

Photometric Bundle Adjustment for Globally Consistent Mapping

Simon Klenk

Technische Universität München

Chair of Computer Vision & AI

Master Thesis

Advisor: M.Sc. Nikolaus Demmel

Supervisor: Prof. Dr. Daniel Cremers

Motivation: Improving Photometric Maps

Before Loop Closure

After Loop Closure

Direct Sparse Odometry with Loop Closure [1]

Stairs converges to one object

Even more Improvement:

> Photometric Bundle Adjustment

Research Question: Is the current implementation without alternative?

Evaluation: Kitti odometry 00-10 Euroc MAV

PBA Cost Formulation: Direct Image Error

PBA Cost Formulation: Direct Image Error

Residual Pattern Geometry

Spherical Patterns (inverse distance) 0.675 ATE_{avg}

Planar Patterns (inverse depth) 0.684 *ATE_{avg}*

Residual Pattern: Normal Vectors

Residual Pattern: Normal Vectors

Where else did we have a closer look?

Simon Klenk | Photometric Bundle Adjustment for Globally Consistent Mapping | Informatik IX

Host-Target Transformation: Interpolation in Target

Computing exact gradients

Computing **smooth gradients**: using gradient image (central differences)

Host-Target Transformation: Interpolation in Target

Simon Klenk | Photometric Bundle Adjustment for Globally Consistent Mapping | Informatik IX

Host-Target Transformation: Interpolation in Target

Smooth gradients are similar to interpolating on image pyramid

Where else did we have a closer look?

Simon Klenk | Photometric Bundle Adjustment for Globally Consistent Mapping | Informatik IX

simple warp:

$$p_k' = \pi [T_{ji} \pi^{-1} (p_0, id_p)] + u_k$$

	DSO pattern					
warp:	exact	approx	simple			
all	0.707	0.693	0.693			

simple warp:

$$p_k' = \pi [T_{ji} \pi^{-1} (p_0, id_p)] + u_k$$

	DSO pattern						
warp:	exact	approx	simple				
all	0.707	0.693	0.693				
euroc-ok	0.688	0.691	0.690				
euroc-fail	1.183	0.997	1.006				

simple warp:

$$p_k' = \pi [T_{ji} \pi^{-1} (p_0, id_p)] + u_k$$

	DSO pattern						
warp:	exact	approx	simple				
all	0.707	0.693	0.693				
euroc-ok	0.688	0.691	0.690				
euroc-fail	1.183	0.997	1.006				
kit-no-loop	0.719	0.724	0.702				
kit-loop	0.548	0.568	0.579				

simple warp:

$$p_k' = \pi [T_{ji} \pi^{-1} (p_0, id_p)] + u_k$$

	Γ	DSO patte	50 pattern 9x9 sparse 13x13 sparse			rse			
warp:	exact	approx	simple	exact	approx	simple	exact	approx	simple
all	0.707	0.693	0.693	0.739	0.743	0.787	0.785	0.796	0.847
euroc-ok	0.688	0.691	0.690						
euroc-fail	1.183	0.997	1.006						
kit-no-loop	0.719	0.724	0.702						
kit-loop	0.548	0.568	0.579	-					

simple warp:

$$p_k' = \pi [T_{ji} \pi^{-1} (p_0, id_p)] + u_k$$

	Γ	DSO patte	ern	9x9 sparse		13x13 sparse			
warp:	exact	approx	simple	exact	approx	simple	exact	approx	simple
all	0.707	0.693	0.693	0.739	0.743	0.787	0.785	0.796	0.847
euroc-ok	0.688	0.691	0.690	0.738	0.731	0.779	0.795	0.796	0.930
euroc-fail	1.183	0.997	1.006	0.996	0.996	0.986	1.015	1.013	1.010
kit-no-loop	0.719	0.724	0.702	0.778	0.781	0.766	0.736	0.774	0.699
kit-loop	0.548	0.568	0.579	0.566	0.566	0.603	0.579	0.582	0.640

Where else did we have a closer look?

Simon Klenk | Photometric Bundle Adjustment for Globally Consistent Mapping | Informatik IX

ТЛП

Robust Norms: t-distribution

Simon Klenk | Photometric Bundle Adjustment for Globally Consistent Mapping | Informatik IX

Robust Norms: t-distribution

$c = \sum_{i} w_{i,t} r_i^2$	TDistant	-i - h t
	I Dist we	eight
weight:	$w_{i,corrected}$	$w_{i,old}$
all sequences	0.708	0.708
euroc-ok	0.627	0.702
euroc-fail&eurocV202	1.355	1.053
kit-no-loop	0.520	0.584
kit-loop	0.720	0.683

ours:
$$W_{i,t} = \frac{1}{\sigma_t^2} \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2} \longrightarrow \text{ old [3]: } W_{i,t} = \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2}$$

Robust Norms: t-distribution

$c = \sum_{i} w_{i,t} r_i^2$	TDist we	eight			
weight:	w _{i,corrected}	$w_{i,old}$	average CoV	_	
all sequences	0.708	0.708	0.58		
euroc-ok euroc-fail&eurocV202 kit-no-loop	0.627 1.355 0.520	0.702 1.053 0.584	0.65 0.74 0.51	– CoV =	$\frac{var(\{\sigma\})}{mean(\{\sigma\})}$
ours: $W_{i,t} = \frac{1}{\sigma_t^2}$	$\frac{\nu+1}{\nu+\left(\frac{r_i}{\sigma_t}\right)^2}$	•	ld [3]: <i>W_i, t</i> =	$=\frac{n}{v+}$	$\frac{2+1}{\left(\frac{r_i}{\sigma_t}\right)^2}$

Where else did we have a closer look?

Simon Klenk | Photometric Bundle Adjustment for Globally Consistent Mapping | Informatik IX

Residual Formulations

- Explicit brightness model (per image): ABOPT

$$\mathbf{r}_{ab}^{(k)} = (I_j[\mathbf{p}_k'] - b_j) - \frac{e^{a_j}}{e^{a_i}}(I_i[\mathbf{p}_k] - b_i)$$

- Implicit brightness model (per patch): LSSD, LNSSD, ZNCC/ZNSSD

$$\mathbf{r}_{lssd}^{(k)} = I_j[\mathbf{p}'_k] - \frac{\mathbf{I}_j}{\overline{\mathbf{I}}_i} \ I_i[\mathbf{p}_k]$$

residuals:	SSD	LSSD	LNSSD	ABOPT
all sequences	0.693	0.658	0.670	0.666

Residual Formulations

- Explicit brightness model (per image): ABOPT

$$\mathbf{r}_{ab}^{(k)} = (I_j[\mathbf{p}_k'] - b_j) - \frac{e^{a_j}}{e^{a_i}}(I_i[\mathbf{p}_k] - b_i)$$

- Implicit brightness model (per patch): LSSD, LNSSD, ZNCC/ZNSSD

$$\mathbf{r}_{lssd}^{(k)} = I_j[\mathbf{p}_k'] - \frac{\mathbf{I}_j}{\mathbf{\overline{I}}_i} I_i[\mathbf{p}_k] \qquad 2 * (1 - ZNCC) = ZNSSD$$
residuals: SSD LSSD LNSSD ABOPT ZNCC ZNSSD
all sequences 0.693 0.658 0.670 0.666 0.751 0.676

Overview of other experiments

- Huber:

- Per-target frame works, with different scale estimator (same as for tdistribution, MAD, or sample standard deviation tested)

- Self-tuning M-estimation [4]:

- Achieves very good results for t-distribution
- most general and therefore preferred

- LM dampening:

- No big difference between options, most efficient should be used, e.g. only landmark dampening (identity or original Hessian or Schur)

- LM step criteria:

- Okay to evaluate PBA cost or linearized costs, theoretically OLS correct

- Triggs correction:

- Second order correction of Hessian for robust loss
- Small improvement for t-distribution, for Huber not because only outlier contribute to corrected Hessian

- Occlusion geometric & photometric:

- Simple approaches results only in very minor improvement

Conclusions

- Use residuals which account for brightness changes
- Use smooth gradients in the beginning, exact gradients in the end
- **Use** full warp: approximated version is usually fine, simple warp is too simple
- Use normal optimization as separate step after PBA
- **Use** self-tuning approach (or corrected formula for t-distribution)
- **Use** Triggs-correction for t-distribution case
- **Use** any kind of dampening (diagonal of Hessian/Schur or identity)

- Future Work:

- different metrics required! (especially map evaluation)
- Numerical properties
- Occlusion detections / Deduplication
- Benchmark on more data & against DL / feature-based

Thanks for listening and asking questions!

Sources

[1] X. Gao, R. Wang, N. Demmel and D. Cremers, LDSO: Direct Sparse Odometry with Loop Closure, iros, October 2018

[2] Stackoverflow Answer by Niek Sanders (user: nsanders) on 10.01.2012. Question: "Bilinear interpolation to enlarge bitmap images asked on 10.01.2012. Link: <u>https://stackoverflow.com/questions/8808996/bilinear-interpolation-to-enlarge-bitmap-images</u> [last acces 13.06.2020]

[3] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel. "Direct Sparse Mapping." In: CoRR abs/1904.06577 (2019). arXiv: 1904.06577.

[4] G. Agamennoni, P. Furgale, and R. Siegwart. "Self-tuning M-estimators." In: 2015 IEEE International Conference on Robotics and Automation (ICRA). May 2015, pp. 4628–4635. doi: 10.1109/ICRA.2015.7139840.