Internship report: Toward Fast Deep Visual Place Recognition

Rémi Piau Supervisor: **Dr. Daniel Cremers** Advisors: *Nikolaus Demmel & Lukas Köstler & Nan Yang*

CVG TUM, ENS Rennes

August 2020

Table of contents

- Requirement
 - VSLAM
 - Loop Closure
- 2 Loop Closure Detection Methods
 - Feature based
 - Deep Learning based
- 3 Benchmraking NetVLAD
 - NetVLAD Implementations
 - Metric
 - Against Classical Methods
 - Quantization for Speed ?
- Post Processing Score Results
 - Greedy Double Windowed Mean
- 5 Conclusion

Requirement

Loop Closure Detection Methods Benchmraking NetVLAD Post Processing Score Results Conclusion References

VSLAM Loop Closure

Visual Simultaneous Localization And Mapping

Goal

Compute the map of the surrounding environnement and the route taken inside this map at the same time.

Requirement

Loop Closure Detection Methods Benchmraking NetVLAD Post Processing Score Results Conclusion References

VSLAM Loop Closure

VSLAM Drifts

Errors

- Acquisition
- Computation
- Estimation

Source: Williams et al. [6]

 Requirement

 Loop Closure Detection Methods

 Benchmraking NetVLAD
 VSLAM

 Post Processing Score Results
 Loop Closure

 Conclusion
 References

Add map constrains when closing a loop to negate error.

Loop detection cannot be based on the computed position.

Feature based Deep Learning based

Feature Based Visual Place Recognition

- HashBOW
- HBST

(Sources: Gálvez-López&Tardós [2], Schlegel&Grisett [4]) (Implementation: Tim Stricker [5])

Feature based Deep Learning based

Deep Learning Based Visual Place Recognition

Based on the Vector of Locally Aggregated Descriptors [3]

Source: Arandjelović et al. [1]

Feature based Deep Learning based

- Quite popular
- Deep learning implies GPU based
- No benchmark on GPU & CPU

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Current Implementations

- Original implementation proprietary matlab language
- Tensorflow 1 implementation without training
- Pytorch implementation with training procedure
- Keras implementation without training

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Our Implementation

Key points

- Tensorflow 2 Keras implementation
- Training enabled
- Weight transfer from TF1 implementation & same exposed methods
- Checked against reference & TF1 implementations
- Quantization !

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Metric

How well?

- Precision: number of queries with at least one correct result retrieved divided by the number of queries
- Recall: number of correct results divided by the number of ground truth results

How fast?

Runtime on different phase of vpr recognition. Time in function of image size

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Quantitative comparison

(Source: Oxford FABMAP City Centre Dataset)

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Precision

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Recall

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Another Story: Score Over Time

Ground truth score over time (lip6-in)

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Another Story: Score Over Time

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Quantization: Recall

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Quantization: Precision

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Quantization: Speed on Small Dataset

Method	Query Mean Time (s)	Slower by	
DBOW	0.00324	1x	
GPU	3.46	1068×	1x
lite with float16 quantization	6.89	2127x	1.99×
lite	7.21	2227x	2.08x
CPU	10.1	3119×	2.91x
lite with dynamic range quantization	38.2	11809×	11.1x
lite with full integer quantization	552	170725x	160×

NetVLAD Implementations Metric Against Classical Methods Quantization for Speed ?

Quantization: Speed vs Size

Greedy Double Windowed Mean

Greedy Double Windowed Mean

Conclusion

Take Over

- NetVLAD has better precision than classical methods
- Still a speed bottleneck for deep learning methods
- Tensorflow quantization make things slower on a desktop computer
- Post filtering is a simple way to improve results at low cost

Future Work

- Test further NetVLAD configurations
- Improve post filtering (delayed & inertia)

References

- Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., and Sivic, J. NetVLAD: CNN architecture for weakly supervised place recognition. In IEEE Conference on Computer Vision and Pattern Recognition (2016).
- [2] Galvez-López, D., and Tardos, J. D. Bags of binary words for fast place recognition in image sequences. IEEE Transactions on Robotics 28, 5 (2012), 1188-1197.
- Jégou, H., Douze, M., Schmid, C., and Pérez, P. Aggregating local descriptors into a compact image representation. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010), pp. 3304-3311.
- [4] Schlegel, D., and Grisetti, G. Hbst: A hamming distance embedding binary search tree for feature-based visual place recognition. IEEE Robotics and Automation Letters 3, 4 (2018), 3741-3748.
- [5] Stricker, T. Efficient techniques for accurate visualplace recognition. https://vision.in.tum.de/_media/members/demmeln/stricker2020ma.pdf. Accessed: 2020-08-10.
- [6] Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., and Tardos, J. An image-to-map loop closing method for monocular slam. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (2008), pp. 2053-2059.

Greedy Double Windowed Mean

Parameters: first window size K, second window size K', threshold T.

For a query result vector $(r_{n,i})_{i \in 1..S}$ of size S at step n. and the memory of K previous results $(r_{n-j,i})_{i \in 1..S}$, $j \in 1..K$. We first define the mean vector as:

$$m_{n,i} = \frac{1}{K+1} \sum_{j=1}^{K+1} r_{n-j,i}$$

We define the mask at step n for all $i \in 1..S$ as:

$$M_{n,i} = \begin{cases} min(K'/2,S) \\ r_{n,i}, & \text{if } \sum_{j=\max(-K'/2,1)}^{\min(K'/2,S)} m_{n,j} \ge T \sum_{j=0}^{S} m_{n,j} \\ 0, & \text{otherwise} \end{cases}$$