the absolute loss.
An intuition of why the absolute loss is more robust than the quadratic loss can

be obtained by comparing the normal distribution to the Laplace distribution. For
large deviations from the mean, it holds that (x− µ)2 > |x− µ|, which means that
the value of the pdf of the normal distribution is smaller than the pdf of the Laplace
distribution. We see that the Laplace distribution has ”heavier tails”, i.e. large
deviations are more likely in this model. This is the reason why the absolute loss
function is better suited to deal with outliers.

We can see the Huber loss regression as the solution strategy to a likelihood
maximization similar to before, where we now model the error as a combination of
both distributions. For smaller deviations, the error is distributed normally, while
for larger deviations, the error follows the Laplacian distribution.
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3.3 Regularization

In most cases, we are not able to recover satisfactory estimates for the pose and
the depth map from the data term alone. For any pixel in the reference image,
there might be multiple points in the second image that have a very similar inter-
polated intensity value and that we can warp to by using different pose and depth
combinations. An easy example is a surface with a uniform color. Varying the
depth hypothesis for points that are associated with that surface does not result in
significant changes in the data cost, at least locally.

Moreover, if we have found multiple points in the second image with similar
intensities, the correct point is not necessarily among them as we have seen that
assuming Lambertian surfaces is an idealization that does not always hold. This
makes the estimation very sensitive to external influences during the image formation
process. A third problem arises for invalid points. Since the data term does not
depend on the depth for those pixels, we have no information on how to improve
this depth value.

As a result, besides being unstable, estimation based solely on the data term
results in a very noisy depth map. A common approach to face this problem is to
use a regularization term Ereg that favors smoothness of the depth map. The idea
is that, apart from discontinuities at object boundaries, the depth varies smoothly
along object surfaces.

3.3.1 Different Regularization Terms

We use forward differences as an approximation of the first derivative to measure
the smoothness of the depth map at each pixel. We choose the pixel centers as
evaluation points.

Definition 3.1 (Discrete Gradient Operator Forward Differences). Let X denote
the Euclidean space Rm×n, let h ∈ X be a matrix and let x = (x, y) ∈ P be the
coordinates of a pixel center. Using the indexing from Definition 2.1 we define the
discrete gradient operator D : X → X ×X by

Dh (x) =

[
Dxh (x)
Dyh (x)

]
with the forward difference operators defined as

Dxh (x) =

{
h (x+ 1, y)− h (x, y) if x < n

0 else

Dyh (x) =

{
h (x, y + 1)− h (x, y) if y < m

0 else

Note that D is a linear operator.

Using the discrete gradient operator, we now discuss several different approaches
to construct a regularization term.
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Discrete Total Variation (TV) Regularization

A classical choice is to use a discrete version of the total variation. In this case we
sum the Euclidean norms of the gradients for all pixel, and therefore the regulariza-
tion term reads

Ereg (h) =
∑
x∈P

‖Dh (x)‖2 (3.19)

Note that we can see this as the L1 norm of the vector containing the L2 norms
of the gradient at each point. This smoothing term was first proposed by Rudin,
Osher and Fatemi [41] and has since been used countless times for different aspects
of computer vision, like range image integration [47], optical flow estimation [45] or
as in our case for SLAM [42].

Remark. Many authors prefer to state energy-based methods like ours in a con-
tinuous setting. Most of the mathematical analysis, like proofs for existence or
uniqueness, is more natural in this setting as we can employ results from the theory
of partial differential equations or the calculus of variations. Equation (3.19) is, in
fact, the discretization of the standard total variation that is defined in the contin-
uous setting. As the focus of this thesis is on the implementation aspects of SLAM,
we do not discuss the continuous setting here, which requires an extensive founda-
tion from functional analysis. We refer to the book by Aubert and Kornprobst for
a rigorous discussion of the continuous case [1].

Huber Regularization

The TV regularization preserves jumps in the depth values at object boundaries due
to the L1 norm. However, as the sparsity of the gradients is favored, the approach
leads to piecewise constant depths for surfaces, which is known as staircasing effect.
Werlberger et al. observed this effect for the regularization of a flow field in an
optical flow problem and proposed the robust Huber norm instead of the Euclidean
norm to avoid it [46]. The Huber norm combines the squared Euclidean norm for
small gradient magnitudes with the standard Euclidean norm for larger magnitudes
and can be seen as a generalization of the Huber loss defined previously to higher
dimensions.

Definition 3.2 (Huber Norm). Let h > 0 be the Huber parameter. Then the Huber
norm of x ∈ Rn is defined as

‖x‖h =

{
1

2h
‖x‖2

2 if ‖x‖2 ≤ h

‖x‖2 −
h
2

else

The quadratic term corresponds to a down-weighting of vectors with a small
norm as ‖x‖2

2 < ‖x‖2 for ‖x‖2 < 1. For the 1 dimensional case, the effect can be
seen in Figure 13 (note that the Euclidean norm is the absolute value in this case).
For small values, the quadratic terms are considerably smaller than the linear term.
In higher dimensions, similar behavior can be observed. Intuitively, when using the
Euclidean norm, small costs are only possible very close to zero gradient, which
explains the staircasing effect. In contrast, for the Huber norm, the smaller costs for
small gradients allow the algorithm more flexibility in those regions, which improves
the smoothness of the result.
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The TV Huber regularization term is defined analogously to the TV regulariza-
tion and reads

Ereg (h) =
∑
x∈P

‖Dh (x)‖h (3.20)

This regularization term is used e.g. in [25] and in DTAM [32].

Total Generalized Variation

The total generalized variation (TGV) is a generalization to the TV regularization
and was introduced and analyzed rigorously for the continuous setting by Bredies
et al. [5]. It allows additional regularization of higher-order derivatives. While,
in principle, any order of derivatives is possible, we only discuss the second-order
case here. It is well suited for affine surfaces like walls and many other man-made
objects.

The TGV regularization of second order can be written as

Ereg (h) = α1

∑
x∈P

‖Dh (x)− v (x)‖1 + α0

∑
x∈P

‖E (v) (x)‖1 (3.21)

where the newly introduced v ∈ Rm×n×2 is added to the optimization variables. In
terms of indexing we treat v as a 2-channel image. The positive weights α0 and
α1 are used to balance the terms. In the original work of Bredies et al. E is the
symmetrized Jacobian which, assuming a continuous vector field vcont reads

E
(
vcont

)
(x) =

1

2

(
Jvcont (x) + Jvcont (x)T

)
(3.22)

The discretization for our continuous setting is given by

E (v) (x) =

 Dxv1 (x) Dyv1(x)+Dxv2(x)

2

Dyv1(x)+Dxv2(x)

2
Dyv2 (x)

 (3.23)

Note that this is still a linear operator.
In the formulation of the regularization term, the L1 norm means the sum of

the absolute values of the entries. The TGV regularization using the symmetrized
Jacobian is used i.e. in [37]. It is, however, also possible to use the standard Jacobian
instead of the symmetrized version, which was done in [25].

To finish the section on TGV regularization, we want to build an intuition on
how the second-order case works. In contrast to standard TV, we subtract a vector
field v before penalizing the gradient of the depth map. This vector field itself
is required to have low variation to obtain minimal cost. Now consider an affine
surface. The gradient of its depth map is constant. If we choose the vector field v to
be this gradient, we achieve zero cost in the first term, but also in the second term
because the variation of a constant is zero as well. This is why the second-order
TGV regularization favors affine surfaces.

Isotropic and Anisotropic approaches

In all the regularization methods discussed so far, we sum the magnitudes of the
gradient measured in some norm for all points. The norm introduces a coupling
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of the derivative in x and y direction. This coupling can complicate minimization
algorithms substantially as it affects separability of the cost function. Therefore
we sometimes resolve this coupling by measuring the derivative in each direction
independently. In contrast to the standard approach described before which is con-
sidered isotropic, the decoupling is referred to as anisotropic. An anisotropic version
of the standard TV regularization therefore reads

Ereg (h) =
∑
x∈P

‖Dxh (x)‖2 + ‖Dyh (x)‖2 =
∑
x∈P

|Dxh (x)|+ |Dyh (x)| (3.24)

Note that Dxh (x) and Dyh (x) are the scalar directional derivatives at x, and there-
fore the Euclidean norm is just the absolute value. Anisotropic versions of the other
approaches can be constructed analogously.

In the context of the regularization of images, the term isotropic means rotation
invariant, which means that the value of the regularization energy does not change
if we rotate the image coordinate system. However, as discussed by Condat [9] true
isotropy is a property of the total variation only in the continuous case. Due to the
approximation of the gradient by finite differences, the property is lost for discrete
images. Therefore, the ”isotropic” discrete total variation is only an approximation
yielding reasonably good results. While Condat proposes an improved version of the
total variation, in this thesis, we stick to the formulations introduced in the previous
sections for simplicity.

3.3.2 Image-Driven Adaptive Regularization Weights

To improve the sharpness of the discontinuities of the depth map at image boundary,
we adopt an idea that is used in DTAM [32]. The idea is, that discontinuities in
the depth map often coincide with discontinuities in the image brightness, e.g. due
to different colors of the object in the foreground and the background. Therefore,
we weight the regularization for each pixel individually, depending on the intensity
gradient in that pixel. The image-driven weight used in DTAM reads

γ (x) = e−α‖DI0(x)‖β2 (3.25)

where DI0 is the image gradient in the reference image and α, and β are shape
parameters.

While we can use this term for all the regularization terms introduced before, we
will only give the combination with the Huber regularization as an example. The
other terms are combined with the adaptive weight analogously. The adaptively
weighted Huber regularization reads

Ereg (h) =
∑
x∈P

γ (x) ‖Dh (x)‖h (3.26)

with the function γ as defined in Equation (3.25).

3.3.3 A Probabilistic View on Regularization

We can also interpret regularization in a probabilistic sense. To do so, we need to
employ the framework of Bayesian estimation. We conduct the discussion again in
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the general setting, as we did in the section on the probabilistic view on regression.
The most important step towards using the Bayesian theory is to consider the pa-
rameters θ not as fixed quantities but as a random variable that has a probability
distribution.

We now use the observed data to update this distribution for θ. Assume that
we have beforehand knowledge about the parameters, which is expressed as a prior
distribution f (θ). This is our belief on what values for θ are likely ”before seeing
the data”. Using Bayes rule, we can express the distribution of ”θ after seeing the
data y” as

f (θ | y) ∝ f (y | θ) f (θ) (3.27)

which we refer to as posterior distribution. The only unknown quantity is f (y | θ),
which corresponds to ”probability of the data given θ”. We see, that this is the
standard likelihood that we used before, i.e.

f (y | θ) = L (θ; y) (3.28)

which allows us to express the posterior distribution.
To be able to work with a numeric value for θ, rather than with a distribution,

we maximize the posterior distribution to obtain an estimate for θ. This is only
one possible choice, taking the mean is another popular approach. As before, we
re-write the maximization as a minimization and use the logarithm to get rid of the
product. The result reads

min
θ
{− ln (f (y | θ))− ln (f (θ))} (3.29)

Since f (y | θ) = L (θ; y), we see that the first term is exactly the regression loss
term, which was derived in Section 3.2. For example, if we choose the Gaussian error
model, the term becomes the quadratic loss. The second term can be seen as the
additive regularization introduced in this chapter, however, now with a probabilistic
interpretation. Due to the terminology introduced here, authors working in the
Bayesian framework often refer to the ”prior” instead of the ”regularization term”.
We do not discuss prior distributions here, as this is beyond the scope of this thesis.
We refer to the book by Chalmond [6].

3.4 The SLAM Optimization Problem

By combining the terms of the previous sections, we can now state the SLAM
optimization problem. After introducing a weighting λreg > 0, to balance the data
and the regularization term, the SLAM optimization problem reads as follows.

Problem 3.1. Let I0, . . . Ik be k + 1 images of the scene, where I0 is the reference
image frame for which we estimate the depth map h. Let I = {1, . . . , k} denote the
indices of the additionally available images. Let wi and Ti denote the (unknown)
exponential coordinates and the translation of the i-th camera frame with respect
to the reference frame. We refer to the stacked versions of them by w and T,
respectively.

Find wopt, Topt and hopt that solves

min
w,T,h

{Edata (w,T,h) + λregEreg (h)}
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Figure 14: Scale Freedom for monocular systems. If we scale the scene and the
camera translation T by the same factor ρ, the image I0 remains unchanged, and
I1 and Ĩ1 are identical. Therefore, from the data in the images alone, a monocular
system can only estimate the scene up to scale.

Where we need to choose a loss function ` and an image interpolation method J
for the dataterm

Edata (w,T,h) =
∑
i∈I

∑
x∈VIi

` (J Ii (ωx (R (wi) , Ti,h))− I0 (x))

and one of the regularization terms that were discussed in Section 3.3.1.
Recall that VIi ⊂ P denotes the subset of all pixels in the reference image that,

given the current pose and depth hypothesis, is visible in camera frame i.

Remark. The natural choice of parameterizing the depth map directly in the opti-
mization variable might not be the optimal choice. Civera et al. proposed to use
the inverse depth as parametrization for the SLAM problem [8]. In combination
with the standard extended Kalman filter, they reported advantages for scenes with
a depth map that covers a huge range of values.

3.5 Scale Freedom and Effects on the Cost Function

We now address a problem that is inherent to all monocular methods and prevents
us from fixing the global length scale of the scene. For an intuitive understanding of
the problem, consider Figure 14. Without any prior information on T or the depth
map, we cannot know if the scene is the bigger cone for which the second image has
been captured by camera I1, or if the scene is the smaller cone captured by camera
Ĩ1. The image I0 is the same in both cases, and the images I1 and Ĩ1 are likewise
identical.

To see this quantitatively, we consider the warping in Equation (2.25) which we
repeat here with adjusted indices.

1x = ωx (R, T,h) =
1

(hKRK−1x̃ +KT )3

[
(hKRK−1x̃ +KT )1

(hKRK−1x̃ +KT )2

]
(3.30)

The equation describes the warping of a general point x from image I0 to its position

1x in the second image I1, given the depth value h in the reference frame. Recall
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that the denominator is the depth 1h in the second camera coordinate system. We
see that we can scale both the translation T and the depth value h by some constant
ρ without changing the resulting position 1x in the second image.

From a theoretical standpoint, the consequences for our approach are severe.
Without regularization, the scale freedom means that we can scale the depth map
and the translation by the same constant ρ without changing the cost. This means
that for a pure data term, we can only estimate up to scale.

We now consider the additional regularization term. For each term that we
discussed, we can pull out the scaling constant ρ due to linearity and the properties
of the norms, such that the constant scales the complete term. Therefore, since
ρ does not influence the data term, we obtain zero cost by choosing ρ = 0. This
corresponds to a zero depth map, no translation, and an arbitrary rotation, which
is the global minimum of the cost function.

In practice, the problem turns out to be less severe. As we will see in the following
sections, we employ iterative methods to minimize the cost function. The methods
limit the progress on the optimization variable. Therefore, rather than big jumps,
we expect a moderate drift of the scale, if we encounter any drift at all. Hence, if we
end the optimization after sufficiently few iterations, we can recover the pose and
the depth map on a scale close to the one of the initial values, and the effect of the
scale drift is negligible. In Section 6.5, we investigate the influence of scale drift on
our approach.

Note that the scale freedom also means that we are highly dependent on the
initial values. If we initialize the algorithm with values on a wrong scale, we cannot
hope to recover the right scale.
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4 Optimization

The optimization problem stated in Problem 3.1 is non-linear and non-convex, which
makes solving it quite challenging. Fortunately, with an additional approximation,
we can identify the structure of the problem as a convex-composite problem, which
allows us to use the prox-linear algorithm. The algorithm yields a sequence of
strongly convex sub-problems that we solve using the primal-dual hybrid gradient
method.

In this chapter, we discuss the methods in general, the application to the SLAM
problem follows in Section 5.

4.1 The Proximal Mapping

For both algorithms, we need the proximal operator (or simply ”prox operator”).
We give the definition and an intuition on why this mapping is useful in the context
of optimization. For thorough discussion we refer to [2, Chapter 6].

Definition 4.1 (Proximal Operator). Let f : Rn → R be a function that maps
to the extended real line.3We define the proximal mapping with the step width
parameter τ ∈ R as

proxτf (u) := arg min
v∈Rn

{
τf (v) +

1

2
‖v − u‖2

2

}
(4.1)

In general, the result of the proximal mapping can be a set. The next theorem
gives a condition under which the result is unique.

Theorem 4.1 ([2, Theorem 6.3]). Let f : Rn → R be proper, closed and convex
and τ ∈ R. Then proxτf (x) has a unique solution for all x ∈ Rn.

Proof. The prox operator is defined by minimizing the function

g (v) = τf (v) +
1

2
‖v − u‖2

2 (4.2)

The first part of this function is convex by definition, and the second part is strictly
convex, as the Hessian is the identity matrix. Since the sum of a convex and a
strictly convex function is strictly convex again, we see that g is strictly convex.
From the quadratic term, it is immediate that g is coercive. Together with the
convexity, this shows the existence of a minimum. The strict convexity shows that
the minimum is unique.

For differentiable functions f , we can interpret the proximal mapping as an im-
plicit gradient descent step, which is why the mapping is useful in the context of

3The extended real line is defined as R = R ∪ {∞}. For f : Rn → R we define the domain
dom (f) = {x ∈ Rn | f (x) <∞}. We say f is proper if dom (f) 6= ∅. By explicitly allowing
infinite values we can e.g. conveniently construct a convex indicator function for a convex set C

via δC (x) =

{
0 if x ∈ C
∞ else
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optimization. We see this by writing down the optimality conditions for Equa-
tion (4.1) if f ∈ C1.

0 = τ∇f (v∗) + v∗ − u
v∗ = u− τ∇f (v∗)

(4.3)

This shows that the proximal mapping proxτf (u) = v∗ performs an implicit gradient
descent step with the step width τ . An ascent step can be done by using a negative
stepwidth. By using subdifferentials as generalization of the gradient, this reasoning
still holds for non-differentiable convex functions f . Hence, we can use the proximal
mapping to construct gradient-like methods for non-differentiable functions.

The parameter τ controls how far we can go away from the point u. This becomes
more obvious if we re-write the proximal mapping in the following equivalent form.

proxτf (u) := arg min
v∈Rn

{
f (v) +

1

2τ
‖v − u‖2

2

}
(4.4)

The smaller τ the bigger the weighting of the quadratic term which means that
we cannot go too far away from u. We will now extend this idea and assign each
component of the optimization variable its own stepwidth to be able to control the
progress of each component individually.

Definition 4.2 (Weighted Proximal Operator). Let f : Rn → R be closed, proper
and convex and let M ∈ Rn×n be a symmetric positive definite matrix. Then we
define the weighted proximal mapping as

proxMf (u) := arg min
v∈Rn

{
f (v) +

1

2
‖v − u‖2

M

}
where the weighted norm is defined as ‖u‖2

M = 〈M−1u, u〉. It is easy to show that
‖·‖M is indeed a norm.

While a general symmetric and positive definite matrix M allows incorporating
cross dependencies between the components, an individual step width for each com-
ponent can be obtained by a diagonal matrix. Note that the inverse of a positive
definite matrix is still positive definite. Hence the weighted quadratic term remains
strictly convex with Hessian M−1, and therefore the weighted proximal mapping
still yields a unique result which can be shown analogously to Theorem 4.1.

4.2 The Prox-Linear Algorithm

The prox-linear algorithm can be used for the minimization of the following class of
problems

Definition 4.3 (composite optimization problem). Let g : Rd → R and h : Rm → R
be proper, closed and convex functions and c : Rd → Rm be a C1-smooth map. The
we call the problem

min
x
F (x) := g (x) + h (c (x))

a composite optimization problem.
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4.2.1 The Standard Algorithm

In the standard prox-linear algorithm we iteratively linearize the map c at the current
point xk and do a proximal step with stepwidth t4 on the resulting convex function.
Therefore the iterates are defined by the minimization problem

xk+1 = arg min
x∈Rd

Ft
(
x;xk

)
= arg min

x∈Rd

{
g (x) + h

(
c
(
xk
)

+ Jc
(
xk
) (
x− xk

))
+

1

2t

∥∥x− xk∥∥2
} (4.5)

where Jc is the Jacobian matrix of c; see Appendix A for the definition used in this
thesis.

An analysis of the algorithm can be found e.g. in the work of Drusvyatskiy et al.
[15],[14]. The main step is to derive a condition under which Ft is an upper model,
which means that it holds that Ft

(
x;xk

)
≥ F (x) for all x, xk ∈ dom (g). We need

to make the following assumptions

1. Let h be L-Lipschitz continuous, i.e.

|h (a)− h (b)| ≤ L ‖a− b‖2 for all a, b ∈ Rm

2. Let c be β-Lipschitz smooth, i.e.

‖Jc (x)− Jc (y)‖ ≤ β ‖x− y‖2 for all x, y ∈ Rd

where ‖·‖ is the operator norm.

Under those assumptions and for t ≤ (Lβ)−1 the function Ft is an upper model
for F . For a proof see, e.g. [15, section 3.3]. The convergence of the algorithm is
monitored in terms of the prox-gradient mapping

Gt
(
xk
)

:=
1

t

(
xk − xk+1

)
(4.6)

As shown in [15, section 4] a point xk for which
∥∥Gt (xk)∥∥ is small is a ”nearly-

stationary” point of F .
We now can state the prox-linear algorithm.

Algorithm 1: Prox-Linear Algorithm

Input: x0 ∈ Rd

Parameters: Choose t ≤ (Lβ)−1 and precision ε

while ‖Gt (xk)‖ ≥ ε do

xk+1 = arg minx

{
g (x) + h

(
c
(
xk
)

+ Jc
(
xk
) (
x− xk

))
+ 1

2t

∥∥x− xk∥∥2

2

}
Gt
(
xk
)

= 1
t

(
xk − xk+1

)
end

If this algorithm is equipped with a backtracking line search, we can prove lin-
ear convergence for the general case and even quadratic convergence under some
additional conditions, as shown in [14]. Ochs et al. proposed a more traceable line
search for the prox-linear algorithm [33].

4We use t to denote the step width here to stay consistent with the literature on the prox-linear
method. The letter τ for the step width is more prominent in the PDHG literature
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4.2.2 Prox-Linear Algorithm for Quadratic Regression

One special case is obtained when we apply the prox-linear algorithm to a nonlinear
quadratic regression problem. Consider the problem introduced in Section 3.2.

min
θ
F (θ) =

1

2

n∑
i=1

(
yi − f (xi; θ)︸ ︷︷ ︸

ri

)2
(4.7)

where we denoted the differences between the model and the observations as residues
ri. By identifying g ≡ 0, h (x) = 1

2
‖x‖2 and c =

[
r1, . . . rn

]T
=: r we can

interpret Equation (4.7) as a composite optimization problem. Using the prox-linear
algorithm we obtain the iteration

θk+1 = arg min
θ

{
1

2

∥∥r (θk)+ Jr
(
θk
) (
θ − θk

)∥∥2

2
+

1

2t

∥∥θ − θk∥∥2

2

}
(4.8)

To shorten the notation we use r = r
(
θk
)

and J = Jr
(
θk
)
. The above minimization

can be solved analytically, which yields

θk+1 = θk −
(
JTJ +

1

t
I

)−1

JT r (4.9)

This is a special case of the method of ”damped least suqares” introduced by Lev-
enberg [27]. While Equation (4.9) is often referred to as the Levenberg-Marquardt
method, Levenberg proposed the more general approach of component-wise damping
which is obtained by replacing the identity matrix I by a positive definite diagonal
matrix. Marquardt [29] did a more rigorous analysis on the algorithm and proposed
to use the following diagonal damping term

θk+1 = θk −
(
JTJ +

1

t
diag

(
JTJ

))−1

JT r (4.10)

where with a slight abuse of notation diag
(
JTJ

)
means the diagonal matrix con-

taining the diagonal elements of JTJ . Although he did not analyze it, Levenberg
reported the same damping term to be successful as well.

Note that the optimization problem associated to Equation (4.10) reads

θk+1 = arg min
θ

{
1

2

∥∥r (θk)+ Jr
(
θk
) (
θ − θk

)∥∥2

2
+

1

2

∥∥θ − θk∥∥2

M

}
(4.11)

with M−1 = 1
t

diag
(
JTJ

)
. Therefore we can interpret Marquardts proposition as

the application of the prox-linear approach with a weighted prox operator to a
nonlinear quadratic regression problem.

Intuitively, Equation (4.10) is a component-wise damping which is proportional
to an approximation of the curvature in this direction. To see this we consider the
Hessian matrix of the square regression cost function F (θ) = 1

2
‖r (θ)‖2

2.

(HF )ij =
∑
k

(
∂rk
∂θi

∂rk
∂θj

+ rk
∂2ri
∂θi∂θj

)
(4.12)

By dropping the second order term we see that we can approximate the Hessian ma-
trix by HF = JTJ where J is again the Jacobian matrix of the residues. Recall that
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the diagonal entries of the Hessian matrix are the curvatures is the respective direc-
tion. Therefore, we see that in Equation (4.10) we are damping components with
a high approximated curvature stronger than components with a lower curvature
which helps to prevent overshooting.

Another beneficial aspect of using the derivatives is that the scaling of the com-
ponents is introduced to the damping. The orders of magnitude can differ strongly
between the components. In approaches like Equation (4.9), we still have to find
one damping parameter that suits them all, which can lead to slow convergence for
some components. This is avoided by the approach in Equation (4.10).

Remark. In the literature, we find diverse definitions of the Levenberg-Marquardt
algorithm, most notably the versions defined by Equation (4.9) and Equation (4.10).
While they both can be seen as special cases of a component-wise damped least-
squares approach, they are still distinct methods, and we need to be careful which
method is referred to when we talk about Levenberg-Marquardt.

4.2.3 Prox-Linear Algorithm with Weighted Prox Operator

To obtain more flexibility and to be able to account e.g. for different scales of
the optimization variable, we will extend the standard prox-linear algorithm by
using a weighted proximal mapping. This is motivated by the interpretation of the
Levenberg-Marquardt approach discussed before. We will use a positive definite
diagonal weighting matrix Mk which can be adjusted for each sub-problem. So the
weighted prox-linear iteration is given as

xk+1 = arg min
x∈Rd

{
g (x) + h

(
c
(
xk
)

+ Jc
(
xk
) (
x− xk

))
+

1

2

∥∥x− xk∥∥2

Mk

}
(4.13)

This modification of the standard algorithm proved to be working, and conver-
gence improvements have been observed by assigning different step widths to the
components. However, no rigorous convergence analysis has been done. Together
with insights on the optimal choice of the weighting matrix Mk, this remains an
exciting research perspective.

4.3 The Primal-Dual Hybrid Gradient Method

The primal-dual hybrid gradient algorithm (PDHG) is used to solve convex opti-
mization problems of the form

Problem 4.1. Solve
inf
u∈Rn

G (u) + F (Ku) (4.14)

where G : Rn → R and F : Rm → R are proper, closed and convex functions and
K : Rn → Rm is a linear operator.

The PDHG method was initially proposed by Pock, Bischof, Cremers and Cham-
bolle for the minimization of the Mumford-Shah functional, see [36]. A more general
discussion of the algorithm as well as a convergence analysis can be found in [7].

In the algorithm, we introduce a dual variable by replacing one of the functions
F and G by its convex biconjugate. This transforms the problem into a saddle-
point formulation that is solved by alternating steps on the primal and the dual
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variable. The approach is useful in particular if the function F is non-smooth.
While standard gradient-based methods are not applicable, the replacement with
the biconjugate separates the linear operator from the function, which makes an
effective solution possible.

In the following, we discuss the ideas behind the PDHG algorithm to build some
intuition on how the method works. As the convergence proofs and the theory
behind it are extensive, we only state necessary results and refer to the respective
work for more information.

4.3.1 Basics from Convex Analysis

We start with a few definitions and results from convex analysis that are necessary
to understand the idea behind the PDHG method. The proofs and a thorough
discussion of the results can be found in the standard book by Rockafellar [40].

Definition 4.4 (Convex Conjugate). Let f : Rn ∪ {∞} be any proper function.
The the convex conjugate of f is defined as

f ∗ (p) = sup
u∈Rn

(〈p, u〉 − f (u))

where 〈·, ·〉 denotes the standard Euclidean scalar product.

Besides being convex and closed, the convex conjugate has the following property,
which provides the basis for the PDHG method.

Theorem 4.2 (Biconjugate of Convex Functions). Let f : Rn ∪ {∞} be proper,
convex and closed. Then the biconjugate is equal to f , i.e

f ∗∗ (u) := sup
q∈Rn

(〈q, u〉 − f ∗ (q)) = f (u)

Under the assumptions stated in Problem 4.1 we can use this result to replace
the function F by its biconjugate to re-write the problem as

inf
u∈Rn

sup
q∈Rn

G (u) + 〈q,Ku〉 − F ∗ (q) (4.15)

Under a mild assumption, we can interchange the infimum and the supremum,
which allows the next statement.

Theorem 4.3 (Fenchel’s Duality). Let G : Rn → R∪{∞} and F : Rm → R∪{∞}
be proper, closed and convex functions. Let K : Rn → Rm be a linear opera-
tor with the adjoint operator KT . Let further exist a x ∈ ri (dom (G))5such that
Ku ∈ ri (dom (F )). Then the solutions of the following problem formulations are
equivalent

inf
u∈Rn

G (u) + F (Ku) Pimal Problem (4.16)

inf
u∈Rn

sup
q∈Rn

G (u) + 〈q,Ku〉 − F ∗ (q) Saddle− point Problem (4.17)

sup
q∈Rn

inf
u∈Rn

G (u) + 〈q,Ku〉 − F ∗ (q) Saddle− point Problem (4.18)

sup
q∈Rn
−G∗

(
−KT q

)
− F ∗ (q) Dual Problem (4.19)
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The dual formulation is obtained by replacing the function G by its biconjugate
as well and some algebraic operations.

In the PDHG algorithm, we perform descend steps on the primal and ascend
steps on the dual variable in an alternating fashion. We use the proximal operator
to do so.

4.3.2 The PDHG Algorithm

We now can derive the primal dual hybrid gradient algorithm. We will solve the
saddle-point formulation of the problem and therefore we will work with the following
function

L (u, p) := G (u) + 〈p,Ku〉 − F ∗ (p)

with the primal variable u and the dual variable p. Fixing the current primal we
first perform the following ascent step on the dual variable

pk+1 = prox−σL(uk,·)
(
pk
)

= arg min
p

{
σF ∗ (p)− σ〈p,Kuk〉+

1

2

∥∥p− pk∥∥2

2

}
= arg min

p

{
σF ∗ (p) +

1

2

∥∥p− pk − σKuk∥∥2

2

}
= proxσF ∗

(
pk − σKuk

)
with the yet unspecified stepwidth σ. This is followed by a descent step on the
primal variable that we can simplify in a similar way.

uk+1 = proxτL(·,pk+1)
(
uk
)

= arg min
u

{
τG (u) + τ〈pk+1, Ku〉+

1

2

∥∥u− uk∥∥2

2

}
= arg min

u

{
τG (u) +

1

2

∥∥u− uk + τKTpk+1
∥∥}

= proxτG
(
uk − τKTpk+1

)
5The relative interior ri (C) of a set C is a concept that is used, when the low-dimensional set

C is embedded into a higher-dimensional space. Intuitively, it is the interior of the set C restricted
to the smallest possible subspace.
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By combining these two steps with an extrapolation step, we end up with the
algorithm analyzed in [7].

Algorithm 2: Primal Dual Hybrid Gradient Algorithm

Input: u0 ∈ Rn, p0 ∈ Rm

Parameters: τ, σ s.t. στ < 1
‖K‖2

Set ū0 = u0

for k = 0, 1, 2, . . . do
pk+1 = proxσF ∗

(
pk + σKūk

)
uk+1 = proxτG

(
uk − τKTpk+1

)
ūk+1 = 2uk+1 − uk

end

Here ‖K‖ is the operator norm of K. Chambolle and Pock proved the conver-
gence of the algorithm with rate O (1/k) in [7].

4.4 Preconditiong for the PDHG Algorithm

To determine the step widths in Algorithm 2 we need to estimate ‖K‖. If the
operator has a complex structure, this might become a very demanding task. Also,
we encounter operators that have a very large norm. As the resulting step widths are
small, the convergence of the algorithm is very slow. To overcome these problems,
Pock and Chambolle proposed a diagonal preconditioning approach as an extension
to Algorithm 2 in [35]. Intuitively, the idea is to assign each component of the primal
and the dual variable its customized step width, which is done by the weighted
proximal mapping from Definition 4.2.

Algorithm 3: Primal Dual Hybrid Gradient Algorithm with Precondition-
ing

Input: u0 ∈ Rn, p0 ∈ Rm

Parameter: Choose diagonal matrices Λ,Σ according to Theorem 4.4

Set ū0 = u0

for k = 0, 1, 2, . . . do
pk+1 = proxΣF ∗

(
pk + ΣKūk

)
uk+1 = proxΛG

(
uk − ΛKTpk+1

)
ūk+1 = 2uk+1 − uk

end

Note that by the choice Λ = τI, Σ = σI with στ < ‖K‖ we recover the standard
PDHG algorithm. Pock and Chambolle proved convergence of Algorithm 3 for the
following choice of preconditioning matrices

Theorem 4.4. Let α ∈ [0, 2]. The choice Λ = diag (τ1 . . . , τn) and Σ = diag (σ1, . . . , σm)
with

τj =
1∑m

i=1 |Kij|2−α
, σi =

1∑n
j=1 |Kij|α

(4.20)
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ensures that the sequence
(
uk, pk

)
generated by Algorithm 3 converges weakly to an

optimal solution of the saddle-point formulation of Problem 4.1
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5 Implementation

In this chapter, we discuss the implementation of the prox-linear algorithm to solve
the SLAM optimization problem. While we use the PDHG method to solve the
resulting sub-problems in the general case, we also discuss an analytic solution of
the sub-problems for a special case to be able to evaluate the performance as well as
advantages and disadvantages of the PDHG approach. Starting from Problem 3.1,
we address the different aspects of the approaches.

5.1 Vectorization of the depth map

For the implementation we will use a vectorized form of the depth map. This will
simplify the notation when we need to calculate the Jacobian matrix of the image
intensities w.r.t the optimization variable. The vectorization is obtained by stacking
the columns, i.e. for h = [h1, . . . ,hn] we write the vectorized version as

hvec =

h1
...

hn


Analogously, we can vectorize the image intensity as well as the image gradients. The
transformation between pixel coordinates and the index in the vectorized quantity
is stated in the next proposition.

Proposition 5.1. Let x = (x, y) ∈ Ω be a point in the image domain which we can
assign a value in the matrix h ∈ Rm×n via the mapping in Definition 2.1. Then the
same value can be found in the vectorization of the matrix hvec at the index

i = y +m (x− 1)

Vice versa the i-th entry in the vectorization can be found in the matrix at the
integer point

x =

⌊
i− 1

m

⌋
+ 1

y = ((i− 1) mod m) + 1

Where b·c denotes the floor function and mod the modulo operation.

Using the vectorized form of the depth map, we can write the optimization
variable compactly as a vector u.

Definition 5.1. We write the optimization variable for the implementation as

u =

 w
T

hvec


Note that h and hvec are merely different representations of the same quantity,

and we will still use the matrix representation whenever it suits us.
The vectorization of the depth map also allows us to write the forward difference

operators and, consequently, the complete discrete gradient operator as matrices.
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We define Dx, Dy ∈ Rmn×mn such that Dxh
vec yields a vector that contains the

forward differences in x-direction for all pixels in a stacked ordering (i.e. the same
ordering as in hvec). Likewise, Dyh

vec contains the forward differences in y-direction.
The written-out difference matrices can be found in Appendix B.1.

It will proof useful to combine both finite difference matrices into one discrete
gradient operator that acts on the complete optimization variable. Hence we define
the matrix

D̄ =

[
0 Dx

0 Dy

]
(5.1)

where we added 6 · |I| zero columns at the beginning to account for the pose com-
ponents of the optimization variable.

5.2 Application of the Prox-Linear Algorithm

First we show that we can apply the prox-linear algorithm to Problem 3.1. To see
this and to prepare for the linearization we reformulate the dataterm slightly. We
start with the simpler case of only two images, i.e. with Equation (3.5). By stacking
the intensity differences for all the valid points {x1,x2, . . . ,xn} ∈ VI1 we obtain a
vector

c (u) =


J I1

(
ωx1

(
R (w) , T,h

))
− I0 (x1)

J I1

(
ωx2

(
R (w) , T,h

))
− I0 (x2)

...

J I1

(
ωxn

(
R (w) , T,h

))
− I0 (xn)

 (5.2)

By introducing the function h (y) =
∑

j ` (yj) for y = [y1, y2, . . . , yn]T we can write
the data term as

Edata (w, T,h) = h (c (u)) (5.3)

The dataterm for multiple images from Equation (3.6) can be rewritten analo-
gously. In this case we define a vector similar to the one in Equation (5.2) for each
available image i ∈ I each.

ci (u) =


J Ii
(
ωx1

(
R (wi) , Ti,h

))
− I0 (x1)

J Ii
(
ωx2

(
R (wi) , Ti,h

))
− I0 (x2)

...

J Ii
(
ωxni

(
R (wi) , Ti,h

))
− I0 (xni)

 (5.4)

Note that the ci will have different lengths as the set of valid points VIi is different
for each image. By stacking the vectors ci we write the dataterm for multiple images
as

Edata (w,T,h) = h (c (u)) = h


 c1 (u)

...
c|I| (u)


 (5.5)

So we can write the SLAM problem as

min
u
{h (c (u)) + λregEreg (u)} (5.6)
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It is easy to show that all the loss functions introduced in Section 3.2 are closed
and convex. Therefore h is closed and convex as it is the sum of closed and convex
functions. Likewise, the regularization term can be shown to be closed and convex
as it is a composition of a linear map, a convex norm, and a non-negative weighted
sum. Note that the (positive) adaptive weights do not depend on the optimization
variable and therefore have no influence on the convexity.

The last prerequisite for the composite optimization problem from Definition 4.3
is that c is continuously differentiable. The function is a composition of the smooth
warping ω and the image interpolation. Therefore the differentiability of c depends
on the interpolation method. If we choose the bicubic convolution approach, we
obtain a C1 function c and hence can apply the prox-linear approach. However, for
performance reasons, often the bilinear approach is preferred, which is not differ-
entiable. In this case, a continuous approximation of the gradient is obtained by
bilinear interpolation of the image gradients at the pixel centers which are computed
via finite differences. To avoid systematic errors, it is important to use an unbiased
finite difference operator like central differences for that purpose.

5.2.1 Linearization of c

For the prox-linear algorithm we need to linearize c at the current iterate uk. Con-
sidering one of the ci we can write the linearization as

clini (u) = ci
(
uk
)

+ Jci
(
uk
) (
u− uk

)
= Jki u− bki

(5.7)

where we shortened the notation for the Jacobian Jci
(
uk
)

to Jki and introduced the
vector

bki = Jki u
k − ci

(
uk
)

= Jki u
k −


J Ii
(
ωx1

(
R
(
wk
i

)
, T ki ,h

k
))
− I0 (x1)

J Ii
(
ωx2

(
R
(
wk
i

)
, T ki ,h

k
))
− I0 (x2)

...

J Ii
(
ωxni

(
R
(
wk
i

)
, T ki ,h

k
))
− I0 (xni)


(5.8)

By combining the linearizations for all available images we now can write down
the linearized form of the dataterm which we use for the prox-linear algorithm

Elin
data (u) = h


 J

k
1
...
Jk|I|

u−
 b

k
1
...
bk|I|


 = h

(
Jku− bk

)
(5.9)

So the prox-linear subproblem in every step reads

uk+1 = arg min
u

{
h
(
Jku− bk

)
+ λregEreg (u) +

1

2

∥∥u− uk∥∥2

Mk

}
(5.10)

where we used the weighted prox-linear approach with a weighting matrix Mk that
can change for each iteration. The reason for this as well as the actual choice will
be discussed in Section 5.2.2.
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It remains to address the computation of the matrices Jki . For an arbitrary point
xj the corresponding row in Jki is the transposed of the following gradient ∇w

∇T

∇hvec

 (J Ii)
(
ωxj

(
R (wi) , Ti,h

))
(5.11)

In accordance with Section 2.4 we denote the warping of point xj to image i by

ixj = ωxj

(
R (wi) , Ti,h

)
(5.12)

Recall that xj is actually short for 0xj, i.e. a point in the reference image.
It is immediate that we will need to apply the chain rule to calculate the gradient

in Equation (5.11). By using the calculus rules in Appendix A we can write down
the first component of the gradient as

∇w (J Ii) (ixj) =
(
Jwωxj

)T ∇x (J Ii) (ixj) =
(
JRωxjJwR

)T ∇x (J Ii) (ixj) (5.13)

where we omitted the evaluation points for the Jacobian matrices to improve read-
ability. Recall that an index for the Jacobian matrix means the Jacobian matrix
w.r.t only this vector and note that ∇ (J Ii) in the sense of the nabla operator is
only defined if we use the bicubic interpolation. In the bilinear case the notation
means the bilinear interpolation of the image gradients at the pixel centers. The
formulas for both cases are given in Appendix B.2. Analogously we can write

∇T (J Ii) (ixj) =
(
JTωxj

)T ∇x (J Ii) (ixj) (5.14)

∇hvec (J Ii) (ixj) =
(
Jhvecωxj

)T ∇x (J Ii) (ixj) (5.15)

Combining the previous results the j-th row of Jki reads

∇x (J Ii) (ixj)
T [JRωxjJwR JTωxj Jhvecωxj

]
(5.16)

We note that the Jacobian matrix JRω is not defined in the current form of the
warping formula, as R is a matrix, and our notation only allows Jacobian matrices
w.r.t vectors. Therefore, we need to reformulate the formula to use a vectorized form
of the rotation matrix. We use the following standard result from linear algebra.

Lemma 5.1. Let A ∈ Rk×l, B ∈ Rm×n and C ∈ Rk×n be matrices. Let X ∈ Rl×m

be another matrix such that AXB = C holds. Then the following equivalency holds

AXB = C ⇔
(
BT ⊗ A

)
vec (X) = vec (C)

where the operator vec means the stacking operation of the columns of the ma-
trix, and ⊗ is the Kronecker product.

We start from Equation (2.24) which we adjust for the case that we warp a
general point x from the reference frame to frame i.

ihix̃ = hKRK−1x̃ +KT (5.17)

Since KRK−1x̃ yields a vector we can use Lemma 5.1 to write

KRK−1x̃ =
((
K−1x̃

)T ⊗K)Rvec (5.18)
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where we use the same notation for the vectorization of R as for the depth map. By
introducing Ψ = (K−1x̃)

T ⊗K we can rewrite Equation (5.17) as

ih

[
ix
1

]
= hΨRvec +KT (5.19)

from which we obtain the reformulated warping equation similarly to Section 2.4 as

ix = ωx (R, T,h) =
1

hΨ3Rvec +K3T

[
hΨ1R

vec +K1T
hΨ2R

vec +K2T

]
(5.20)

where Ψi means the i-th row of the matrix.
For Equation (5.20) it is now possible to calculate the Jacobian matrix JRvecω.

By vectorizing the result of Rodrigues Formula given in Theorem 2.1, we can also
compute JwR

vec, which now finally allows the computation of the complete Jacobian
matrices Ji.

5.2.2 Choice of the Stepwidths

Since we have not established a rigorous theory for the choice of the diagonal step-
width matrices Mk, we use the following heuristic in the prox-linear approach.(

Mk
)−1

=
1

ζkstep
M−1

0 + min
{

diag
(
Jk

T
Jk
)
,M−1

min

}
(5.21)

where for 0 < ζstep < 1 we denote an actual exponentiation by ζkstep (in contrast to
the iteration counts).

The first term corresponds to an exponential step width reduction starting from
an initial weighting matrix M0. Such a reduction rule is quite common in optimiza-
tion and is used to avoid overshooting near the optimum. Moreover, it is sensible
to reduce the step width in combination with the iteratively adjusted blurring in-
troduced in the next section, as this affects the smoothness of the cost function.

The second term is inspired by the Levenberg-Marquardt approach and can be
seen as an adaptive damping of components where the cost function has a high
curvature in the respective direction. The reasoning is analogous to Section 4.2.2.
The minimization in the second term, which is meant component-wise, is used to
limit the influence of the damping term. Mmin is a component-wise minimum step
width, and its inverse limits the diagonal term.

We decompose the step width parameters such that we use the same parameter
for each component of translation, rotation and depth, respectively. For example,
for the initial step width we use

M0 =

M0,w

M0,T

M0,h

 (5.22)

where each M0,∗ is a vector with identical values and the suitable dimension to fit
the respective part of the optimization variable.
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Figure 15: Effect of the Gaussian blurring. On the left the original image, in the
middle the blurred image with standard deviation σ = 1 and on the right with σ = 2.
Source image: Built-in examples in MATLAB, cameraman.tif

5.2.3 Blurring to Increase the Stepwidths

The feasible step width for the prox-linear algorithm depends on the Lipschitz con-
stant of the function h and the Lipschitz smoothness constant of the function c. It
is well known that for twice continuously differentiable functions, the L-smoothness
constant is coupled to the norm of the second derivative. A function with a lower
curvature has a smaller Lipschitz smoothness constant. Hence, if we reduce the cur-
vature of the function c in the prox-linear algorithm, this means that we can allow
bigger step widths.

In the SLAM problem, we can smoothen the function c by applying a Gaussian
filter to the input images. The effect on an image is shown in Figure 15. A summary
of Gaussian filtering is given in Appendix B.4. With increasing standard deviation
σGauss, the filter increasingly equalizes the brightness values of the pixels, which are
used as sampling points for the interpolation. Consequently, the curvature of the
interpolation is reduced, which is conveyed to the function c.

However, the blurring of the images affects the sharpness of details. Therefore
the estimated depth map might become more fuzzy with increasing blurring. To
prevent this effect, we reduce the blurring of the images by a constant factor ζblurr
with increasing number of iterations. As a result, we can increase the step width in
the first iterations to increase convergence and are still able to obtain sharp results.
Note that the heuristic approach for the step widths defined in Section 5.2.2 reduces
the step widths, so the increase of the Lipschitz smoothness constant due to the
reduction of the blurring does not cause any problems for a proper choice of the
parameters.

In the tests, it turned out to be best to reduce the blurring only every r-th step
and to keep it constant in between. Consequently, starting from an initial standard
deviation σGauss,0, the standard deviation for the blurring in step k reads

σkGauss = ζ
b kr c
blurrσGauss,0 (5.23)

where we mean an actual exponentiation for the factor ζblurr while in σkGauss we
denote the iteration counter.
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5.2.4 Initial Value

Since the cost function for the SLAM problem is highly non-convex, we need to have
a good initial guess to be able to estimate the pose and the depth map accurately.
The estimation of good initial values is a problem of its own, which is beyond the
scope of this thesis. One possible approach is to perform a repeated exhaustive
epipolar line search6for each pixel to obtain an initialization. This approach is
described e.g. in [18]. The initialization used for the experiments in this thesis is
discussed in Section 6.1.3.

5.2.5 Pseudo Code for the Application of the Prox-Linear Algorithm

The results of this section are summarized in Algorithm 4.

5.3 Application of the PDHG Algorithm to the sub-problems

We now apply the PDHG algorithm to the sub-problems defined by Equation (5.10).
We will discuss different loss functions for the data term and the isotropic version of
both the TV regularization as well as the Huber regularization term with adaptive
weights. To prepare for the PDHG formalism we need to re-write the regularization
terms slightly. Using the discrete gradient operator D̄ defined in Equation (5.1) we
can write

Ereg (u) =
mn∑
i=1

Γi

∥∥∥∥[ (
D̄u
)
i(

D̄u
)
i+mn

]∥∥∥∥
�

(5.24)

where Γ is the vector containing the stacked adaptive weights for the respective
pixels and � is a placeholder for either the 2-norm or the Huber norm. We now
introduce the function

R (x) =
mn∑
i=1

Γi
∥∥x[i,i+mn]

∥∥
�

(5.25)

where we use the indexing notation

x[i,i+mn] =

[
xi

xi+mn

]
(5.26)

This allows us to write the regularization term as Ereg (u) = R
(
D̄u
)
.

As we have 3 terms in the current formulation of the optimization problem we
need to take a few reformulation steps to bring the problem to the standard saddle
point formulation in Theorem 4.3. We repeat Equation (5.10) here for convenience
where we already used the new notation for the regularization term.

uk+1 = arg min
u

{
h
(
Jku− bk

)
+ λregR

(
D̄u
)

+
1

2

∥∥u− uk∥∥2

Mk

}
(5.27)

6In short, epipolar geometry describes geometric constraints between a 3D world point and its
image points in different camera frames. One of those constraints is, that for a fixed camera pose
the warping locations of a point from the reference camera to a second camera are restrained to a
straight line for arbitrary depth values.
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Algorithm 4: Prox-Linear Algorithm for the SLAM Problem

Input: Ii for i ∈ I, u0 ∈ Rn

Parameters:
• Interpolation method
• Loss function, regularization method and Huber parameters if applicable
• Regularization weight λreg, adaptive regularization weight parameter α, β
• Blurring reduction parameters σGauss,0, ζblurr and r
• Stepwidth parameters M0,Mmax and ζstep

Preprocessing:

• Apply initial blurring to images
• Calculate adaptive regularization weights based on the original image

for k = 0, 1, 2, . . . do

1. Check if blurring is reduced

2. Warp all points from reference image to secondary images

3. Check point validity

4. Interpolate secondary images at valid points

5. Compute linearization quantities Jk and bk

6. Compute current step width matrix Mk

7. Solve sub-problem and update optimization variable

uk+1 = arg min
u

{
h
(
Jku− bk

)
+ λregEreg (u) +

1

2

∥∥u− uk∥∥2

Mk

}

end
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We replace the two terms F1

(
Jku

)
= h

(
Jku− bk

)
and F2 (u) = λregR

(
D̄u
)

by
their biconjugates. In doing so we introduce two dual variables. We can re-write
Equation (5.27) as

min
u

max
p1

max
p2
〈p1, J

ku〉 − F ∗1 (p1) + 〈p2, D̄u〉 − F ∗2 (p2) +
1

2

∥∥u− uk∥∥2

Mk (5.28)

By stacking the two dual variables into a new variable p and introducing F ∗ (p) =
F ∗1 (p1) + F ∗2 (p2) we obtain the standard form for the PDHG algorithm.

min
u

max
p

1

2

∥∥u− uk∥∥2

Mk︸ ︷︷ ︸
G(u)

+

〈[
p1

p2

]
︸︷︷︸

:=p

,

[
Jk

D̄

]
︸ ︷︷ ︸
:=K

u

〉
− F ∗ (p) (5.29)

To this formulation we can apply the standard or the preconditioned PDHG algo-
rithm. Note that in the preconditioned case we can split the preconditioning matrix
Σ into two parts for each of the dual variables. Closed form solutions for the prox
operators can be found in Appendix B.3.

5.4 Analytic Solution of the Sub-Problems - Special Case

To be able to compare the performance of the general approach discussed before,
we consider a special case for which we can derive an analytic solution for the sub-
problems. We use the quadratic loss for the data term and the isotropic Huber
regularization. This special problem reads

min
u

{
1

2
‖c (u)‖2

2 + λregR
(
D̄u
)}

(5.30)

To apply the prox-linear formalism we define the functions

h

([
x
y

])
=

1

2
‖x‖2

2 + y; c̄ (u) =

[
c (u)

λregR
(
D̄u
)] (5.31)

which allows us to write the SLAM problem as

min
u
h (c̄ (u)) (5.32)

It is easy to see that h and c̄ fulfill the prerequisites for the of the composite
optimization problem in Definition 4.3 with the limitations due to the interpolation
as discussed in Section 5.2. To apply the prox-linear algorithm we need to linearize
c̄ at the current iterate uk.

c̄lin =

[
c
(
uk
)

λregR
(
D̄uk

)]+

[
Jc
(
uk
)

λreg∇
(
R
(
D̄uk

))T] (u− uk) (5.33)

Where we need to apply the chain rule to compute the gradient of the composition
R
(
D̄uk

)
, i.e.

∇
(
R
(
D̄uk

))
= D̄T∇R

(
D̄uk

)
(5.34)

The formula for the gradient of R (x) is given in Appendix B.5.
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Using the linearization we obtain the following iteration of sub-problems by
applying the weighted prox-linear algorithm.

uk+1 = arg min
u

{
1

2

∥∥Jku− bk∥∥2

2
+ λreg∇RT

(
D̄uk

)
D̄u+

1

2

∥∥u− uk∥∥2

Mk

}
(5.35)

where we used the same notation for Jk and bk as before and already omitted the
constant terms. As the sub-problems are quadratic forms we are able to compute
an analytic solution by considering the optimality condition.

Jk
T (
Jku− bk

)
+ λregD̄

T∇R
(
D̄uk

)
+
(
Mk
)−1 (

u− uk
)

= 0

⇔ uk+1 =
(
Jk

T
Jk +

(
Mk
)−1
)

︸ ︷︷ ︸
Φ

−1 (
Jk

T
bk +

(
Mk
)−1

uk − λregD̄T∇R
(
D̄uk

))
(5.36)

Due to the dimensionality of the problem, it is not possible to solve the linear
system with standard algorithms. However, the matrix Φ has a special structure that
allows us to solve the system using the Schur complement, a well-known approach
e.g. in bundle adjustment algorithms. For completeness, the solution of the linear
system using the Schur complement is given in Appendix B.6. Equation (5.36)
replaces step 7 in Algorithm 4.

Remark. It is worth noting, that this approach can be seen as a mixture of a
Levenberg-Marquardt-like approach on the data term and the gradient descent step
on the regularization in the following way. First, we consider only the data term
and do a Levenberg-Marquardt step. The result reads

uk+1 = arg min
u

{
1

2

∥∥Jku− bk∥∥2

2
+

1

2

∥∥u− uk∥∥2

MLM

}
(5.37)

where a general weighting matrix MLM was used.
For the regularization term we use the fact that for a function f : Rn → R which

is L-Lipschitz smooth, the following inequality holds

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖2

2 (5.38)

This inequality can be used to derive a L-dependent step width rule for a gradient
descent approach. It also provides an upper model at a current iterate, which is
what we will be using.

The regularization term can be shown to be L-Lipschitz smooth. We do not
analyze the constant here. We now can create an upper model via

λregR
(
D̄u
)
≤ λregR

(
D̄uk

)
+∇

(
R
(
D̄uk

)) (
u− uk

)
+
L

2

∥∥u− uk∥∥2
(5.39)

By combining the Levenberg Marquardt approach for the pure data term with the
minimization of the upper model defined in Equation (5.39) we obtain the following
optimization problem

uk+1 = arg min
u

{
1

2

∥∥Jku− bk∥∥2

2
+ λreg∇RT

(
D̄uk

)
D̄u+

1

2

∥∥u− uk∥∥2

M

}
(5.40)

where we defined M−1 = M−1
LM+LI with the identity matrix I, used Equation (5.34),

and dropped constant terms. This is equivalent to Equation (5.35).
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Regularization Term

λreg 0.2
hreg 1

Adaptive Regularization weight

αreg 1 · 10−5

βreg 4

Image Blurring

σGauss,0 6
ζblurr 0.65
r 3

Prox-Linear Algorithm

Number of Linearizations 30
ζstep 0.9
M0,w 2 · 10−4

M0,T 1 · 10−5

M0,h 50
Mmin,w 2 · 10−8

Mmin,T 5 · 10−7

Mmin,h 4 · 10−1

PDHG Algorithm

Number of Iterations 300
α (Preconditioning) 0.65

Table 1: Standard Parameters for the Estimation

6 Results

To test our approach, we use two synthetically created datasets. The New Tsukuba
stereo dataset is an indoor stereo data set provided by the Computer Vision Lab-
oratory of the University of Tsukuba [30, 34]. Since we are following a monocular
approach we are only using the left image of this data. The images contain a lot
of fine detail and therefore we will do most of the evaluation of the approach using
this data set.

The second data set is an outdoor scene in an urban environment and was created
using CARLA, an open source simulator for autonomous driving research [13]. The
images contain a lot less detail, and we will use the CARLA sequence merely to
show qualitatively that we did not overfit on the other dataset.

Both data sets contain the ground truth for the depth and the camera poses such
that a proper evaluation of the performance of the algorithm is possible. Also, no
distortion is present in the images, so we do not need any pre-processing steps. The
implementation of the algorithm is done in MATLAB without the use of the GPU
or any parallelization.

In the first section of this chapter we address several aspects that concern all
the experiments that we conducted. This includes a set of standard parameters,
the methodology used to evaluate the results an the generation of initial values.
Afterwards, we discuss different experiments that evaluate different aspects of the
approach.

6.1 General Considerations

6.1.1 Standard Parameters

We introduce a set of standard parameters for the cost function that we will use
in multiple experiments. Table 1 lists the values. Recall that for the step width
parameters of the prox-linear algorithm we use one single value for all components
of the rotation, translation and depth, respectively, as described in Section 5.2.2.
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By default we use the absolute loss and bilinear interpolation for the data term
and the isotropic Huber approach for the regularization. We have tested both the
bilinear as well as the bicubic approach for the interpolation and did not observe
any significant difference in performance or quality of the result.

Any parameters not listed here are specific to the experiments and will be given
in the respective sections. The same is true, if parts of the standard parameters
needs to be changed for an experiment.

6.1.2 Error Measures for the Results

The potential scale drift presents a difficulty for the evaluation of the depth map
and the translation vector. Since the monocular approach is unable to prevent a
scale drift, we attempt to subtract out any scale drift present, in order to evaluate
only what the algorithm is actually capable of doing.

Recall the definition of the scale drift in Section 3.5. We see, that if we are given
the scaling factor ρ, we can use it to scale the translation and the depth map to
the correct scale and evaluate the pure estimation errors. The problem is, that we
cannot compute ρ, but rather need to estimate it.

For the moment, assume that we are given an estimate ρ̂ for the scaling factor
that we can use to correct the scale. To evaluate the error of the depth map we
compute a pixel-wise signed relative error.

δhi
=

htrue,i − ρ̂hi
|htrue,i|

(6.1)

This error measure allows us to evaluate for each pixel if the result is too close or
too far away, which can be illustrated in a heatmap.

For the translation we use the norm of the difference in the translation vectors
to compute a standard relative error.

δT =
‖Ttrue − ρ̂T‖2

‖Ttrue‖2

(6.2)

Note that we are using relative errors for both quantities to ensure comparability
between different scenes and image pairs.

As it turns out, the error for the translation is highly sensitive to ρ̂ and even
small changes can have a big impact. Therefore, we need to treat the results for the
pose with caution. For comparison we will sometimes plot the relative error of the
uncorrected translation vector as well.

We now address the estimation of the scaling factor. Recall, that we need the
scaling factor only for the computation of the errors, and that it does not affect the
algorithm itself. Since the correct scaling factor should make the errors as small as
possible compared to a wrong scaling factor for which the errors should be bigger,
we compute ρ̂ by minimizing the relative errors as a function of the scaling factor.
To allow for fast computation we make the following approach.

ρ̂ = arg min
ρ

{
δ2
T +

∑
i

δ2
hi

}
(6.3)

Instead of the original errors, we minimize the squared errors, which allows the
analytic solution of the minimization. The drawback of using the squared errors is



6 RESULTS 54

the non-robustness towards outliers. Since we can have huge outliers, in particular
in the depth map, we need to address this problem to ensure a reliable estimation.
We do so by excluding all pixels from the sum, for which the unscaled and unsigned
relative error is greater than 0.5. This is an heuristic choice that proved functional.

We will be evaluating the scaling factor over the iterations. Due to the high
noise in the beginning, the estimation will not be very reliable for the first few
steps, even with the outlier detection described before. Sill, we can assess the long
term behavior of the scale and we observe the convergence of the estimator.

Note that the scale factor estimator is only a tool for the evaluation of the results
and cannot be used in a real system, since it requires the ground truth. In Section 6.4
we analyze the performance of the estimator in the presence of a significant scale
factor error.

Remark. There are other possibilities to estimate the scale factor ρ. We did try
two alternatives, namely scaling the translation vector T to the length of the true
translation and scaling the median of the depth values to the median of the true
depth values. The first approach reduced the relative error of the translation sig-
nificantly, however, the errors on the depth map got considerably worse. For the
second approach we observed interchanged behavior. We therefore believe, that the
estimation in Equation (6.3) is a good choice, as it balances the improvement for
both errors.

To evaluate the result for the rotation, we compute the absolute error of the
parametrization in the Lie algebra, i.e.

δw = ‖wtrue − w‖2 (6.4)

Recall that the length of w represents the rotation angle around the axis defined
by the direction of w. Therefore the error measure δw can be seen as a combined
evaluation of the rotation angle and direction.

6.1.3 Initial Values

Since the focus of this thesis is to analyze the performance of the prox-linear ap-
proach for the joint pose and depth optimization we neglect the estimation of initial
values as discussed in Section 5.2.4. Instead, we are corrupting the ground truth and
use the result to initialize the prox-linear method. We are combining three different
models to do so.

Fringing of depth discontinuities To simulate miss-matching of pixels at object
boundaries, we are fringing the discontinuities of the true depth map. To do so we
select nfr seed pixels at the discontinuities and set a random number of connected
pixels within a distance of rfr to the depth value of the respective seed pixel. The
distance is measured in the maximum norm. This step is done before adding the
noise described in the following.

Gaussian Noise We are using Gaussian noise on both the ground truth of pose
and depth map. For the depth and the translation we use an individual standard
deviation for each value, where we compute the standard deviation as a fraction
of the value. That way we account for the possibly big range of those values and
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Figure 16: Probability density functions of the beta distribution for different shape
parameters. For the blue pdf α = 0.4 and β = 0.4 have been chosen (note that it is
symmetric), and for the red one α = 0.8 and β = 0.4. For completeness two pdfs
of Beta distributions with shape parameters bigger than 1 are shown as dotted lines.
For yellow α = 0.4 and β = 3 and for the purple one α = 4 and β = 2 have been
used.

improve comparability between experiments on different scenes. For the exponential
coordinates of the rotation we choose a fixed value for the standard deviation, since
no big range is to be expected.

Hence, the initial values are obtained by the following equations

(w0)i = (wtrue)i + εw with εwi ∼ N
(
µw, σ

2
w

)
(T0)i = (Ttrue)i + εTi , with εTi ∼ N

(
µT , (ξT · (Ttrue)i)

2)
(hvec0 )i = (hvectrue)i + εhi , with εhi ∼ N

(
µh, (ξh · (hvectrue)i)

2) (6.5)

where the ξ∗ are the fractions for the computation of standard deviations for the
respective quantities and the mean values µ∗ represent possible biases.

Beta Distribution to Model Outliers The purely Gaussian noise might not
be enough to model the behavior of the initial values that would be estimated in
complete SLAM system accurately. Therefore we will add outliers to the initial depth
map, which we model using a beta distribution with shape parameters α, β ∈ (0, 1).
For x ∈ [0, 1] the pdf of the beta distribution reads

fbeta (x) =
xα−1 (1− x)β−1

B (α, β)
, with B (α, β) =

Γ (α) Γ (β)

Γ (α + β)
(6.6)

where B is a normalization factor for which the Gamma function is used. The pdf
for different pairs of shape parameters is shown in Figure 16.

The outlier model affects a certain percentage poutliers of the values in the depth
map where the indices are chosen randomly. For those indices we add scaled beta
random variables to the Gaussian noise.

(hvec0 )i = (hvectrue)i + εhi + ξoutliers · (hvectrue)i (2νi − 1) (6.7)

with νi ∼ Beta (α, β) for α, β ∈ (0, 1) and εhi as before. The factor ξoutliers is the
percentage of the true value of the depth map that the outlier can deviate at most
from this true value.
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Fringing

nfr 3000
rfr 5

Gaussian Noise

µw 0
µT 0
µh 0
σw 2◦

ξT 0.15
ξh 0.1

Outliers

α 0.4
β 0.4

ξoutliers 0.5
ρoutliers 0.3

Table 2: Standard parameters used for the generation of the initial values in the
experiments.

Values Used for the Experiments Unless stated otherwise, we use the param-
eter values in Table 2 for the corruption of the ground truth to obtain the initial
values. Note that for repeatability we do not use biases on the pose. However, we
did tests with random nonzero values to test the algorithm for sensitivity towards
pose biases, where no such sensitivity could be observed.

As discussed in Section 3.5, we cannot recover the correct scale if the initialization
is on the wrong scale. Therefore, to simplify the evaluation of the results, we do not
impose a bias on the depth map and use a symmetric Beta distribution.

6.2 Performance of the Joint Optimization

In contrast to many other methods, we are estimating the pose and the depth map
jointly instead of sequentially. In this section we evaluate the performance of this
approach by comparing the results of the joint optimization to the estimation of
only the pose and only the depth map, given the ground truth of the respective
other quantity. For the estimation of only one part of the optimization variable,
we modify our approach such that we use the ground truth whenever we would use
the respective part of the optimization variable. Moreover, we need to reduce the
Jacobian matrix accordingly. We use the standard parameters given in Section 6.1.1
for both the joint and the pure estimation of only one part of the optimization
variable.

We evaluate the performance on both data sets. For the New Tsukuba data, it
proved unnecessary to use any occlusion detection, which also makes the interpre-
tation of the warped images in the results easier. For the Carla sequence we use
a basic occlusion detection as described in Section 3.1.2. If two warped points are
closer than 0.4 (pixels) in the maximum norm, we consider both of them invalid.

6.2.1 Performance Experiment New Tsukuba

The image pair used for this experiment is shown in Figure 17. Figure 18 shows
the ground truth of the depth map and the initial value for the depth map used to
initialize the algorithm. As described in Section 6.1.3, we obtain the initial value by
corrupting the ground truth. The warped intensity resulting from the initial values
can be seen on the left in Figure 19. The image shows for each pixel in the reference
image the interpolated brightness value at the location of the pixel center warped to
the second image. To obtain a sharp result, we removed the blurring of the image,
which is used in the algorithm. That way, the warped image is easier to interpret.
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Figure 17: Image Pair used for the Performance Experiment New Tsukuba in Sec-
tion 6.2.1. The reference image is on the right, the second image is on the left.

The resulting depth map of the joint estimation is shown in Figure 20, which
also includes a plot of the signed relative errors for the pixels, as described in Sec-
tion 6.1.2. The depth map is corrected by the estimated scale factor ρ̂ for the
computation of the relative errors, as described in Section 6.1.2. The estimated
scale factor is plotted in Figure 22 over the iterations. The warped image of the
result of the joint estimation is shown on the right of Figure 19.

The result of the pure depth map estimation is shown in Figure 21. Since the
scale drift does not occur in the estimation if the translation vector is known, the
depth map is not corrected for the calculation of the relative errors.

To compare the resulting depth map of the joint approach to the result of the
depth only approach, Figure 23 shows the percentage of pixels for which it holds for
the relative error that δh1 > 15% for both the joint and the pure depth estimation.

The comparison of the result for the pose of the joint approach to the pure pose
estimation is done in Figure 24. The figure shows the absolute errors δw on the left
and the relative error δT of the translation on the right. Note that the translation for
the joint optimization is corrected by the estimated scale factor, while the translation
for the pure pose optimization is not. To get a feeling for the impact of the scaling
factor on δT , the figure also shows the translation error without the scale factor
correction.

6.2.2 Discussion of Performance on the New Tsukuba Dataset

The algorithm performs well on the New Tsukuba dataset, and the results of the
joint optimization are comparable to the results of the separate optimizations. In the
depth maps barely any difference is visible between the result of the joint approach
and of the pure depth estimation. In both cases, discontinuities remain sharp, and
even small details like the rods of the camera stand are preserved. The fringing
of the edges at the object boundaries, on the other hand, could not be recovered
in both cases. Since the prox-linear term limits the progress on the optimization
variable in each step, and recovering the fringed edges requires correction by a big
margin, this problem is likely due to the prox-linear approach. By considering the
image pair in Figure 19, we see that, except for the fringed edges, the reconstruction
from the photometric data term is excellent.
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Figure 18: On the left: The true depth map for the Performance Experiment New
Tsukuba in Section 6.2.1. On the right: The initial value obtained by using the noise
model described in Section 6.1.3.

Figure 19: Warped image for initial values on the left, and for the the result of the
joint estimation on the right. The images show for each pixel in the reference frame
the interpolated brightness value at the warped location in the second image. For the
warping using the inital values the blurring was removed to see the correspondences
more clearly. White pixels indicate invalidity, the black frame was added to indicate
the image boundaries. Image pair for the Performance Experiment New Tsukuba in
Section 6.2.1 using the standard parameters in combination with the absolute data
loss and isotropic Huber regularization.
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Figure 20: Resulting depth map of the joint approach in the Performance Experiment
New Tsukuba in Section 6.2.1 using the standard parameters in combination with
the absolute data loss and isotropic Huber regularization. On the left the depth map
is shown, on the right the signed relative error of this depth map with respect to the
ground truth. Note that for the error the resulting depth map was corrected by the
estimated scale factor.
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Figure 21: Result of pure depth optimization in the Performance Experiment New
Tsukuba in Section 6.2.1 using the standard parameters in combination with the
absolute data loss and isotropic Huber regularization. On the left the depth map is
shown, on the right the signed relative error of this depth map with respect to the
ground truth. Note that for the relative error the depth map is unscaled.
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Figure 22: Estimation of the scale factor for the joint approach in the Performance
Experiment New Tsukuba in Section 6.2.1 using the standard parameters in combi-
nation with the absolute data loss and isotropic Huber regularization.
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Figure 23: Percentage of pixels with a relative error δhi of the estimated depth bigger
than 15% plotted over the iterations for the Performance Experiment New Tsukuba
in Section 6.2.1 using the standard parameters in combination with the absolute data
loss and isotropic Huber regularization. The result for the joint estimation is shown
in blue, the result of the pure depth estimation in orange. The depth map of the
joint optimization is rescaled by ρ̂ for the computation of the relative errors.
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Figure 24: Comparison of the pose estimation for the Performance Experiment New
Tsukuba in Section 6.2.1 using the standard parameters in combination with the
absolute data loss and isotropic Huber regularization. On the left the absolute errors
between the parametrizations in the Lie algebra are shown, and on the right the
relative errors of the translation vectors. The result for the joint estimation is shown
in dark blue, the result of the pure pose estimation in orange. The translation vector
of the joint optimization is rescaled by ρ̂ for the computation of δT . For comparison,
the relative error of the unscaled translation is shown in light blue.

For the joint approach, two areas of significant false depth estimations are present
on the lampshade. One possible explanation of why we encounter this problem in
the joint approach but not in the pure approach is that those pixels started drifting
during the initial phase before the pose was recovered. In that phase, we have an
abundance of miss-matches due to the false pose in the joint approach. Consequently,
the energy of the data term is much higher than the energy of the regularization
term and therefore drifting of individual pixels is not stopped by regularization.
This is in contrast to the pure approach, in which the amount of miss-matching is
much lower, due to the correct pose. The drifting in the region of the lampshade is
easier than elsewhere as it is a big uniform colored area in the image that is prone
to miss-matches. In combination with the forward movement of the camera, this
means that the pixels still get mapped to the lampshade in the second image, even
if the depth values drift towards the camera.

The recovering of the rotation is very good and matches the estimation of the
pure pose estimation. The estimation of the translation in the joint is less good than
the result of the pure pose approach. Still, the error reduces significantly, which we
see in particular by considering δT for the uncorrected translation. (Recall that the
scale factor estimation in the first steps is not very reliable, and therefore the error
for the scaled translation is not either). In Figure 22, we see that no scale drift seems
to be present in this experiment, which confirms the assumption in Section 3.5, at
least for this experiment.

We did perform experiments on a lot more image pairs of the data set, mostly
with results comparable to the one presented here. For the quality of the depth map,
barely any difference is observable between the joint approach and the pure depth
estimation. Merely, occasional drifts of small regions of pixels, as described in this
experiment have been encountered. For the recovery of the pose, the joint approach
consistently performed a little worse than the pore pose estimation, in particular
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on the translation. However, as discussed before, the relative error for the pose is
highly sensitive towards the scale estimation, and therefore we need to treat these
results with caution. Still, it can be said that the relative error in the joint approach
was reduced significantly in most of the cases, and therefore the pose was recovered,
at least to a certain extent.

We did encounter occasional false pose estimations, which affected both the joint
as well as the pure pose approach. The main reason for these problems seems to
be the following. The data contains image sequences, where the camera performs
a forward movement only, with barely any rotation or lateral movement. Since,
basically, the method is based on triangulation, the lack of lateral movement results
in ”narrow triangles” that make the pose estimation very hard.

Also, we did observe an occasional over-smoothing of the depth map in the
background, while the foreground was still noisy. A possible explanation might be
the direct parametrization of the depth. As mentioned in the remark in Section 3.4,
Civera et al. reported superiority of the inverse depth parametrization for scenes
with a large range of depth values.

For the comparison with the pure approaches, we need to keep in mind that
these approaches are optimal, in that the ground truth is available. A realistic
system based on a two-step approach would first estimate the pose, and then use
this pose estimate for the depth estimation. Therefore we expect the results of real
systems to be slightly worse than the results of the pure pose estimation used here.

6.2.3 Performance Experiment Carla

The image pair from the Carla sequence used in this experiment is shown in Fig-
ure 25. Now, Figure 26 shows the true depth map as well as the initial value. Note
that the depth values for the sky are set to a maximum value of 10000 in the original
data. However, for clarity, we clip the colormap for this section, as shown. Figure 27
shows the warped image of the first step and of the result of the joint approach where
now the influence of the occlusion detection is visible by the many invalid pixels.

The rest of the results is presented in figures analogously to the experiment on
the New Tsukuba data set. The estimated depth map of the joint approach is
shown in Figure 28, while the result of the pure depth map estimation is shown in
Figure 29. Figure 30 show the estimated scale factor over the iterations. To ensure
a stable estimation, we needed to restrict the depth values used for the computation
of ρ̂ to values corresponding to the foreground, which was done using a threshold
value. Figure 31 shows the comparison of the percentage of the bad pixels, and
finally Figure 32 analyzes the results of the pose estimation.

6.2.4 Discussion of Performance on the Carla Dataset

We see that the algorithm performs a little less good on the Carla sequence. How-
ever, the results of the joint approach are still comparable to the separate optimiza-
tions. For the depth map, we encounter the same problems for the fringed edges,
while still a good preservation of discontinuities is achieved.

At the board fence in front of the house, we can see problems with the basic
occlusion detection we are using. The fence is prone to occlusion in particular in
combination with the lateral movement which the camera performs. Therefore, in
this area of the image, many pixels are set to invalid, as is visible in the warping of
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Figure 25: Image Pair used for the Performance Experiment Carla in Section 6.2.3.
The reference image is on the right, the second image is on the left.
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Figure 26: On the left: The true depth map for the Performance Experiment Carla
in Section 6.2.3. On the right: The initial value obtained by using the noise model
described in Section 6.1.3.
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Figure 27: Warped image for initial values on the left, and for the the result of the
joint estimation on the right. The images show for each pixel in the reference frame
the interpolated brightness value at the warped location in the second image. For the
warping using the inital values the blurring was removed to see the correspondences
more clearly. White pixels indicate invalidity, the black frame was added to indicate
the image boundaries. Image pair for the Performance Experiment Carla in Sec-
tion 6.2.3 using the standard parameters in combination with the absolute data loss
and isotropic Huber regularization.
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Figure 28: Resulting depth map of the joint approach in the Performance Experi-
ment Carla in Section 6.2.3 using the standard parameters in combination with the
absolute data loss and isotropic Huber regularization. On the left the depth map is
shown, on the right the signed relative error of this depth map with respect to the
ground truth. Note that for the error the resulting depth map was corrected by the
estimated scale factor.
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Figure 29: Result of pure depth optimization in the Performance Experiment Carla
in Section 6.2.3 using the standard parameters in combination with the absolute data
loss and isotropic Huber regularization. On the left the depth map is shown, on the
right the signed relative error of this depth map with respect to the ground truth.
Note that for the relative error the depth map is unscaled.
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Figure 30: Estimation of the scale factor for the joint approach in the Performance
Experiment Carla in Section 6.2.3 using the standard parameters in combination
with the absolute data loss and isotropic Huber regularization.
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Figure 31: Percentage of pixels with a relative error δhi of the estimated depth bigger
than 15% plotted over the iterations for the Performance Experiment Carla in Sec-
tion 6.2.3 using the standard parameters in combination with the absolute data loss
and isotropic Huber regularization. The result for the joint estimation is shown in
blue, the result of the pure depth estimation in orange. The depth map of the joint
optimization is rescaled by ρ̂ for the computation of the relative errors.
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Figure 32: Comparison of the pose estimation for the Performance Experiment Carla
in Section 6.2.3 using the standard parameters in combination with the absolute data
loss and isotropic Huber regularization. On the left the absolute errors between the
parametrizations in the Lie algebra are shown, and on the right the relative errors
of the translation vectors. The result for the joint estimation is shown in dark blue,
the result of the pure pose estimation in orange. The translation vector of the joint
optimization is rescaled by ρ̂ for the computation of δT . For comparison, the relative
error of the unscaled translation is shown in light blue.
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Regularization Term

λreg 1.5
hreg 1

Prox-Linear Algorithm

ζstep 0.95
M0,w 3 · 10−6

M0,T 1 · 10−7

M0,h 1
Mmin,w 2 · 10−8

Mmin,T 5 · 10−7

Mmin,h 4 · 10−1

Table 3: Adjusted parameters for the special case discussed in Section 5.4 using a
quadratic data loss

the image in the last step in Figure 27 as well. Since invalid pixels disable the data
term, this area is dominated by the regularization, which therefore over-smoothes
the depth map. This can be seen in Figure 28, where the boards of the fence are too
far behind, and the background is too close. This effect may be prevented by using
a more sophisticated occlusion detection like the one described in Section 3.1.2.

In contrast to the New Tsukuba example, we find that the rotation is recovered a
little less good than for the pure estimation. However, the result is still satisfactory.
For the translation, we see that the initial value is improved significantly. However,
the difference to the pure pose estimation is bigger than for the New Tsukuba
example.

In general, the approach did not perform completely satisfactory on the Carla
data set. While we were still able to recover a satisfactory pose and depth estimates
in many cases, we observed more false pose estimates, and the overall quality of
the estimation seemed to be less good than for the New Tsukuba data set. One
possible reason for the reduced performance could be the lack of fine detail and
the abundance of flat surfaces in the Carla scenery, which makes it harder for the
data term to match pixels. Due to the flat surfaces, it might help to employ the
generalized total variation regularization as described in Section 3.3.1. Another
problem for the algorithm might be the vast uniform colored surfaces or the surfaces
like the wall of the house, which are prone to miss-matches of the data term.

Also, we observed more problems with the basic occlusion detection approach.
Especially for thin separated structures like traffic light posts, the well-known phe-
nomenon of the structures appearing doubled in the warped picture occurred. Hence,
for scenes containing such structures, a more sophisticated occlusion detection method
is advisable.

6.3 Comparison of Data Loss Functions

In this section, we compare the results obtained by using different data loss functions.
Moreover, we inspect the convergence properties of the approaches. The reference
approach is the absolute loss function with the standard parameters, that already
has been examined in Section 6.2. For the second choice, we replace the absolute
loss by the Huber loss with Huber parameter hloss = 15. The rest of the standard
parameters remain unchanged. The third approach is the special case discussed in
Section 5.4 in which we use the quadratic loss. For simplicity, we often refer to this
approach simply by quadratic loss in this section.
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Figure 33: Image Pair used for the Comparison of Data Loss Functions in Sec-
tion 6.3. The reference image is on the right, the second image is on the left.

Since we are linearizing the regularization term in the third approach, we need
to adjust the parameters. The changes to the standard parameters (only for the
third approach) are shown in Table 3. Note that we had to reduce the initial step
widths considerably, in particular for the depth map, to stabilize the optimization.
The parameters for the diagonal damping term remained unchanged and are only
given for completeness.

Remark. We did try to use the quadratic data loss in the general prox-linear setting
that was used for the absolute and the Huber loss. However, the primal-dual split-
ting, as described in Section 5.3, seems to be a poor choice in this case, and we have
experienced major convergence issues. With the approach described inSection 5.4,
we encountered much less problems. Moreover, this approach is significantly faster
than the other two, which allows the comparison based on another criterion.

Due to the reduced step widths for the depth in the third approach, the smooth-
ing of the depth map is significantly slower. For that reason, and to be able to assess
the long-time behavior of the approaches, we increase the number of linearizations
for all three cases to 250.

Since we are evaluating the convergence of the algorithm via the energy, we need
to disable the iterative decrease of the blurring and use a fixed blurring of σGauss = 3
instead. Otherwise, the energy of the data term would jump every time the blurring
is reduced because the sharpened images require a more precise matching. This
behavior is preventing a clear assessment of the energies and does not occur for a
fixed blurring. Note that this affects the sharpness of details in the resulting depth
map.

For comparison, we did measure the time required to solve the sub-problems for
the different approaches. While the focus of the implementation is not on perfor-
mance, the timing still gives a rough idea of what to expect in terms of run time.

The image pair used for this experiment is shown in Figure 33, the true depth
map and the initial value in Figure 34. The resulting depth maps of the three
approaches are shown in Figures 35 and 36 and Figure 37, respectively. Figure 38
shows the estimated scale factors, Figure 39 the percentages of bad pixels and in
Figure 40 the evaluation of the pose is plotted. Figure 41 shows the energies, where
besides the total energy also the data and the regularization proportion is plotted.
Finally, Figure 42 shows the computation times for the different approaches.
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Figure 34: On the left the ground truth of the depth map for the Comparison of Data
Loss Functions in Section 6.3. On the right the initial value obtained by using the
noise model described in Section 6.1.3.
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Figure 35: Result depth map for the absolute loss data term in the Comparison of
Data Loss Functions in Section 6.3 using the standard parameters in combination
with the isotropic Huber regularization. On the left the depth map is shown, on the
right the signed relative error of this depth map with respect to the ground truth.
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Figure 36: Result depth map for the Huber loss data term in the Comparison of
Data Loss Functions in Section 6.3 using the standard parameters in combination
with the isotropic Huber regularization. On the left the depth map is shown, on the
right the signed relative error of this depth map with respect to the ground truth.

100

150

200

250

300

−1

−0.5

0

0.5

1

Figure 37: Result depth for the special case discussed in Section 5.4 which uses a
quadratic data loss and a repeatedly linearized isotropic Huber regularization. Figure
for the Comparison of Data Loss Functions in Section 6.3. On the left the depth
map is shown, on the right the signed relative error of this depth map with respect
to the ground truth.
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Figure 38: Estimation of the scale factors in the Comparison of Data Loss Functions
in Section 6.3. The result for the absolute data loss with standard parameters and
isotropic Huber regularization is shown in blue, the result for the Huber loss with
standard parameters and isotropic Huber regularization in orange and the result
for the the special case from Section 5.4 with the quadratic loss and the repeatedly
linearized isotropic Huber regularization is shown in yellow.

Discussion

First, we consider the quality of the resulting depth maps. Between the absolute
and the Huber loss, barely any difference is noticeable. The result obtained using
the Huber loss seems to be a little smoother, and the relative errors seem to be
slightly smaller, but the difference is minor. This impression is confirmed when we
consider Figure 39, where the percentage of the bad pixels is a little lower.

The special case using the quadratic loss, on the other hand, is a little less
smooth. While we preserve discontinuities in the depth map as well, the noisy input
is still showing slightly, in particular, in the background. The possible reason for
this is twofold. First, the regularizing abilities of the data term might be reduced
considerably due to the linearization. Second, due to the small initial step width
for the depth (M0,h = 1) and the constant step width reduction, the step width is
too small to allow for any further progress after a certain amount of iterations. This
problem affects the background in particular since the noise level is higher in this
region (recall that the noise level is coupled to the true depth value). We did try to
increase the initial step width on the depth. However, this destabilized the algorithm
considerably. Possibly a different approach for the step width reduction might help
to increase the performance for this approach. Alternatively, the inverse depth
parametrization might again bring an improvement, since it significantly reduces
the range of the depth values.

All approaches perform equally well on the recovery of the rotation. On the
pose, a difference is noticeable, and the absolute loss clearly performs best. Since
the estimated scale factor for the special case is very close to the factor estimated for
the absolute loss, we can assume that the special case indeed performed a little bit
worse than the absolute loss. For the Huber loss, on the other hand, the difference
in the estimated scale factor makes a comparison a bit tricky. Possibly the same
translation result would be better with another estimation. Still, we see that all
approaches improve the initial translation value.
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Figure 39: Percentage of pixels with a relative error of the estimated depth bigger
than 15% plotted over the iterations for the Comparison of Data Loss Functions
in Section 6.3. The result for the absolute data loss with standard parameters and
isotropic Huber regularization is shown in blue, the result for the Huber loss with
standard parameters and isotropic Huber regularization in orange and the result
for the the special case from Section 5.4 with the quadratic loss and the repeatedly
linearized isotropic Huber regularization is shown in yellow. For all relative errors
the estimated scale ρ̂ has been used.
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Figure 40: Comparison of the pose estimation for the Comparison of Data Loss
Functions in Section 6.3 over the iterations. The result for the absolute data loss
with standard parameters and isotropic Huber regularization is shown in blue, the
result for the Huber loss with standard parameters and isotropic Huber regularization
in orange and the result for the the special case from Section 5.4 with the quadratic
loss and the repeatedly linearized isotropic Huber regularization is shown in yellow.
The translation vector is rescaled by ρ̂ for the computation of the error in all cases.
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Figure 41: Energies for the different data loss functions in in the Comparison of
Data Loss Functions in Section 6.3. For all plots the total energy is shown in purple,
the data part in cyan and the regularization part is shown in green. (a) Absulute
data loss with standard parameters and isotropic Huber regularization (b) Huber
data loss with standard parameters and isotropic Huber regularization(c) Special case
from Section 5.4 with the quadratic loss and the repeatedly linearized isotropic Huber
regularization
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Figure 42: Computation times for the different data loss functions in in the Com-
parison of Data Loss Functions in Section 6.3. The result for the absolute data loss
with standard parameters and isotropic Huber regularization is shown in blue, the
result for the Huber loss with standard parameters and isotropic Huber regularization
in orange and the result for the the special case from Section 5.4 with the quadratic
loss and the repeatedly linearized isotropic Huber regularization is shown in yellow.

From Figure 41, we see that we have a monotonic decrease of the energy for all
three cases. This shows that we have chosen step widths that are small enough.
Recall that the approach to the step widths is purely heuristic, and no rigorous
proofs for the prox-linear approach with individual step widths have been done.
Therefore, this result is a necessary justification for the approach as a whole.

Again, we did additional experiments with multiple image pairs. The results are
similar to the result of the experiment presented here. The quality of the depth
maps recovered by the absolute and the Huber loss is usually quite similar and in
general a bit better than the quality of the depth map obtained by the special case
based on the quadratic loss. For the quality of the pose, no significant differences
between the approaches have been found. Occasional false pose estimates affected
all the approaches, where again the lack of lateral movement in the images seemed
to be a major reason. The quadratic loss function in the third approach proved to be
surprisingly robust, considering that it is prone to be affected by outliers. However,
the good performance might also be due to the model chosen for the creation of the
initial values and the relatively low percentage of outliers (0.3).

Finally, we consider the computation times in Figure 42. As we would expect,
solving the subproblem via the Schur complement for the third approach is signif-
icantly faster than the other approaches. Especially with real-time applications in
mind, this is a huge advantage, if the slightly reduced quality of the depth map is
acceptable. Note that the parameters for all approaches are not chosen to maximize
performance. The number of iterations, in particular, is set rather big to ensure
to capture most of the relevant behavior. In a real system, it is likely possible to
reduce those number to improve the computation times. Also, the use of GPUs
for the highly parallelizable PDHG approach is possible to improve the efficiency
further.
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Figure 43: Estimated scale factors for the first set of experiments in the Analysis of
the Scale Factor Estimation in Section 6.4. The ground truth was scaled by 1

ρ
where

ρ = 0.85 was chosen. For the estimation the standard parameters with absolute loss
and isotropic Huber regularization have been used.

6.4 Analysis of the Scale Factor Estimation

In this section, we show that the estimator of the scale factor yields a good estimation
ρ̂. While this is not directly related to the analysis of the SLAM approach, it still
helps to build confidence in the error measures used to evaluate the results.

We use again the standard parameters defined in Section 6.1.1 with the absolute
data loss and the isotropic Huber Regularization. Also, we use the standard noise
parameters given in Section 6.1.3 to create the initial values. However, before cor-
rupting the ground truth, we scale both the depth map and the translation by 1

ρ
,

which creates a scaling error.
Consider the definition of the relative errors with the scale factor estimate. We

see that if we do not drift away from the initial wrong scale, the optimal scale
correction factor is ρ̂ = ρ which reverts the creation of the scaling error.

In a first experiment we choose ρ = 0.85. We apply the algorithm to 4 different
image pairs of the New Tsukuba data set and consider the estimated scale factors,
which are shown in Figure 43. We see that the estimates for all experiments converge
towards the optimal scale factor, which is shown as a dotted black line.

We repeat the experiment for the choice ρ = 1.3. The estimated scale factors are
shown in Figure 44. Both experiments show that the scale factor estimator detects
errors in the scale reliably.

6.5 Evaluation of Scale Drift

In Section 3.5, we claimed that the potential scale drift was no problem in practice,
thanks to the damping of the vanishing step width. In this section, we evaluate this
assumption. We use the standard parameters with the absolute data loss and the
isotropic Huber regularization again, and perform several experiments on distinct
image pairs of the New Tsukuba data set.

To ensure that we do not end the algorithm early, we increase the number of
linearizations to 350. With the standard parameters, this means that the step width
for the depth has decreased to 50 · 0.9350 ≈ 4.8 · 10−15 at the end. Since, for such a
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Figure 44: Estimated scale factors for the second set of experiments in the Analysis of
the Scale Factor Estimation in Section 6.4. The ground truth was scaled by 1

ρ
where

ρ = 1.30 was chosen. For the estimation the standard parameters with absolute loss
and isotropic Huber regularization have been used.

small step width, almost no further progress is possible, we are sure that we capture
the complete behavior of the algorithm.

The obvious choice to evaluate if scale drift is present is to use the scale factor
estimator ρ̂, which we introduced in Section 6.1.2. Although we did see in Section 6.4
that ρ̂ provides a reliable estimation of the scaling factor, we consider two more
quantities to ensure, that we do not miss any drift by using an unsuitable measure.
On the one hand, we use the mean depth; on the other hand, we use the norm of the
translation vector. We expect both quantities to change with the (potential) scale
drift.

We perform multiple experiments where we use a scaling error on the initial
values for some of them, analogously to Section 6.4. This is done to investigate if
the initialization on a wrong scale triggers a scale drift.

The results are shown in Figures 45 and 46 and Figure 47. For none of the quan-
tities under consideration, we did find any indication of scale drift. This suggests
that the chosen step width parameters provide a good trade-off that allows enough
flexibility for the estimation in the beginning, and ensures fast enough reduction
to prevent any drift. Note that this statement is coupled to the noise level. For
higher noises, it is possible that the reduction is too fast and prevents the complete
recovery, of the depth map in particular.

Remark. We did observe scale drift problems during the tuning of the parameters.
This suggests that the phenomenon is indeed present and that a good choice for the
step width parameters is necessary to prevent it. With the final set of parameters,
we were unable to re-produce any scale drift any more, despite extensive testing.
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Figure 45: Estimated scale factors for the experiments in the Evaluation of Scale
Drift in Section 6.5. For the experiments we used the standard parameters in com-
bination with the absolute data loss and the isotropic Huber regularization.
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Figure 46: Mean depths for the experiments in the Evaluation of Scale Drift in
Section 6.5. For the experiments we used the standard parameters in combination
with the absolute data loss and the isotropic Huber regularization.
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Figure 47: Norm of the translation vectors for the experiments in the Evaluation of
Scale Drift in Section 6.5. For the experiments we used the standard parameters in
combination with the absolute data loss and the isotropic Huber regularization.
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7 Conclusion

In this thesis, we examined a dense photometric SLAM method for the joint op-
timization of the pose and the depth map. For the solution of the non-linear and
non-convex optimization problem, we proposed a modification of the prox-linear
algorithm by using individual step widths for the components of the optimization
variable. The convergence of the algorithm was shown experimentally, and the al-
gorithm proved well suited for the optimization.

The results of the experiments show that the joint approach is valid and that
both quantities can be estimated simultaneously. While the results did not quite
reach the quality of the pure pose or depth estimation, we have to keep in mind
that those pure approaches can rely on the ground truth. In future work it would
be interesting to compare the performance of the approach presented in this thesis
to other state-of-the-art methods in order to have a more realistic comparison for
our method.

Admittedly, the model for the generation of the initial values used in this thesis
is ad-hoc and might not represent the input from a reals system well. Therefore,
it is an exciting research perspective to integrate the approach into a full SLAM
system, including the estimation of initial values. Besides the interaction of our
approach with the initial values generated by such a system, there are several other
challenges.

One of these challenges is real-time capability, which is a crucial requirement
for many SLAM systems. While the timing results presented in this thesis do not
seem very promising at first glance, we have not exploited the full potential yet.
The main improvement is to be expected from implementing the algorithm on a
GPU to exploit the possibility of parallelization. Additionally, it is likely, that the
number of iterations can be reduced without compromising the quality of the results
too much, which will improve efficiency further. Finally, the implementation in a
more efficient programming language like C++ will also bring an improvement in
computation time.

The results for the special case described in Section 5.4 are surprisingly promis-
ing. Although we use a non-robust data term and a repeatedly linearized regular-
ization term rather than the original term, the results of this approach did not seem
to be significantly worse than the results obtained using robust data loss and full
linearization terms. When considering the computation times, the approach even
has a considerable advantage. It would be interesting to investigate if the good
performance is a result of the model for the input parameters, or if this approach
performs equally well in a more realistic setting.

One major problem for the evaluation of the results is the estimation of the
scale drift. While the results of the approach seemed to be good, errors in the scale
estimation may have flawed that evaluation, in particular for the translation, which
is highly dependent on the estimation. In this case, too, the integration into a real
system is necessary for a better assessment. This also enables intriguing research on
the integration of data from other sensors to contain the possibility of scale drift.

Another open question that is not necessarily related to the SLAM setting alone,
is a rigorous analysis of the prox-linear approach with a weighted prox term. While
the case of the standard prox term has been investigated intensively over the past
years, we are not aware of any work on the case with individual step widths. Since
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this approach proved quite useful for our setting, the derivation of optimal choices
for the step widths, as well as a proof of convergence for this case, is an interesting
question that requires future research.
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A Basic Results Calculus

In the following, we will define the calculus notation layout that we are using in this
thesis, and state two results.

Definition A.1 (Gradient). Let f : Rn → R be a C1 function. Then the gradient
is defined by

∇f (y) =


∂f
∂x1

(y)
...

∂f
∂xn

(y)


If we want to emphasize the vector variable with respect to which the gradient is
calculated we write the variable as a subscript, e.g. ∇xf .

Definition A.2 (Jacobian Matrix). Let f : Rn → Rm be a C1 function. Then the
Jacobian matrix is defined by

Jf (y) =


∂f1
∂x1

(y) . . . ∂f1
∂xn

(y)
...

...
∂fm
∂x1

(y) . . . ∂fm
∂xn

(y)

 =

∇f1
T (y)
...

∇fmT (y)


If we want to emphasize the vector variable with respect to which the Jacobian
matrix is calculated, we write the variable as a subscript, e.g. Jxf .

Lemma A.1 (Multivariate Chain Rule - Case 1). Let g : Rn → Rm and f : Rm → R
be C1 functions. Then the gradient of the composition is given by

∇f (g (y)) = Jg (y)T ∇f (g (y))

Lemma A.2 (Multivariate Chain Rule - Case 2). Let g : Rn → Rm and f : Rm →
Rk be C1 functions. Then the Jacobian matrix of the composition is given by

J (f ◦ g) (y) = Jf (g (y)) Jg (y)

Remark. Note that the layout convention defined here is inconsistent. While the
gradient following Definition A.1 yields a column vector, the ”Jacobian” matrix of
a function f : Rn → R yields a row vector. This is the reason that we need the
distinction between Lemma A.1 and Lemma A.2. We will, however, stick to the
layout introduced here as it seems to be the most widespread and has advantages
for the linearization.

B Supplementary Material for Implementation

B.1 Finite Difference Matrices

As discussed in Section 5.1 we can write the difference operators as matrices in
combination with the vectorized depth maps. Recall that the vectorization of the
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depth map was obtained by stacking the columns of h. The matrix formulations of
Definition 3.1 read

Dx =



m 2m
−1 0 0 1 0 0 0

0 −1 0 0 1 0

0 −1 0 0 1 0
0 0 −1 0 0 1 0 m
0 0 −1 0 0 1 0 0 m+ 1

0 −1 0 0 0 1 0 0



Dy =



m m+ 1
−1 1 0 0 0
0 −1 1 0 0
...

. . . . . .

0 0 −1 1 0
0 0 0 m
0 0 −1 1 0 m+ 1

0


Marked in blue is the non-zero part of the matrix that is necessary to calculate

the gradients for the first column of the image. The gradient operator is continued
for the next column of the image by shifting this matrix by m to the right and
attaching the shifted matrix at the bottom.

Note that Dx needs to be appended by m zero rows at the end, as we cannot
compute finite x-differences on the right boundary of the image with the chosen
boundary conditions. While this does not add any information, the rows are neces-
sary to keep a consistent dimension of the operators.

B.2 Image Gradient at the Warped Location

For the linearization we need the image gradient ∇J Ii (ixj) at the warped points

ixj = ωxj

(
R (wi) , Ti,h

)
. The respective formulas depend on the chosen interpolation

method for the image.

Bilinear Interpolation In this case J Ii = JlinIi is not differentiable. As stated
in Section 5.2 we will use the bilinear interpolation of the image gradient at the
pixel centers to approximate the image gradient at the warped locations. The image
gradient at the pixel centers is obtained by central differences to avoid offsets. For
Ii ∈ Rm×n and a pixel center x = (x, y) ∈ P the central differences are defined as

Dc
xIi (x) =

{
1
2

(Ii (x+ 1, y)− Ii (x− 1, y)) if 1 < x < n

0 else

Dc
yIi (x) =

{
1
2

(Ii (x, y + 1)− I1 (x, y − 1)) if 1 < y < m

0 else
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By bilinear interpolation of the discrete gradients at the pixel centers we obtain
the approximation of the image gradient at the warped location

∇x (JlinIi) (x) =

[
Jlin (Dc

xIi) (x)
Jlin

(
Dc
yIi
)

(x)

]
(B.1)

Bicubic Interpolation In this case J Ii = JcubIi is differentiable. We can calcu-
late

∂JcubIi
∂x

(x) =
∑
l

∑
k

IklW
′ (x− xk)W (y − yk)

∂JcubIi
∂y

(x) =
∑
l

∑
k

IklW (x− xk)W ′ (y − yk)

where

W ′ (x) =
∂W

∂x
(x) =


3 sgn (x) (a+ 2)x2 − 2 (a+ 3)x for |x| ≤ 1

sgn (x) (3ax2 + 8a)− 10ax for 1 < |x| < 2

0 else

(B.2)

B.3 Derivation of the Prox Operators

To be able to implement the PDHG algorithm efficiently we need closed form so-
lutions for the prox operators of G and F ∗ which we will discuss in this chapter.
Recall that F ∗ = F ∗1 + F ∗2 , so we first need expressions for the convex conjugate of
F1 (x) = h (x− b) for the different loss functions h as well as for F2 (x) = λregR (x).
Having derived those convex conjugates we can compute the prox operators.

B.3.1 Closed-Form Solutions for Convex Conjugates

We first state several lemmas that we will need for the derivations

Lemma B.1. Let E, Ẽ : Rn → R, b ∈ Rn and α ∈ R such that

E (u) = αẼ (u− b)

Then
E∗ (p) = 〈p, b〉+ αẼ∗

( p
α

)
Proof. We directly calculate

E∗ (p) = sup
u∈Rn

(
〈p, u〉 − αẼ (u− b)

)
= α sup

u∈Rn

(
〈 p
α
, b〉+ 〈 p

α
, u− b〉 − Ẽ (u− b)

)
= 〈p, b〉+ α sup

u∈Rn

(
〈 p
α
, u− b〉 − Ẽ (u− b)

)
By doing a change of variables and defining v := u− b we can write

E∗ (p) = 〈p, b〉+ α sup
v∈Rn

(
〈 p
α
, v〉 − Ẽ (v)

)
= 〈p, b〉+ αẼ∗

( p
α

)
which finishes the proof.
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Lemma B.2. Let F1 : Rn1 → R and F2 : Rn2 → R and define F : Rn1+n2 → R as
F (u1, u2) = F1 (u1) + F2 (u2). Then

F ∗ (p) = F ∗1 (p1) + F ∗2 (p2) , with p =

[
p1

p2

]
Proof. We calculate

F ∗ (p) = sup
q
〈p, q〉 − F (q)

= sup
q1,q2

〈p1, q1〉+ 〈p2, q2〉 − F1 (q1)− F2 (q2)

= sup
q1

〈p1, q1〉 − F1 (q1) + sup
q2

〈p2, q2〉 − F2 (q2)

= F ∗ (p1) + F ∗2 (p2)

Lemma B.3. Let ‖·‖ be any norm on Rn. Then for f (x) = ‖x‖ the convex
conjugate reads

f ∗ (p) = δ‖·‖∗≤1 (p) =

{
0 if ‖p‖∗ ≤ 1

∞ else

where ‖·‖∗ is the dual norm of ‖·‖ defined by

‖p‖∗ = sup {〈u, p〉 | ‖u‖ ≤ 1} = sup

{
〈u, p〉
‖u‖

| ‖u‖ 6= 0

}
Proof. See e.g. [4, Example 3.26]

Convex Conjugates of Basic Norms We give the convex conjugates of some
basic norms which we will use in the light of Lemma B.1 for the later proofs.

Proposition B.1. Let E (u) = 1
2
‖u‖2

2. Then the convex conjugate reads

E∗ (p) =
1

2
‖p‖2

2

Proof. We calculate

E∗ (p) = sup
q
〈p, q〉 − 1

2
‖q‖2

2

From the optimality conditions it is straightforward that the supremum is obtained
at q̂ = p. Hence the convex conjugate is E∗ (p) = 〈p, p〉 − 1

2
‖p‖2

2 = 1
2
‖p‖2

2.

Proposition B.2. Let E (u) = ‖u‖1. Then the convex conjugate reads

E∗ (p) = δ‖·‖∞≤1 (p) =

{
0 if ‖p‖∞ ≤ 1

∞ else
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Proof. Using Lemma B.3 we only need to show that the infinity norm is indeed the
dual norm of the 1-norm, i.e. we need to show that sup {〈u, p〉 | ‖u‖1 ≤ 1} = ‖p‖∞.
We estimate the scalar product

〈u, p〉 =
n∑
i=1

uipi ≤

∣∣∣∣∣
n∑
i=1

uipi

∣∣∣∣∣ ≤
n∑
i=1

|uipi| ≤ ‖p‖∞
n∑
i=1

|ui| = ‖p‖∞ ‖u‖1 ≤ ‖p‖∞

where we used the condition ‖u‖1 ≤ 1 for the last estimate. The upper bound can be
obtained by choosing u as a vector of zeros with a ±1 at the index of the maximum
element in p where we choose the sign such that we get a positive value. This shows
the that the dual norm of the 1-norm is indeed the infinity norm which finishes the
proof.

Proposition B.3. Let E (u) = ‖u‖2. Then the convex conjugate reads

E∗ (p) = δ‖·‖2≤1 (p) =

{
0 if ‖p‖2 ≤ 1

∞ else

Proof. Using Lemma B.3 we need to show that the 2-norm is its own dual norm,
i.e. we need to show that sup {〈u, p〉 | ‖u‖2 ≤ 1} = ‖p‖2. Using the Cauchy-Schwarz
inequality we can estimate the scalar product

〈u, p〉 ≤ ‖u‖2 ‖p‖2 ≤ ‖p‖2

where we used the condition ‖u‖2 ≤ 1 for the last estimate. Since the 2-norm of p
can be obtained we have showed the claim

Proposition B.4. Let E (u) = ‖u‖h defined as in Definition 3.2. Then the convex
conjugate reads

E∗ (p) =
h

2
‖p‖2

2 + δ‖·‖2≤1 (p) =
h

2
‖p‖2

2 +

{
0 if ‖p‖2 ≤ 1

∞ else

Proof. As shown in [2, Chapter 6.7] we can write the Huber norm as the infimal
convolution7of the Euclidean norm with the function ωh (x) = 1

2h
‖x‖2

2. Hence, by
defining f (x) = ‖x‖2 we can write

E (u) = (f�ωh) (x)

As shown in [2, Chapter 4.5] the convex conjugate of a infimal convolution is the
sum of the conjugates of the convoluted functions. Therefore we can write

E∗ (p) = f ∗ (p) + ω∗h (p)

The conjugate of f reads

f ∗ (p) = δ‖·‖2≤1 (p) =

{
0 if ‖p‖2 ≤ 1

∞ else

To show this we use Lemma B.3 and prove that the 2-norm is its own dual norm,
i.e. that sup {〈u, p〉 | ‖u‖2 ≤ 1} = ‖p‖2. We bound the scalar product using the
Cauchy-Schwarz-Inequality

〈u, p〉 ≤ ‖u‖2 ‖p‖2 ≤ ‖p‖2
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where the condition of the dual norm for the last inequality. By choosing u = p
‖p‖2

we obtain the upper bound which shows the claim.
The conjugate of ωh can be obtained using Lemma B.1 and Proposition B.1. We

write

ω∗h (p) =
1

h

1

2
‖hp‖2

2 =
h

2
‖p‖2

2

Convex Conjugates for F1 and F2 We now can state the convex conjugates for
the functions F1 and F2, including all the different possibilities.

Proposition B.5 (Convex Conjugate of Quadratic Loss Dataterm). Let b ∈ Rn,
α > 0 and consider F : Rn → R with F (x) = α

2

∑
i (xi − bi)

2. Then the convex
conjugate reads

F ∗ (p) = 〈p, b〉+
1

2α
‖p‖2

2

Proof. We write F (x) = αF̃ (x− b) with F̃ (x) = 1
2
‖x‖2

2. Using Lemma B.1 and
Proposition B.2 we can write

F ∗ (p) = 〈p, b〉+ αF̃ ∗
( p
α

)
= 〈p, b〉+

1

2α
‖p‖2

2

Proposition B.6 (Convex Conjugate of Absolute Loss Dataterm). Let b ∈ Rn,
α > 0 and consider F : Rn → R with F (x) = α

∑
i |xi − bi|. Then the convex

conjugate reads
F ∗ (p) = 〈p, b〉+ δ‖·‖∞≤α (p)

Proof. We write F (x) = αF̃ (x− b) with F̃ (x) = ‖x‖1. Using Lemma B.1 and
Proposition B.2 we can write

F ∗ (p) = 〈p, b〉+ αF̃ ∗
( p
α

)
= 〈p, b〉+ α

{
0 if

∥∥ p
α

∥∥
∞ ≤ 1

∞ else

As the condition ‖p/α‖∞ ≤ 1 is equivalent to ‖p‖∞ ≤ α and we can omit the scaling
factor for the indicator function, we can write

F ∗ (p) = 〈p, b〉+

{
0 if ‖p‖∞ ≤ α

∞ else

= 〈p, b〉+ δ‖·‖∞≤α (p)

7The infimal convolution of two proper functions h1, h2 : Rn → R is defined as

(h1�h2) (x) = min
u∈Rn

{h1 (u) + h2 (x− u)}
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Proposition B.7 (Convex Conjugate of Huber Loss Dataterm). Let b ∈ Rn and
α, h > 0 and consider F : Rn → R with F (x) = α

∑
i |xi − bi|h. Then the convex

conjugate reads

F ∗ (p) = 〈p, b〉+
h

2α
‖p‖2

2 + δ‖·‖∞≤α (p)

Proof. With Lemma B.2 in mind we consider the function f (xi) = α |xi − bi|h.
Using Lemma B.1 and Proposition B.4 we obtain the convex conjugate as

f ∗ (pi) = pibi + α

(
h

2

(pi
α

)2

+ δ|·|≤1

(pi
α

))
= pibi +

h

2α
p2
i + δ|·|≤α (pi)

Note that the Euclidean norm im 1 dimension is reduced to the absolute function.
Using Lemma B.2 we obtain the complete convex conjugate as

F ∗ (p) =
n∑
i=1

pibi +
h

2α
p2
i + δ|·|≤α (pi)

= 〈p, b〉+
h

2α
‖p‖2

2 + δ‖·‖∞≤α (p)

Proposition B.8 (Convex Conjugate of isotropic TV Regularization). Let Γ ∈ Rn
+

and λreg > 0 and consider F : R2n → R with

F (x) = λreg

n∑
i=1

Γi
∥∥x[i,i+n]

∥∥
2

Then the convex conjugate reads

F ∗ (p) = δ‖·‖2≤λregΓi

(
p[i,i+n]

)
Proof. With Lemma B.2 in mind we consider the function f (y) = γi ‖y‖2 with the
short form γi = λregΓi. Using Lemma B.1 and Proposition B.3 we obtain the convex
conjugate as

f ∗ (p) = γiδ‖·‖2≤1

(
p

γi

)
= γiδ‖·‖2≤γi (p)

By using Lemma B.2 we obtain the complete convex conjugate as

F ∗ (p) = δ‖·‖2≤λregΓi

([
pi
pi+n

])

Proposition B.9 (Convex Conjugate of isotropic Huber Regularization). Let Γ ∈
Rn

+ and λreg, h > 0 and consider F : R2n → R with

F (x) = λreg

n∑
i=1

Γi
∥∥x[i,i+n]

∥∥
h

Then the convex conjugate reads

F ∗ (p) =
n∑
i=1

h

2λregΓi

∥∥p[i,i+n]

∥∥2

2
+ δ‖·‖2≤λregΓi

(
p[i,i+n]

)
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Proof. With Lemma B.2 in mind we consider the function f (y) = γi ‖y‖h with the
short form γi = λregΓi. Using Lemma B.1 and Proposition B.4 we obtain the convex
conjugate as

f ∗ (p) = γi

(
h

2

∥∥∥∥ pγi
∥∥∥∥2

2

+ δ‖·‖2≤1

(
p

γi

))
=

h

2γi
‖p‖2

2 + δ‖·‖2≤γi (p)

By using Lemma B.2 we obtain the complete convex conjugate as

F ∗ (p) =
n∑
i=1

h

2λregΓi

∥∥∥∥[ pi
pi+n

]∥∥∥∥2

2

+ δ‖·‖2≤λregΓi

([
pi
pi+n

])

B.3.2 Closed-Form Solutions for Prox Operators

Having derived the convex conjugates for the relevant functions, we can now compute
the prox operators. While we are considering the weighted prox operators from
Definition 4.2, we restrict the weighting matrices to diagonal matrices. If we have a
diagonal matrix M ∈ Rn×n we denote the i-th diagonal element with a slight abuse
of notation by Mi.

We start with the prox operator of the function G.

Proposition B.10. Let b ∈ Rn and let Λ,M ∈ Rn×n be positive definite diagonal
matrices. Consider G : Rn → R with G (u) = 1

2
‖u− b‖2

M . Then the weighted prox
operator reads

proxΛG (x) =
(
Λ−1 +M−1

)−1 (
Λ−1x+M−1b

)
Proof. The preconditioned prox operator is defined as

proxΛG (x) = ŷ = arg min
y∈Rn

{
1

2
‖y − x‖2

Λ +
1

2
‖u− b‖2

M

}
Since the objective function is differentiable we can directly check the optimality
conditions

0 = Λ−1 (ŷ − x) +M−1 (ŷ − b)

⇔ ŷ =
(
Λ−1 +M−1

)−1 (
Λ−1x+M−1b

)

Next we give the prox steps for the different loss functions.

Proposition B.11 (Prox Operator for Quadratic Loss Dataterm). Let b ∈ Rn, α >
0 and let Σ ∈ Rn×n be a positive definite diagonal matrix. Consider F ∗ : Rn → R
with F ∗ (p) = 〈p, b〉+ 1

2α
‖p‖2

2. Then the weighted prox operator reads

proxΣF ∗ (x) =

(
Σ−1 +

1

α
I

)−1 (
Σ−1x− b

)



B SUPPLEMENTARY MATERIAL FOR IMPLEMENTATION 88

Proof. The preconditioned prox operator is defined as

proxΣF ∗ (x) = ŷ = arg min
y∈Rn

{
1

2
‖y − x‖2

Σ + 〈y, b〉+
1

2α
‖y‖2

2

}
Since the objective function is differentiable we can directly check the optimality
conditions

0 = Σ−1 (ŷ − x) + b+
1

α
ŷ

⇔ ŷ =

(
Σ−1 +

1

α
I

)−1 (
Σ−1x− b

)

Proposition B.12 (Prox Operator for Absolute Loss Dataterm). Let b ∈ Rn, α > 0
and let Σ ∈ Rn×n be a positive definite diagonal matrix. Consider F ∗ : Rn → R with
F ∗ (p) = 〈p, b〉+ δ‖·‖∞≤α (p). Then the componets of the weighted prox operator are
given by

(proxΣF ∗ (x))i =

{
(x− Σb)i if |(x− Σb)i| ≤ α

α sgn (x− Σb)i else

Proof. We re-write the optimization problem for the preconditioned prox operator

proxΣF ∗ (x) = arg min
y∈Rn

{
1

2
‖y − x‖2

Σ + 〈y, b〉+ δ‖·‖∞≤α (y)

}
= arg min

y∈Rn

{
1

2
‖y − (x− Σb)‖2

Σ + δ‖·‖∞≤α (y)

}
The last step is justified by the following considerations

1

2
‖y − (x− Σb)‖2

Σ =
1

2
〈Σ−1 (y − x+ Σb) , (y − x+ Σb)〉

=
1

2
〈Σ−1 (y − x) , (y − x)〉+ 〈Σ−1 (y − x) ,Σb〉+

1

2
〈Σ−1Σb,Σb〉

=
1

2
‖y − x‖2

Σ + 〈y, b〉+ 〈x, b〉+
1

2
〈b,Σb〉

We rewrite the optimization problem as

proxΣF ∗ (x) = arg min
y∈Rn

1

2

n∑
i=1

1

Σi

(yi − (xi − Σibi))
2 , s.t. |yi| ≤ α

Since the components of y are not coupled by the infinity norm in the constraint,
the is a component-wise clipping of x− Σb to the interval [−α, α] which shows the
claim.

Proposition B.13 (Prox Operator for Huber Loss Dataterm). Let b ∈ Rn, α, h > 0
and let Σ ∈ Rn×n be a positive definite diagonal matrix. Consider F ∗ : Rn → R
with F ∗ (p) = 〈p, b〉 + h

2α
‖p‖2

2 + δ‖·‖∞≤α (p). Then the components of the weighted
prox operator are given by

(proxΣF ∗ (x))i =
α (xi − Σibi)

max {|xi − Σibi| , hΣi + α}
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Proof. We re-write the optimization problem for the preconditioned prox operator

proxΣF ∗ (x) = arg min
y∈Rn

{
1

2
‖y − x‖2

Σ + 〈y, b〉+
h

2α
‖y‖2

2 + δ‖·‖∞≤α (y)

}
⇔ proxΣF ∗ (x) = arg min

y∈Rn

{
n∑
i=1

1

2Σi

(yi − xi)2 + yibi +
h

2α
y2
i

}
, s.t. |yi| ≤ α

We see that we can optimize the components separately. For each component the
objective function is a parabola which obtains its unique minimum at

0 =
1

Σi

(ŷi − xi) + bi +
h

α
ŷi

⇔ ŷi =
α (xi − Σibi)

α + hΣi

To incorporate the constraints we need to distinguish the 3 cases shown below.

−α αŷi −α α ŷi −α αŷi

Figure 48: Possible locations of the minimum ŷi of the parabola relative to the in-
terval [−α, α]

If ŷi is in the interval [−α, α] we can accept it as the minimum. We can simplify
the condition for this by ∣∣∣∣α (xi − Σibi)

α + hΣi

∣∣∣∣ ≤ α

⇔ |xi − Σibi| ≤ α + hΣi

where we used that α, h,Σi > 0. If ŷi is not in the interval [−α, α], the minimum is
given by ±α where the sign is chosen equal to the sign of ŷ, see Figure 48. So we
can write the i-th component of the prox operator as

(proxΣF ∗ (x))i =


α(xi−Σibi)
α+hΣi

if |xi − Σibi| ≤ α + hΣi

sgn (xi − Σibi)α else

=
α (xi − Σibi)

max {|xi − Σibi| , hΣi + α}

where it is straightforward to verify the equivalence of the last line to the first
formulation.

A closed formulation of the preconditioned prox operator for the regularization
terms is only possible under an additional assumption. In the next proposition, we
state the prox operators and show in a subsequent remark that this condition is
fulfilled in our case.
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Proposition B.14 (Prox Operator for isotropic TV Regularization). Let Γ ∈ Rn
+

and λreg > 0 and let Σ ∈ R2n×2n be a positive definite diagonal matrix such that
Σi = Σi+n, ∀i = 1, . . . n. Consider F ∗ : R2n → R with

F ∗ (p) = δ‖·‖2≤λregΓi

(
p[i,i+n]

)
Then the i-th and the i+ n-th component of the prox operator are given by

(proxΣF ∗ (x))[i,i+n] =
λregΓi

max
{∥∥x[i,i+n]

∥∥
2
, λregΓi

}x[i,i+n]

Proof. Using the addition condition on the matrix Σ and the short form γi = λregΓi
we can write the formula for the preconditioned prox operator as

proxΣF ∗ (x) = arg min
y∈R2n

{
1

2
‖y − x‖2

Σ + F ∗ (y)

}
=

= arg min
y∈R2n

{
n∑
i=1

1

2Σi

∥∥∥∥[ yi
yi+n

]
−
[
xi
xi+n

]∥∥∥∥2

2

}
, s.t.

∥∥y[i,i+n]

∥∥
2
≤ γi

We see that we can optimize for the combination of the i-th and the i + n-th com-
ponent separately. The result for these components is simply a projection of x[i,i+n]

to the γi ball in the 2-norm. So we can write the i-th and the i + n-th component
of the prox operator as

(proxΣF ∗ (x))[i,i+n] =

{
x[i,i+n] if

∥∥x[i,i+n]

∥∥
2
≤ γi

γi

‖x[i,i+n]‖2
x[i,i+n] else

=
γi

max
{∥∥x[i,i+n]

∥∥
2
, γi
}x[i,i+n]

where the last equivalence is straightforward to verify.

Proposition B.15 (Prox Operator for isotropic Huber Regularization). Let Γ ∈ Rn
+

and λreg, h > 0 and let Σ ∈ R2n×2n be a positive definite diagonal matrix such that
Σi = Σi+n, ∀i = 1, . . . n. Consider F ∗ : R2n → R with

F ∗ (p) =
n∑
i=1

h

2λregΓi

∥∥p[i,i+n]

∥∥2

2
+ δ‖·‖2≤λregΓi

(
p[i,i+n]

)
Then the i-th and the i+ n-th component of the prox operator are given by

(proxΣF ∗ (x))[i,i+n] =
λregΓi

max
{∥∥x[i,i+n]

∥∥
2
, λregΓi + hΣi

}x[i,i+n]

Proof. Using the addition condition on the matrix Σ and the short form γi = λregΓi
we can write the formula for the preconditioned prox operator as

proxΣF ∗ (x) = arg min
y∈R2n

{
1

2
‖y − x‖2

Σ + F ∗ (y)

}
=

= arg min
y∈R2n

{
n∑
i=1

1

2Σi

∥∥∥∥[ yi
yi+n

]
−
[
xi
xi+n

]∥∥∥∥2

2

+
h

2γi

∥∥y[i,i+n]

∥∥2

2

}
, s.t.

∥∥y[i,i+n]

∥∥
2
≤ γi
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We see that we can optimize for the combination of the i-th and the i + n-th com-
ponent separately. The objective function for those two components is a quadratic
form which obtains its unique (unconstrained) minimum ŷ[i,i+n] at

0 =
1

Σi

(
ŷ[i,i+n] − x[i,i+n]

)
+
h

γi
ŷ[i,i+n]

⇔ ŷ[i,i+n] =
γi

γi + hΣi

x[i,i+n]

(B.3)

The arguments to incorporate the constraints are similar to the ones in the
proof of Proposition B.13, however, now in 2 dimensions. If the minimum of the
quadratic form is located within the γi-ball around the origin, we can accept it. The
corresponding condition can be simplified as∥∥∥∥ γi

γi + hΣi

x[i,i+n]

∥∥∥∥
2

≤ γi

⇔
∥∥x[i,i+n]

∥∥
2
≤ γi + hΣi

If the minimum ŷ[i,i+n] is located outside of the γi-ball, the constrained minimum
is the projection of the unconstrained minimum to the γi-ball. To see this we
decompose the argument of the objective function into y[i,i+n] = ŷ[i,i+n] + ξ for
ξ ∈ R2. We reformulate the objective function

f (ξ) =
1

2Σi

∥∥ŷ[i,i+n] + ξ − x[i,i+n]

∥∥2

2
+

h

2γi

∥∥ŷ[i,i+n] + ξ
∥∥2

2

=
1

2Σi

∥∥∥∥− hΣi

γi + hΣi

x[i,i+n] + ξ

∥∥∥∥2

2

+
h

2γi

∥∥∥∥ γi
γi + hΣi

x[i,i+n] + ξ

∥∥∥∥2

2

= c1 −
h

γ + hΣi

〈x[i,i+n], ξ〉+
1

2Σi

‖ξ‖2
2 + c2 +

h

γi + hΣi

〈x[i,i+n], ξ〉+
h

2γi
‖ξ‖2

2

=

(
1

2Σi

+
h

2γi

)
‖ξ‖2

2 + c3

where c1, c2 and c3 are constants that do not depend on ξ and we used the result
of Equation (B.3) for the first step. So we see that the quadratic form is radial
symmetric, i.e. the function value does only depend on the distance from the min-
imum and the value grows quadratically with increasing distance. However, this
shows that the constrained minimum is indeed the projection of the unconstrained
minimum to the γi-ball as the result is the (unique) feasible value that is closest to
ŷ[i,i+n].

So we can write the i-th and the i+ n-th component of the prox operator as

(proxΣF ∗ (x))[i,i+n] =

{
ŷ[i,i+n] if

∥∥x[i,i+n]

∥∥
2
≤ γi + hΣi

γi

‖ŷ[i,i+n]‖2
ŷ[i,i+n] else

=


γi

γi+hΣi
x[i,i+n] if

∥∥x[i,i+n]

∥∥
2
≤ γi + hΣi

γi

‖x[i,i+n]‖2
x[i,i+n] else

=
γi

max
{∥∥x[i,i+n]

∥∥
2
, γi + hΣi

}x[i,i+n]

where again the last equivalence is straightforward to verify.



B SUPPLEMENTARY MATERIAL FOR IMPLEMENTATION 92

Remark. It remains to check the additional condition Σi = Σi+n, ∀i = 1, . . . n for
our case. We use the formula from to Theorem 4.4 for the diagonal entries of Σ, i.e.

σi =
1∑n

j=1

∣∣D̄ij

∣∣α
Note that since we have multiple dual variables we need to extract the respective
rows from the general operator K. For the dual variable corresponding to the
regularization this yields the extended discrete gradient operator D̄.

First, we consider rows in D̄ that correspond to the derivatives at inner pixels
or pixels on the top or left boundaries. In those rows exactly 2 entries are 1 while
all the others are zero. Therefore the corresponding entries σi are all equal to 2.

For pixels at the bottom or right boundary at least one of the corresponding rows
in D̄ is zero and therefore the respective entries in Σ are not the same. However,
a zero row in K means that the respective component of the dual variable is not
updated by pk + ΣKūk and therefore remains constant after the first step pk+1 =
proxΣF ∗

(
pk + ΣKūk

)
. Moreover, due to the zero row the component of the dual

variable has no influence on the update of the primal variable in uk − ΛKTpk+1.
Therefore, while not completely true, we can safely assume that Σi = Σi+n, ∀i =
1, . . . n.

B.4 Gaussian Filtering

Gaussian filtering is a special form of linear filtering which is a discrete convolution
of the image I ∈ Rm×n with a filter kernel K. The general definition reads

Ifilt [x, y] =
∑
k,l

K [k, l] I [x− k, y − l] (B.4)

In contrast to the convolution used for the bicubic interpolation we are consid-
ering the matrix representation of images only here. With our usual convention we
denote I [x, y] = Iy,x. While K can be any function that is evaluated at integer
points we often use filter masks, where we write K as a matrix. We then can intu-
itively understand the filtering as shifting the mask to the pixel [x, y] and computing
the weighted average of the neighboring pixels. We usually use symmetric filtering
which requires the matrix to have odd dimensions. To keep the shifting interpreta-
tion consistent with Equation (B.4) we need to index the mask in the following way.

K [1, 1] K [0, 1] K [−1, 1]

K [1, 0] K [0, 0] K [−1, 0]

K [1,−1] K [0,−1] K [−1,−1]

(B.5)

Remark. Note that the indexing in Equation (B.5) is somewhat counter-intuitive as
we would expect the element K [−1,−1] in the top left corner. We could achieve this
by replacing the minus signs in the image indexing in Equation (B.4) by plus signs,
which fixes the indexing but instead contradicts the convolution definition. As filter
masks are often given in this more obvious indexing, we have to rotate the matrix
by 180◦ in this case to keep the shifting interpretation. For rotationally symmetric
matrices (which are the most common class), this problem becomes obsolete.
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For Gaussian filtering we use the Gaussian function

K [x, y] = ce−
x2+y2

2σ2 (B.6)

where σ is the standard deviation and c is a generic normalizing constant. As this
filter is separable we can write the filtering more efficiently by 2 convolutions with
a 1D Gaussian kernel.

Ifilt [x, y] =
∑
k,l

K [k]K [l] I [x− k, y − l] (B.7)

with

K [x] = ce−
x2

2σ2 (B.8)

Note that the kernel still has infinite support, and therefore all pixels are used
for each pixel in the filtered image. However, since the kernel decays exponentially,
we expect good approximations if we truncate the kernel. One way to design a mask
that approximates a Gaussian kernel is to calculate the entries using Equation (B.8)
directly. The constant c is used to scale the entries of the mask such that they sum
to 1. This ensures that the average of the involved pixels stays constant over the
filtering. The size of the mask is often coupled to the standard deviation σ of the
Gaussian kernel. MATLAB’s version of the filter (which is used in this thesis) uses
a mask with 2 · d2σe+ 1 entries.

A thorough discussion of linear and Gaussian filtering can be found e.g. in [22].

B.5 Gradient for the Isotropic Huber Regularization

We need to compute the gradient of the following function

R (x) =
mn∑
i=1

Γi
∥∥x[i,i+mn]

∥∥
h

(B.9)

where ‖·‖h is the Huber norm with Huber parameter h > 0 according to Defini-
tion 3.2 and we used again the notation

x[i,i+n] =

[
xi
xi+n

]
We repeat the definition of the Huber norm on for convenience.

‖x‖h =

{
1

2h
‖x‖2

2 if ‖x‖2 ≤ h

‖x‖2 −
h
2

else

It is immediate that we can calculate the i-th and the i+mn-th component of the
gradient independently. Those components are given as

(∇R (x))[i,i+mn] = Γi

{
1
h
x[i,i+mn] if

∥∥x[i,i+mn]

∥∥
2
≤ h

1

‖x[i,i+mn]‖2
x[i,i+mn] else

(B.10)
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Figure 49: Structure of the matrix Φ that we need to invert. The blue dots are non-
zero entries while the rest of the entries is zero. The shown part is only an excerpt,
the structure continues down and to the right.

B.6 Schur Complement to Solve the Linear System

The inverted matrix Φ in Equation (5.36) has the structure shown in Figure 49. We
can decompose it into the following block matrix

Φ =

[
A B
C D

]
(B.11)

where A ∈ R6|I|×6|I|, B ∈ R6|I|×mn and C ∈ Rmn×6|I| are full matrices and D ∈
Rmn×mn is a diagonal matrix.

For this block matrix we now consider the following general linear system.[
A B
C D

] [
x
y

]
=

[
f
g

]
(B.12)

which we can write equivalently as

(I) Ax+By = f

(II) Cx+Dy = g
(B.13)

We multiply equation (II) by −BD−1 from the left and add it to equation (I).
We simplify the resulting equation and compute x as

Ax−BD−1Cx = f −BD−1g

⇔ x =
(
A−BD−1C

)−1 (
f −BD−1g

) (B.14)

Note that despite the high dimension we can easily invert the matrix D as it has a
diagonal structure. The matrix S = A−BD−1C is called the Schur complement8and
is likewise easy to invert as it has the same low dimension as A. Having obtained x
we now can compute y in a second step.

y = D−1 (g − Cx) (B.15)

where again D is easy to invert. An in depth discussion of the Schur Complement
can be found e.g. in [48].

8Usually, the Schur complement of the matrix Φ is defined as S = D − C−1B. This formula is
equivalent to the definition given above in that we can transform one into the other by rearranging
rows and columns. However, the form introduced above is better suited for our purpose.
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