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Abstract

This work presents a method for 2D-to-3D non-rigid shape matching via functional
correspondence. A point-to-point mapping between the shapes is computed from a
functional correspondence matrix that displays sparsity, distinct diagonal structure, and
low rank. Three objective functions with different regularisation terms are proposed to
obtain the correspondence matrix with such characteristic features. The objective func-
tions are convex and the optimisation process produces globally optimal solutions. The
effect the regularisation terms along with the use of different spectral shape descriptors
have on the accuracy of the computed point-to-point mappings is shown experimentally.
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Part I.

Introduction and Theory
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1. Introduction

Shape matching is a fundamental problem in computer vision and graphics with as
varied applications as shape reconstruction, scan registration, and deformation transfer
amongst others.

Rigid shape matching is well understood and can be expressed by rotations and
translations [ELF97]. However, matching shapes that are undergoing non-rigid de-
formations is a challenging task. Matchings in this case are often represented as a
correspondence between points on two given shapes. The problem of 2D-to-3D shape
matching being tackled in this work is no exception. The goal is to find dense corre-
spondence between a 2D sketch and a 3D shape as illustrated in Figure 1.1. A large
number of approaches have been proposed addressing the issue of how to obtain these
point-to-point correspondences.

An established approach is to compute features on each shape that capture their
geometry, and then match the features by minimising some distortion measure [Ovs+10],
[Hua+08], [SY11]. Some of the feature descriptors that can be used are Heat- [SOG09]
and Wave Kernel Signature [ASC11], and Global Point Signature [Rus07]. Once the
features are matched, they may be employed as an initialisation for calculating the
correspondence between all points of the shapes and, by doing so, obtain a dense point-
to-point map. The approach is motivated by the assumption that commonly encountered
non-rigid deformations, the ones caused by articulated motion, can be expressed as
intrinsic near isometries. That is, the geodesic distances between pairs of points on the
shape are more or less preserved after applying the deformation. The performance of
such an approach depends on the quality of the feature descriptors and their invariance
to isometric deformations and noisy data.

The introduction of functional maps approach [Ovs+12] has provided an easy way of
using different feature descriptors alongside each other to find correspondence between
3D shapes. In this way, the strengths of various descriptors can be combined. The
functional maps approach is also more flexible, since it is possible to choose appropriate
bases in which to represent descriptor functions.

Besides 3D shape matching, functional maps have been used in formulating shape
difference operator [Rus+13], in exploring shape collections [HWG14], in symmetry
matching [Ovs+13], in image segmentation [Wan+14]. However, it is not known whether
functional maps approach can be used successfully in the case of 2D-to-3D matching
and which shape descriptors are capable of capturing adequate geometric information
across 2D and 3D domains. This work attempts to answer these questions.
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1. Introduction

Figure 1.1.: Example of a 2D sketch on the left and a 3D shape on the right. The problem
of 2D-to-3D shape matching aims at finding a dense correspondence between
two shapes like these.

1.1. Related Work

Since the proposed approach for 2D-to-3D matching is inspired by the recent develop-
ments in the area of 3D shape matching, a brief overview of the related work in that area
is presented here. Moreover, the work pertaining to the 2D-to-3D case is also presented
which is in most cases a part of shape retrieval and sketch based modelling approaches.

Functional 3D shape matching. In 2012, the functional maps approach [Ovs+12] for
matching 3D shapes was introduced in which a correspondence map between a pair
of shapes is represented as a linear transformation between their function spaces. The
map is expressed simply as a matrix and is computed from a set of corresponding scalar
functions (e.g wave kernel signatures, region indicators) on both shapes. These functions
are encoded in the shapes’ harmonic bases and the approach relies on them being
compatible. However, harmonic bases computed independently on different shapes
do not always exhibit this behaviour. In [Kov+12] the authors addressed this issue by
proposing to obtain common bases between shapes using joint diagonalization. The
use of common bases allows to take advantage of the sparsity of the correspondence
matrix and hence improve computation efficiency. However, a set of point or region
correspondences has to be provided as input to this approach.

Pokrass et al. [Pok+12] proposed a method that builds on [Ovs+12] and is able to
match shapes using very little known information, mainly the ability to detect repeatable
regions. Their ordering is not known nor how many regions are in correspondence with
one another. The functional map is computed using methods from the field of sparse
modelling and weight matrix is introduced to better promote the diagonal structure of
the correspondence matrix. The most recent work [Kov+15] treats finding a functional
map between pairs of shapes as geometric matrix completion problem. It is shown that
adding geometric structure is beneficial when scarce functional correspondences are
provided and when matching highly non-isometric shapes.
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1.2. Goal

2D-to-3D shape matching. Several methods have been proposed for sketch driven
shape deformations. The main prerequisite in such a process is establishing correspon-
dence between a sketch and a 3D shape. The methods of [T0L10] and [KSP09] use
a contour of the sketch to align it to the 3D shape, and therefore only the correspon-
dence of the points on the contour and the silhouette of the 3D shape are calculated.
These methods require user interaction to determine a common orientation between
the contour and the shape, and to specify several 2D-to-3D point correspondences to
aid in the alignment process. Another method [LA11] represents the sketch and 3D
shape as a combination of circle-triangle-square primitives and then puts these primitive
shapes into correspondence. This method has high computational cost and is not able
to produce dense point-to-point correspondence. The approach of Xu et al. [Xu+11] is
designed to work on man-made models. Region correspondences are found between
a photo object and the 3D shape for the purpose of model-driven modelling. User
interaction is involved in several situations due to the semantic region segmentation
algorithm used.

A different approach to 2D-to-3D matching comes from the area of sketch-based 3D
shape retrieval. The matching process is cast to 2D domain by sampling views of 3D
shape and finding feature correspondences between the sketch and the created views.
The goal of the matching is to produce a similarity measure which does not necessitate
point-to-point mapping. Therefore a method to compute such a map is not available.
Various shape descriptors and feature views have been proposed for matching and more
information on how they are used in the context of shape retrieval can be found in the
following survey paper [Li+14].

1.2. Goal

The overall goal is to apply functional maps approach to 2D-to-3D non-rigid shape
matching. The expectation is that this approach is able to produce quality point-to-
point correspondence. To achieve this goal, three convex objective functions with
different regularisation terms aimed at capturing the characteristic features of functional
correspondence matrix such as sparsity, diagonal structure, and low rank are proposed.
The convexity allows for the globally optimal solutions to be computed. The performance
of the objective functions is shown by conducting experiments using well-known 3D
shape data set augmented with 2D shapes extracted from images of those 3D shapes.
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2. Background Knowledge

Laplace-Beltrami operator provides a base for a variety of geometry processing tasks.
Its eigenfunctions and eigenvalues are the main components in the functional maps
framework and in the shape descriptors used. The following sections present these
topics in more detail and set the stage for the proposed 2D-to-3D shape matching
method.

2.1. Laplace-Beltrami Operator

Given a real-valued, twice differentiable function f defined on a Riemannian manifold
M (written in mathematical notation as f ∈ L2(M)), the Laplace-Beltrami operator ∆ is
defined as:

∆ f = −div (∇ f ) (2.1)

where ∇ f is the gradient of f , and div the divergence on the manifold. In Euclidean
plane R2, the Laplace-Beltrami operator becomes the familiar Laplacian:

∆ f = − ∂2 f
(∂x)2 −

∂2 f
(∂y)2 (2.2)

The Laplace-Beltrami operator admits an eigendecomposition with eigenvalues λ and
associated eigenfunctions φ:

∆φ = −λφ (2.3)

The eigenvalues of Equation 2.3, which is known as the Helmholtz equation, are non-
negative and represent a discrete set ( 0 ≤ λ1 ≤ λ2 ≤ ... + ∞). The eigenfunctions are
real-valued functions defined on the whole manifold. Moreover, the eigenfunctions
corresponding to distinct eigenvalues are orthogonal with respect to the inner product:

〈φi, φj〉 =
∫

M
φi(x)φj(x)dx = 0, i 6= j (2.4)

Eigenfunctions and eigenvalues have a physical world interpretation. One example
where they play a key role is in describing what happens when a membrane of a drum is
hit. The eigenfunctions can been seen as the natural vibration modes of the membrane,
while the eigenvalues represent the corresponding resonant or vibration frequencies.

The spectrum is defined to be the family of eigenvalues of Equation 2.3. The multiplicity
of an eigenvalue λ in the spectrum equals to the dimension of the vector space spanned
by the eigenfunctions associated with the eigenvalue.
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2. Background Knowledge

2.1.1. Properties

The Laplace-Beltrami operator and in turn the spectrum and the eigenfunctions have
some nice properties [Reu+09b] which make them useful in the field of 3D shape
analysis. These properties are:

(a) The Laplace-Beltrami operator is isometry invariant as it only depends on the gradi-
ent and the divergence which are intrinsic properties of the manifold. In other words,
they are independent of the coordinate space in which the manifold is embedded.
The isometry invariance is exhibited by the spectrum and the eigenfunctions as well.

(b) Scaling a manifold by the factor a has a known effect on the eigenvalues: they are
scaled by the factor 1

a2 . This makes comparing spectra possible, regardless of the
difference in the sizes of manifolds.

(c) The spectrum and the eigenfunctions change continuously when the shape is being
deformed.

(d) A fair amount of geometrical and topological information can be derived from the
spectrum. On a Riemannian manifold with boundary it is shown that knowing the
spectrum allows for deducing the area, perimeter and genus of the manifold [MS67].

(e) The eigenfunctions with the smallest eigenvalues are more robust against shape
change or noise, as they present the lower frequency modes.

2.1.2. Boundary conditions

Two types of boundary conditions can be used to solve Equation 2.3: the Dirichlet and
the Neumann boundary condition. The former imposes that the value on the boundary
of M is fixed (φ = 0), whereas the latter imposes that the derivative in the normal
direction of the boundary is fixed ( ∂φ

∂n = 0). Of particular interest is the effect these
boundary conditions have on eigenfunctions since they are the major building blocks in
the functional shape matching approach.

Figures 2.1 and 2.2 display the different behaviour of the two boundary conditions on
a 2D example of a square with a tail (ST) and a unit square (S1). In the Dirichlet case
(Figure 2.1), the lower eigenfunctions are not able to pick up the presence of the attached
tail of ST. Only when higher eigenfunctions are considered (h) does the value of the tail
area stop being constant or close to it. This is due to the restrictive condition of having
the values on the boundary fixed to zero. Also worth pointing out is that as soon as the
tail is detected, the corresponding eigenfunctions of ST and S1 do not look alike (d - h).

The Neumann boundary condition behaves differently (Figure 2.2). The addition of
features like the tail influence the eigenfunctions very early, because the boundary is
free to assume different values, not just zero. The first non-constant eigenfunction (d) is
very different from the first non-constant eigenfuntions of the square (a). However, the

8



2.1. Laplace-Beltrami Operator

Figure 2.1.: Eigenfunctions for the Dirichlet boundary conditions for a square (top) and a
square with tail (bottom). Low frequency (low eigenvalue) eigenfunctions do
not probe the tail region due to the restrictive Dirichlet boundary conditions.
Picture is taken from [Reu+09b].

next eigenfunction (e) of ST is almost identical to (a). Also the next few eigenfunctions
(b - f and c - g) correspond with each other on the square region.

The work of Rodolà et al. [Rod+15] provides a mathematical justification of the
behaviour of eigenfunctions in the presence of missing shape parts. They show that
the variation of eigenfunctions in Figure 2.2 is caused only by their interactions along
the boundary (or cut) between S1 (square) and ST \ S1 (tail). The variation is not a
function of the missing area. If the cut goes through low values of eigenfunctions, many
of them are preserved across the shapes, whereas if it goes through high values, the
eigenfunctions vary by a large amount.

For the purpose of shape matching, the Neumann boundary condition is advantageous
as it picks up the significant changes in geometry much earlier. Also the addition of a
new geometric feature does not drastically change the appearance of the eigenfunctions.
They look similar to the corresponding eigenfunctions on the old shape.

2.1.3. Eigenfunctions as bases

Eigenfunction of the Laplace-Beltrami operator are analogue to Fourier bases on Eu-
clidean domains. Hence, any square integrable real-valued function f ∈ L2(M) defined
on a compact Riemannian manifold M can be expanded in terms of the eigenfunctions

9



2. Background Knowledge

Figure 2.2.: Eigenfunctions for Neumann boundary conditions for a square (top) and a
square with a tail (bottom). Picture is taken from [Reu+09b].

with the respective eigenvalues 0 ≤ λ1 ≤ λ2 ≤ ... as:

f =
∞

∑
j=1

ajφj (2.5)

for some coefficients aj ∈ R. The coefficients provide a canonical parametrisation
of functions defined on the surface. Truncating the above infinite expansion results
in a smoother function. Figure 2.3 illustrates this smoothness by showing how a
chosen number of eigenfunctions affects the finer details of the Dragon model when its
vertex coordinates are reconstructed using 100, 200, 300, 500, and 900 eigenfunctions,
respectively.

2.1.4. Discretisation

A triangular mesh (V, E, F) is a commonly used discretisation of a 3D shape, where
V = {v1, ..., vn} is the vertex set, E ⊆ V ×V is the set of edges between the vertices, and
F ⊂ V3 is the set of faces (or triangles in this case). A function f on the triangular mesh
is represented as the vector f = ( f (v1), ..., f (vn)). The Helmholtz equation (Equation
2.3) can be written in the matrix form as:

LΦ = ΦΛ (2.6)

where Λ = diag(λ1, ..., λn) contains the eigenvalues, Φ = (φ1, ..., φn) contains the
eigenfunctions arranged as columns, and the discrete Laplace-Beltrami operator is

10



2.1. Laplace-Beltrami Operator

Figure 2.3.: The results of reconstructing the original Dragon model’s (a) vertex coor-
dinates using different number of eigenfunctions are shown in (b - f). The
number of eigenfunctions used are 100, 200, 300, 500 and 900, respectively.
This picture is taken from [RCG08].

represented by the n× n matrix L defined as [Reu+09a]:

L = A−1S. (2.7)

The mass matrix A is diagonal (A = diag(a1, ...an)) and its entries represent the vertex
weights, while the stiffness matrix S is symmetric with entries that express the edge
weights. The matrix S is defined as S = D−W with W = (wi,j) being the weighted
adjacency matrix, and D = diag(d1, ...dn) having the elements di = ∑j∈N(i) wi,j. Using
the cotangent discretisation, the weight of the edge ij is computed in the following
manner:

wi,j =

{
(cot αi,j + cot βi,j)/2 if edge ij ∈ E

0 otherwise
(2.8)

where αi,j, βi,j are the angles opposite the edge ij. The vertex weight ai is defined as the
local area element of vi [Mey+02]:

ai =
1
8 ∑

j∈N(i)
(cot αi,j + cot βi,j)

∥∥vi − vj
∥∥ (2.9)

Figure 2.4 shows the vertex vi and its one-ring neighbourhood N(i). The local area
element ai is displayed in grey and the edge ij in red.

The eigendecomposition problem can be posed as the minimisation:

min
Φ

off(ΦTWΦ) s.t. ΦTDΦ = I (2.10)

of the sum of squared off-diagonal elements, off(A) = ∑i 6=j a2
ij. This optimisation

problem can be solved iteratively using for example the Jacobi eigenvalue algorithm.
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2. Background Knowledge

Figure 2.4.: The vertex vi and its one-ring neighbourhood. The local area element of the
vertex vi is marked in grey. The edge ij is drawn in red and the αi,j and βi,j
angles used to compute its edge weight are also shown.

The discrete eigenfunctions are orthogonal with respect to the weighted inner product.
Therefore, ΦTAΦ = I, where A is previously defined mass matrix holding the vertex
weights and I is the identity.

2.2. Functional Maps

The functional maps approach [Ovs+12] is a flexible framework for representing maps
between shapes.

Let M and N denote two shapes discretised as triangular meshes with m and n vertices
respectively. A map T : M→ N between them induces a linear map TF : L2(M)→ L2(N)

between their function spaces. The functional map TF takes a scalar function f ∈ L2(M)

and transfers it to g ∈ L2(N) by composition, as in g = TF( f ). The original mapping T
can be recovered from TF since TF = f ◦ T−1.

Let m× k matrix Φ = (φ1, ..., φk) and n× l matrix Ψ = (ψ1, ..., ψl) be the truncated
bases of M and N respectively. As previously mentioned in Section 2.1.3, the eigen-
functions φi of the Laplace-Beltrami operator can serve as bases, and consequently, any
function f : M→ R can be expressed as f = ∑k

i=1 aiφi using the first k eigenfunctions.
Similarly, the basis functions φi once mapped onto the shape N are represented in terms
of its basis Ψ as TF(φi) = ∑l

j=1 cijψj. Then a linear functional mapping TF is defined as:

TF( f ) = TF

(
k

∑
i=1

aiφi

)
=

k

∑
i=1

aiTF (φi)

=
k

∑
i=1

ai

l

∑
j=1

cijψj =
l

∑
j=1

k

∑
i=1

aicijψj

(2.11)

By projecting the discretized versions of functions f and g = TF( f ) onto the respective
shape’s basis (i.e. a = (ΦTAM)f and b = (ΨTAN)g), the functions can be represented
as their expansion coefficients a = (a1, ..., ak) and b = (b1, ..., bl). Subsequently, the
Equation 2.11 is equivalent to bj = ∑k

i=1 aicij or in matrix form b = Ca. The l × k matrix

12



2.2. Functional Maps

C = (cij) translates the expansion coefficients from the basis Φ to the basis Ψ and it
fully encodes the TF mapping. Therefore, the original mapping T can be recovered if C
is known.

The matrix C is a solution to the following system of equations:

B = CA (2.12)

where matrices A and B hold functional correspondences (also known as constraints)
projected onto the respective shape’s basis. Namely, the i-th column of A represents a
function on M that has a corresponding function on N represented by the i-th column
of B. The matrices A and B both have q columns, where q marks the number of
constraints used. The functional correspondences usually come from shape descriptors,
or points and regions indicator functions. The ones used in this work are presented
in the following section. The Equation 2.12 is solved by optimising the least-squares
problem:

min
C
‖CA− B‖2

F (2.13)

where the Frobenius norm of a matrix X is defined as ‖X‖F =
√

∑ij x2
ij. Note that the

size of matrix C depends only on the number of basis functions used, not on the size of
the meshes.

If two shapes M and N are isometric and their eigenvalues are non-repeating, then
the corresponding eigenfunctions of each shape are perfectly compatible. Consequently,
C is a diagonal matrix with cii = ±1 and zeros everywhere else. A near-isometric
map between two shapes is more commonly encountered in practice. The farther from
isometry the shapes are, the more elements of C spread off the diagonal in a funnel-
shaped manner. This is due to the eigenfunctions not being perfectly compatible between
shapes which is more prominent in higher frequencies. However, most elements of
C are still close to zero. Figure 2.5 illustrates this by showing the ground-truth maps
between the source shape (a) and two target shapes (b, c) where the second target (c)
is more deformed relative to the source. It can be seen that the elements of matrix C
between the source and the more deformed target shape display more deviation from
the diagonal.

2.2.1. Point-to-Point Conversion

The point-wise map between shapes can be recovered by the use of point indicator
functions. Given a point x ∈ M and its indicator function f (value 1 at x and 0
elsewhere), the corresponding point y ∈ N is the maximum of the function g obtained
by applying TF mapping to f (i.e. g = TF( f )). However, this method of recovering
point-wise maps has O(mn) complexity and can be impractical when dealing with
meshes with large number of vertices. A more efficient method is to consider for every
point of CΦT (represented as a column) its nearest neighbour in ΨT, which requires
O(m log n + n log m) using a fast search algorithm. Post-processing iterative refinement
employs this more efficient technique to refine a given matrix C in order to make it
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2. Background Knowledge

(a) cat0 (source) (b) cat10 (target 1) (c) cat6 (target 2)

Figure 2.5.: The ground-truth correspondence matrix C between the shapes cat0 and
cat10 (b), and cat0 and cat6 (c).

produce a more optimal point-wise map. The steps of the refinement are as follows:
first, for each column x of CΦT find the closest x̃ in ΨT; second, find an orthonormal C
minimising ∑i ‖Cxi − x̃‖; third, repeat until convergence. Note that C is required to be
square for this procedure, so the number of eigenfunctions that make up Φ and Ψ basis
are the same. Also, constraining C to be orthonormal results in the area-preserving
maps being computed.

2.2.2. Regularisation of Correspondence Matrix

To help induce the diagonal structure of C, Pokrass et al. [Pok+12] use an `1-norm
regularisation of C multiplied with the weight matrix W whose diagonal elements are
zero. They also show that a quality shape correspondence can be obtained using only
indicator functions of repeatable regions detected on the shapes without prior knowledge
of the correct ordering of said regions. The regions are brought into correspondence by
the permutation matrix Π during the optimisation phase:

min
C,Π
‖CA− BΠ‖2

F + λ ‖W� C‖1 (2.14)

where λ controls the importance of the `1-term and � denotes element-wise matrix
multiplication. It should be noted that post-processing iterative refinement provides
a significant help in obtaining a good point-to-point shape correspondence from such
little information as only region indicator functions.

Kovnatsky et al. [Kov+15] look at the problem of finding the functional map T =

ΨCΦT from a matrix completion point of view. They search for a matrix that explains
the data in a "simple" way. That is, the matrix should result in a smooth correspondence,
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2.3. Shape Descriptors

meaning that if two points are close on shape M their respective corresponding functions
are similar. Likewise, for close points on shape N. Also, the matrix should be sparse,
which is achieved by the nuclear and `1-norm regularisations. Using the decomposition
T = UVT and then approximating U ≈ Ψk′A and V ≈ Φk′B, where matrices A and B
of the expansion coefficients are of size k′ × k, the following minimisation is proposed:

min
A,B

∥∥∥ABTΦT
k′F−ΨT

k′G
∥∥∥2

F
+ µ1tr(ABTLMBAT) + µ2(BATLNABT)

+µ3

∥∥∥Ψk′ABTΦT
k′

∥∥∥
1
+

µ4

2
(‖Ψk′A‖2

F + ‖Φk′B‖2
F)

(2.15)

Matrices F and G of size m× q and n× q respectively hold q corresponding functions.
The smoothness of the correspondence functions is achieved by the µ1- and µ2-term. The
nuclear norm of a matrix (sum of its singular values) is often used to obtain a solution
with low rank, and it can be written in the form presented by the µ4-term.

2.3. Shape Descriptors

The shape descriptors used in this work are the ones based on the eigendecomposition
of the Laplace-Beltrami operator associated with the shape.

2.3.1. Heat Kernel Signature

The Heat kernel signature (HKS) [SOG09] is a point descriptor based on the heat
diffusion process on the shape which is governed by the Heat Equation:

∆u(x, t) = − ∂

∂t
u(x, t). (2.16)

The heat kernel kt(x, x) represents the solution to the heat equation. It describes how
much heat remains at point x after some time t, given that at t = 0 all the heat energy
was concentrated at x. The eigendecomposition of heat kernel is expressed as:

kt(x, x) =
k

∑
i

e−λitφ2
i (x) (2.17)

where λi and φi are the first k eigenvalues and the eigenfunction of the Laplace-Beltrami
operator. The heat kernel function kt(x, x) is sampled at a certain set of times t1, ..., tn,
so HKS at point x is defined as a vector of heat kernels:

HKS(x) = (kt1(x, x), ..., ktn(x, x)). (2.18)

HKS is invariant under isometric deformation as it is computed using only intrinsic
properties of the manifold. It is robust to small perturbations on the shape mesh. It also
has a multi-scale property, meaning that for small t, HKS captures the local properties
of the shape, whereas for large t, it captures the global structure.
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2. Background Knowledge

2.3.2. Wave Kernel Signature

The Wave Kernel Signature (WKS) [ASC11] is also a point descriptor and like HKS
inspired by physical phenomenon. Rather than observing the heat diffusion, what is
considered here is the probability of a quantum particle to be located at a certain point
on a shape. The movement of a quantum particle on the shape is governed by its wave
function ψ(x, t) which is a solution of the Schrödinger equation:

∂

∂t
ψ(x, t) = i∆ψ(x, t). (2.19)

Given an initial energy distribution fE of a quantum particle, where energy is related
to the eigenvalues, the wave function of the particle can be expressed in the spectral
domain as:

ψE(x, t) =
∞

∑
k=1

eiEKtφk(x) fE(λk). (2.20)

The probability to measure the particle at a point x is then |ψE(x, t)|2. Subsequently, the
average probability (over time) to measure a particle at the location x is defined as:

p(x) = lim
T→∞

1
T

∫ T

0
|ψE(x, t)|2 =

∞

∑
k=0

φk(x)2 fE(λk)
2. (2.21)

Note that the time parameter has been replaced by the eigenvalues of the Laplace-
Beltrami operator which capture an intrinsic notion of scale of the shape. Therefore,
different choices of energy distributions fE characterise the shape properties at different
scales.

The following family of normal energy distributions centred at some mean log e with
variance σ2 are considered:

fE(λ) ∝ exp(− (log e− log λ)2

2σ2 ). (2.22)

Using logarithmically sampled energy E at e1, ..., en, the WKS at a point x is defined as a
vector:

WKS(x) = (pe1(x), ..., pen(x)) (2.23)

where each pe(x) is the probability of observing a quantum particle with initial energy
distribution fe(λ) at point x.

The authors show both theoretically and in quantitative experiments that WKS is
more discriminative than HKS and therefore performs better in shape matching.

2.3.3. Consensus Segmentation of Deformable Shapes

Rodolà et al. [RBC14] proposed a method that detects repeatable regions of 3D de-
formable shapes by extracting a consensus segmentation from an ensemble of candidate
segmentations of the shape itself. The method is motivated by the observation that
consensus segmentation tends to be more stable against non-isometric deformations.
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2.3. Shape Descriptors

The ensemble of candidate segmentations is created by running a clustering algorithm
on the Global Point Signatures (GPS) of all the points on the shape. GPS of a point p is
an infinite dimensional vector of scaled eigenfunctions:

g(p) =
(

1√
λ1

φ1(p),
1√
λ2

φ2(p),
1√
λ3

φ3(p), ...
)

. (2.24)

GPS characterises points intrinsically and is therefore a good choice for producing
isometry-invariant segmentations. The goal of clustering is to assign each g(p) to its
nearest cluster centre. That is, given the partition function C : g(p)→ i, which assigns a
cluster index i ∈ 1, ..., k to every point on the shape, the goal is to find such a partition C
that minimises the distances between all n points and their assigned cluster centres cl .
How well a specific partition C minimises said distances is measured in the following
way:

w(C) =
1
n

k

∑
l=1

∑
C(g(pi))=l

‖g(pi)− cl‖2 da(pi), (2.25)

where da(pi) is the local area element of point pi, cl is the mean of the l-th cluster based
on the current partition C, and ‖·‖ is the Euclidean distance in R∞ induced by the inner
product defined as:

〈g(p), g(q)〉 =
∞

∑
1

1
λk

φk(p)φk(q). (2.26)

The authors use the k-means clustering algorithm to minimise Equation 2.25. Starting
from some initial seeds {cl}k

l=1, the algorithm assigns every g(pi) to its nearest centre cl .
Then, the position of centres is recomputed and the assignment is performed again. This
is repeated until a certain stopping criteria is reach. The variety of the segmentations in
an ensemble produced in this way come from choosing different initial seeds as well as
the fact that the number of minimisers for Equation 2.25 could be infinite.

An ensemble of m candidate segmentations over a shape consisting of n triangles can
be written as a matrix E ∈ {1, .., n}m×n. Each entry Eui holds the segment index of the u-
th candidate segmentation that the triangle ti belongs to. The rows represent individual
segmentations and are denoted by Eu∗. Given a maximum number of segments k, a
consensus segmentation is a segmentation x∗ ∈ {1, ..., k}n that is as close as possible to
all segmentations in E. This can be expressed formally as:

x∗ ∈ arg min
x

m

∑
u=1

d2(Eu∗, x) (2.27)

where d measures the consistency of the segmentations:

d2(x, z) = ∑
i,j∈1,...,n

wij(1xi=xj − 1zi=zj)
2. (2.28)

The indicator function 1P returns 1 if property P is true, and 0 otherwise. Essentially, d
is the weighted count of how many triangles do not belong to the same segment across
the segmentations. The wi j’s are the product of the areas of the respective triangles.

17



2. Background Knowledge

The distance measure d in Equation 2.27 has quadratic complexity and depends on the
number of triangles in the shape mesh. A detailed discussion on how these complexity
issues are overcome can be found in the paper [RBC14].
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Part II.

2D-to-3D Shape Matching via
Low-Rank Functional

Correspondence
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3. Proposed Approach

The focus of this work is computing a point-to-point matching between organic 2D
and 3D shapes, such as animals and humans, using functional correspondences. More
precisely, the matchings being considered are between the 2D side and front views of a
shape, and the semantically similar 3D shapes. Organic shapes usually have a bilateral
(two-sided) symmetry. The symmetry helps in choosing the part of the 3D shape to be
targeted in the matching process when the source of the 2D shape is a side view. In case
of the front views, no symmetry cue is available to help determine the part of the 3D
shape to be matched. Instead, the full shape is being considered as a target. Therefore,
matching of the front views is restricted to the human shapes, where the "depth" of the
shape is relatively small when observed from the front. The 2D shapes are represented
as 3D triangular meshes where the z coordinate of all vertices is set to zero. Figure 3.1
shows a side view of a cat and a front view of a man and their respective triangular
mesh.

The desired shape matching algorithm should be modelled as a convex problem so
that a computed solution can be guaranteed to be a globally optimal one. Another
advantage of convexity is that efficient and well-known methods are available for the
optimisation process. The algorithm should also be robust to noise in order to work with
the shapes and deformation models found in real world. The following sections first
provide the motivation for the proposed shape matching algorithm by looking at the
behaviour of eigenfunctions across 2D and 3D shapes. Then, the optimisation problem
and how to solve it is presented.

Figure 3.1.: A side view of a cat and a front view of a man along with their respective
triangular mesh.
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3. Proposed Approach

3.1. Eigenfunctions in 2D-to-3D Shape Matching

The success of shape matching via functional correspondence depends on the compati-
bility of shapes’ eigenfunctions. Consistent behaviour of eigenfunctions across different
shapes is only guaranteed if the shapes are perfectly isometric. In the case of 2D-to-3D
matching, the shapes are far from isometric. They differ in their curvature (one is flat,
the other is not), and in which features are present in the shape (only those seen from
the side or front view, as opposed to the whole shape). Nevertheless, in practice the
eigenfunctions with the smallest eigenvalues still behave in a similar way across 2D and
3D shapes if Neumann boundary condition is used to compute them.

This behaviour can be explained by the background information presented in Section
2.1. To summarise, eigenfunctions corresponding to lower frequencies are more robust
to shape changes and noise. When Neumann boundary condition is used, the eigen-
functions detect the differences in shapes faster. More importantly, when a new part
is added or removed from the base of the shape, the eigenfunctions on the base still
correspond with each other. These global geometrical changes made to the shape do
not have hazardous effect on the eigenfunctions. However, the correspondence of the
eigenfunctions may be shifted, as the addition of new parts can bring about completely
new eigenfunctions. Figure 3.2a shows the shift in the eigenfunction correspondence
observed between the 2D view of a cat and a 3D cat. If the 2D view does not coincide
with the 3D shape’s intrinsic symmetry, like in the example in Figure 3.2b, the shift in
correspondences is not present.

As previously discussed in Section 2.2, the correspondence matrix C is sparse and has
non-zero elements only along its diagonal when the eigenfunctions of the two shapes
being matched are perfectly compatible. This perfect compatibility does not occur in
practice. Its absence is noticeable in 2D-to-3D shape matching case as illustrated by
Figure 3.3, which shows the matrix C obtained by using the original functional maps
approach (without the iterative refinement step), and the point-wise correspondence it
produces. When the 2D shape is matched to the whole 3D shape (Figure 3.3a), the largest
entries of C are on the main diagonal due to it being likely that the i-th eigenfunction
on the 2D shape is in correspondence with the i-th eigenfunction on the 3D shape. By
contrast, when the 2D shape is matched to one side of the 3D shape (Figure 3.3b), the
largest entries of C form a slanted diagonal structure as a consequence of the shift
in the eigenfunction correspondence. In other words, when looking at the pairs of
corresponding eigenfunctions under partiality, the indices of Φ increase one at a time,
while the indices of Ψ increase faster because some are skipped (Figure 3.2a). These
uneven corresponding index sequences result in the slanted diagonal structure of C.

3.2. Problem Definition of 2D-to-3D Shape Matching

Optimising only the data term ‖CA− B‖2
F is not able to cope with the noise introduces

by the not perfectly compatible eigenfunctions. Therefore, the following regularised
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3.2. Problem Definition of 2D-to-3D Shape Matching

(a) The shift in the correspondences is present, so here for example φ12 is in correspon-
dence with ψ19. Note that φ2 does match the ψ2, only the colours are inverted. The
same for the (φ3, ψ3) pair.

(b) The shift in the correspondences is not present when the 2D view does not coin-
cide with one half of the intrinsic symmetry of the 3D shape. Due to numerical
instabilities, the correspondence of the 9th and 10th eigenfunctions are switched.

Figure 3.2.: Corresponding eigenfunctions of (a) the 2D side view of a cat and the 3D
cat shape, and (b) the front view of a human and the 3D human shape.
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3. Proposed Approach

(a) The largest entries of C are on the main diagonal.

(b) The largest entries of C form a slanted diagonal, due to the shift in the eigenfunction
correspondence.

Figure 3.3.: Example of the point-wise correspondence between 2D and 3D human (a)
and 2D and 3D cat shapes, and the matrix C from which the correspondence
is derived. C is computed using only the data term ‖CA− B‖2

F.

optimisation problem is considered:

min
C
‖CA− B‖2

F + γρ(C) (3.1)

where γ controls the relative importance of the two terms, and ρ(C) is a regularisation
term for matrix C introduced to give preference to a solution that is sparse and diagonally
dominant. Three different regularisations are proposed based on the weighted `1- and
`2-norm, and the nuclear norm of C:

ρ(C) = ‖W� C‖2
F ; ρ(C) = ‖W� C‖1 ; ρ(C) = ‖C‖∗ . (3.2)

As before, � denotes the element-wise matrix product. The weight matrix W helps to
obtain the desired diagonal structure of the correspondence matrix C by having zero
values where the diagonal should be. The effect these three regularisations have on C
can be seen in Figure 4.4.

3.2.1. Data Term

The shape descriptors presented in Section 2.3 are used as the functional correspondences
represented by A and B matrices. The surface area of a 2D and 3D shape being matched
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3.2. Problem Definition of 2D-to-3D Shape Matching

(a) (b)

Figure 3.4.: Example of the consistent segmentation across 2D and 3D shapes. The left
side of the 3D cat in (a) is not represented by any functional correspondence.

are usually not the same. Therefore, the spectrum of the 3D shape is scaled by 1
a2 , where

a = area(2D)/area(3D), and this normalized spectrum is used in the HKS and WKS
computation. The consensus segmentation method (Section 2.3.3) is chosen for its ability
to detect repeatable regions across 2D and 3D shapes. In practice, a different value for
the parameter k (maximum number of regions) has to be specified for the method to
produce the same number of regions on a given pair of 2D and 3D shapes. The obtained
regions are manually put into correspondence and are represented as binary indicator
functions. The values of HKS and WKS are segmented according to the computed
regions. That is, every vector component of HKS and WKS, in Equation 2.18 and 2.23
respectively, is multiplied by every region indicator function. As a result, the HKS and
WKS contained in region i on the shape M are in functional correspondence with the
HKS and WKS contained in region i on the shape N. If there are x detected regions and
y components in HKS and WKS each, then the total number of functional constraints
used is x + 2(xy). Figure 3.4 shows a consistent segmentation between a pair of cat (a)
and human shapes (b).

3.2.2. Weighted `2-Regularisation Term

ρ(C) = ‖W� C‖2
F (3.3)

Probably the most common norm regularisation is the `2-norm, which given a vector x is

defined as ‖x‖ =
√

∑i x2
i . When applied to a matrix, the `2-norm is the Frobenius norm.

The `2-norm puts greater weight on the large entries of the matrix and is therefore more
interested in decreasing or shrinking them than the small entries in the minimisation
process. As a result, the `2-regularised solution tends to have relatively fewer large
entries because they incur a much larger penalty.

3.2.3. Weighted `1-Regularisation Term

ρ(C) = ‖W� C‖1 (3.4)
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(a) `1-regularisation (b) `2-regularisation

Figure 3.5.: The difference in behaviour of `1-regularisation and `2-regularisation when
searching for the least costly path to the line H0 in 2D space. In the case of
`1-penalty, the best way is simply to step along the x1 axis, and make zero
steps along the x2 axis. Using the `2-penalty, the path of the minimum cost
uses both x1 and x2 directions.

The `1-norm of a vector x measures the sum of the absolute values of its entries,
‖x‖1 = ∑i |xi|. The main motivation for using the `1-regularisation in the optimisation
problems is that it induces sparsity, i.e. the produced solution has relatively few non-zero
entries. By contrast, the `2-regularisation does not provide enough incentives to make
the entries equal to zero, but rather shrinks them towards it in order to minimise the
`2-norm. The explanation why the `1-regularisation induces sparsity can be explained
by looking at the geometrical difference of the level set of the `1- and `2-norm. A level
set is the set of points equidistant to the origin. Figure 3.5 shows that the level set of the
`1-norm is diamond shaped (a), whereas the level set of the `2-norm is a circle (b). The
minimum `1 penalty of walking to the line H0 is achieved if the direction of x1 axis is
followed. No steps are made in the direction of the x2 axis, so that component is set to
zero. On the other hand, if the `2-penalty is applied, it is not necessary to strictly keep
to the directions of the axes to minimise the cost.

3.2.4. Nuclear Norm Regularisation Term

ρ(C) = ‖C‖∗ (3.5)

The nuclear (or trace) norm ‖X‖∗ of the matrix X with rank r is the `1-norm of the
singular values of X, ‖X‖∗ = tr(

√
XTX) = ∑r

i=1 σi. The nuclear norm encourages sparsity
in the vector of singular values, which has the effect of making the matrix be low rank.
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3.2. Problem Definition of 2D-to-3D Shape Matching

(a) Two shapes matched. (b) Permutation matrix. (c) Matrix C.

Figure 3.6.: An example of partial shape matching and a low rank C it induces.
.

When looking at matching a 2D shape to one side of a 3D shape, the slanted diagonal
structure is present in the matrix C (Figure 3.3b), which means that C should be low
rank. In fact, low rank is a consequence of partiality. Figure 3.6a shows an example of
partial matching between two small shapes. Some points on the right shape do not have
a correspondence on the shape shown on the left. For this reason, a permutation matrix
representing the shape correspondence in the standard basis has some empty rows
(Figure 3.6b). When moving to the functional map representation, an orthogonal change
of basis is performed from the standard to the eigenbasis, and this action preserves the
zero rows of the permutation matrix resulting in a low rank C (Figure 3.6c).

In the case when the characteristic structure of C is on the main diagonal, a low rank
solution can also be advantageous as it disregards the tail of the diagonal which is
sometimes overly spread out to be able to hold quality information.

3.2.5. Weight Matrix

Figure 3.7.: Computation of weight matrix C. The diagonal structure (middle) is recov-
ered from the correspondence matrix (left). A straight line is fitted through
the recovered structure to locate where the zero elements of C should be
(right).

The weight matrix W is computed based on the C that is obtained using the original
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Data: Φ, y, s
Result: s-sparse approximation a of x

1 r = y
2 x0 = 0
3 repeat
4 u = ΦTr
5 Ω = supp(u2s)

6 T = Ω ∪ supp(ak−1)

7 b = arg minb
∥∥ΦTΦb−ΦTy

∥∥2
2 , supp(b) ⊆ T

8 ak = bs

9 r = y−Φak

10 until a stopping criterion is met;
Algorithm 1: CoSaMP algorithm

functional maps approach. Matrix C can be seen as a compressible signal which can be
approximated by an s-sparse one. C is compressible as it has a few large coefficients
and many small ones. To recover the signal, the CoSaMP [TN08] algorithm is used.

CoSaMP is a greedy iterative method for reconstructing an s-signal from compressive
samples y = Φx, where x is a target signal, and Φ is a sampling matrix. In every
iteration, the following steps are performed (Algorithm 1): first, a proxy of the residual
is formed (line 4) and 2s largest entries are identified (line 5); these entries are united
with the non-zero entries that appear in the current signal approximation (line 6); then,
a least-squares problem is solved to approximate the target signal on the merged set of
entries (line 7) and only s largest ones are retained to form a new approximation (line
8); finally, the residual is updated (line 9).

Figure 3.7 depicts the computation of W. In the middle is the recovered s-sparse
matrix, where s = 0.8k in this case. The input matrix C is shown on the left. The
underlying diagonal structure of C can be seen easily on the recovered matrix. In this
example, the number of eigenfunctions used to form the basis is k = 20, therefore the
recovered structure has s = 0.8k = 16 non-zero entries. A straight line is fitted through
these entries to determine the location of the diagonal and subsequently where zero
elements in the weight matrix W are. The values of W elements increase by the power
of 1.2 the farther away they are from the established diagonal.

A different approach to computing weight matrix is taken by Rodolà et al. [Rod+15].
They estimate the rank of C by comparing the Neumann spectra of the two shapes
being matched. The two spectra align only partially, and the rank of C is the index of
the largest eigenvalue computed on shape N smaller or equal to the largest eigenvalue
computed on shape M. Knowing the rank allows for estimating where the non-zero
values that promote the diagonal structure should be in W.

28



3.3. Numerical Optimisation

3.3. Numerical Optimisation

The `2-regularised optimisation is convex and differentiable, and can be minimised
by standard gradient methods. On the other hand, `1- and nuclear norm regularised
optimisation problems are convex but not differentiable. Here they are optimised using
a proximal algorithm. Note that all three of the proposed optimisation problems are
convex and solving them produces globally optimal solutions. The optimisations are
initialised by C0 computed using the method in the original functional maps paper
[Ovs+12].

3.4. `2-Regularised Optimisation

The optimisation problem

min
C

h`2(C) = min
C
‖CA− B‖2

F + γ ‖W� C‖2
F (3.6)

is convex and differentiable and this work uses the conjugate gradient method [She94]
as it is implemented in the Matlab toolbox manopt [Bou+14] to solve it.

3.4.1. Conjugate Gradient Method

Conjugate gradient is a method for solving quadratic functions f : Rn → R,

f (x) =
1
2

xTAx + xTb + c, (3.7)

where x ∈ Rn is an unknown vector, b, c ∈ Rn are known vectors, and A ∈ Rn×n is a
known symmetric, positive-definite matrix. The gradient of f is

g(x) = ∇ f (x) = Ax + b. (3.8)

The conjugate gradient (CG) method solves the quadratic functions in an iterative
way by generating a sequence xk, k > 0, given an initial guess x0,

xk+1 = xk + αkdk. (3.9)

Here the step size αk is obtained by a line search, and dk are the search directions defined
as

dk+1 = −g(xk+1) + βkdk, d0 = −g(x0) (3.10)

where βk is the update parameter. The key feature of CG method is that all search
directions are A-orthogonal to one another. Two vectors di and dj are A-orthogonal, or
conjugate, if

(di)TAdj = 0. (3.11)

The A-orthogonal search directions ensure that the minimisation of f (xk) along one
direction does not undo the minimisation along another. In other words, when moving
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(a) (b)

Figure 3.8.: Conjugate search directions in R2. Starting from the initial point x0, two
steps are needed to reach the optimal point x. Picture is taken from [She94].

the length of αk in the direction dk to reach the minimum point xk, and then moving the
length of αk+1 in the direction dk+1, the obtained point xk+1 is still at the minimum in
the direction dk. Subsequently, after n steps, f (xn) will be minimised over all searched
directions, which means that the CG method converges in n iterations.

Figure 3.8 shows the behaviour of the conjugate search directions in R2 space. Starting
from the point x0 (3.8a), the first step in the direction d0 is just the right length to line
up evenly with the optimal solution x, i.e. e1 = x1 − x is A-orthogonal to d0. The initial
error e0 can be expressed as a sum of A-orthonormal components (grey arrows) (3.8b).
Each step in the conjugate search direction eliminates one of these components.

Different CG methods correspond to different ways of calculating the scalar βk. Here
the Hestenes-Stiefel formula [HZ06] is used

βk =
g(xk+1)T(g(xk+1)− g(xk))

(dk)T(g(xk+1)− g(xk))
. (3.12)

The ideal step size α is the global minimiser of the function f (xk + αdk). However,
it is too computationally expensive to identify this precise value. In practice, a line
search algorithm is used. It is able to find a value α that adequately reduces f at a
minimal cost. The backtracking line search is the default choice in the manopt toolbox.
The algorithm sets a relatively large initial estimate α̃ for the step size, and iteratively
shrinks or "backtracks" the step size until the sufficient decrease condition is met [NW06,
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Chapter 3]:

Choose α̃, ρ, c ∈ (0, 1); set α← α̃;

repeat until f (xk + αdk) ≤ f (xk) + cα∇ f (xk)Tdk

α← ρα;

end

Terminate with αk = α.

(3.13)

3.4.2. Optimisation of Proposed Function

In order to make it easier to see how the objective function in Equation 3.6 fits the
quadratic form in Equation 3.7, the matrix C, B and W are reshaped into vectors c, b
and w, respectively, by stacking their columns one below the other. As for the matrix A,
its every column is repeated k times in a block diagonal fashion, and then these blocks
are put one next to the other into one big kk× qk matrix Ã.

It is now possible to express the objective function in terms of the reshaped matrices
Ã and W̃ = diag(w1, ..., wkk), and vectors c and b in the following manner:

∥∥Ãc− b
∥∥2

+
∥∥W̃c

∥∥2
= (Ãc− b)T(Ãc− b) + cTW̃TW̃c

= cTÃTÃc− cTÃTb− bTÃc + bTb + cTW̃TW̃c.
(3.14)

By introducing the notation D = ATA + W̃TW̃ and y = ÃTb, the Equation 3.14 can be
written in a nice quadratic form as:

cTDc− 2cTy + bTb (3.15)

which conforms to the type of optimisation problem the CG method can solve.
The CG method requires the computation of the gradient of the objective function.

Using the fact that the squared Frobenius norm of a matrix X can be expressed as
‖X‖2

F = tr(XXT), where tr denotes the trace of a square matrix and is defined as the sum
of the elements on the main diagonal, the objective function can be written as:

h(C) = tr((CA− B)(CA− B)T) + γtr((W� C)(W� C)T)

= tr((CA− B)(ATCT − BT)) + γtr((W� C)(W� CT))

= tr(CAATCT)− tr(CABT)− tr(BATCT) + tr(BBT))

+ γtr((W� C)(W� CT))

(3.16)

This form is more suitable for deriving the gradient because the following trace derivative
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identities are known:

∂

∂X
tr(AX) = A (3.17)

∂

∂X
tr(AXB) = ATBT (3.18)

∂

∂X
tr(AXTB) = BA (3.19)

∂

∂X
tr(XABXT) = (ABXT)T + XAB. (3.20)

Applying these identities, the gradient of the objective function h`2 with respect to C is
expressed as:

∇h`2(C) =
∂

∂C
h`2(C) = 2CAAT − 2BAT + γ2W2C (3.21)

3.5. `1- and Nuclear Norm Regularised Optimisation

The optimisation problems

min
C

h`1(C) = min
C
‖CA− B‖2

F + γ ‖W� C‖1 (3.22)

and
min

C
h`∗(C) = min

C
‖CA− B‖2

F + γ ‖C‖∗ (3.23)

are convex, and while the data term is differentiable, this is not the case for the `1 and
nuclear norm terms. Generally speaking, these types of optimisation problems have the
following form:

min
x

f (x) + g(x) : x ∈ Rn, (3.24)

where f : Rn → R and g : Rn → R are both convex functions and only f is required to
be smooth. More precisely, f is differentiable with Lipschitz continuous gradient:

‖∇ f (x)−∇ f (y)‖ ≤ L ‖x− y‖ ∀x, y,

where ‖·‖ is the `2-norm and L > 0 is the Lipschitz constant.
A proximal algorithm called fast gradient method [Nes07] is used to solve the minimi-

sation problem of the form presented in 3.24. Proximal algorithms received that name
based on their use of the proximal operator to obtain the solution.

3.5.1. Proximal Operator

The operator proxλ f : Rn → Rn of a function f is defined as

proxλ f (v) = arg min
x

( f (x) +
1

2λ
‖x− v‖2

2). (3.25)
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3.5. `1- and Nuclear Norm Regularised Optimisation

Figure 3.9.: The result of applying the proximal operator at various points in R2 space.
Picture is taken from [PB14].

The resulting minimiser of proxλ f (v) is a point that compromises between minimising f
and being close to v. The parameter λ controls the relative weight between these terms.
The λ can also be seen as a step size. The larger the value of λ, the smaller the emphasis
on the squared norm term, hence the bigger the movement of the point toward the
minimum of f .

The visual interpretation of what the proximal operator does in R2 is given in Figure
3.9. The thick black line is the convex function f and the thin black lines are its contour
curves. The proximal operator is evaluated at the blue points which results in them
being moved towards the minimum of the function to their corresponding red points.
The three points that are in the domain of f stay in the domain, while the other two
move to the boundary of the domain.

3.5.2. Proximal Gradient Method

The proximal gradient method solves the convex optimisation problem in Equation 3.24
iteratively, starting from an initial guess x0:

xk+1 = proxλk g(x
k − λk∇ f (xk)), (3.26)

where λk > 0 is a step size. It can be shown that the method converges to a solution at a
rate of O(1/k) if λk is fixed to a value from the (0, 1/L] interval, where L is a Lipschitz
constant of ∇ f . The solution xk+1 is a trade-off between minimising g and following the
standard gradient step xk − λ∇ f (xk).

The fast gradient method (FGM) is based on the previously defined proximal gradient
method. The FGM uses an extrapolated point yk+1 to compute the solution of every

33



3. Proposed Approach

iteration:

ωk+1 =
1 +

√
1 + 4(ωk)2

2

yk+1 = xk +
ωk − 1
ωk+1 (xk − xk−1)

xk+1 = proxλk g(y
k+1 − λk∇ f (yk+1)),

(3.27)

where ω0 = 1 and y0 = x0.

3.5.3. Optimisation of Proposed Functions

The concrete optimisation problems in Equation 3.22 and 3.23 can be split into the f and
g parts:

f (C) = ‖CA− B‖2
F , g(C) = γ ‖W� C‖1 (3.28)

and
f (C) = ‖CA− B‖2

F , g(C) = γ ‖C‖∗ (3.29)

respectively. The gradient of the both functions is the same:

∇ f (C) = 2CAAT − 2BAT, (3.30)

and its derivation is similar to the one presented in Section 3.4.2. The proximal operator
of the `1-term is defined as:

proxγg(W� C) = Sγ(W� C). (3.31)

It is evaluated via the soft-thresholding operator Sγ [PB14]:

(proxγg(W� C))i = Sγ(wici) =


ci − γλwi ci > γλwi

ci + γλwi ci < −γλwi

0 −γλwi ≤ ci ≤ γλwi.

(3.32)

As before, λ is the step size, and γ the relative weight between f and g parts of the
objective function. The Sγ is applied individually to each element of the W� C matrix.
Equation 3.32 can be written more compactly as:

proxγg(W� C) = max(|C| − γλW, 0)� sign(C) (3.33)

where the absolute value and the sign function are applied element-wise.
As for the proximal operator of the nuclear norm, it is defined as:

proxγg(C) =
k

∑
i=1

max(σi − γλ, 0)uivT
i , (3.34)

where C = ∑k
i=1 σiuivT

i is the singular value decomposition of C. This operation is called
singular value thresholding since the singular values are being shrank towards zero by
a constant amount [PB14].

As previously stated, the step size λ is bounded by the Lipschitz constant of ∇ f ,
which in this case depends on the maximum eigenvalue of ATA.
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4. Experimental Results

4.1. Experiment Set-up

The 3D shapes used in the experiments are taken from TOSCA data set [BBK08]. The
set contains triangular meshes (10K-50K vertices) of animals and humans in different
poses. The 2D shapes are mostly obtained by taking pictures of the TOSCA shapes and
then using the Delaunay triangulation to create the meshes (<1K vertices). The ground
truth correspondence between pairs of 2D and 3D shapes is a set of one hundred point
correspondences selected manually.

All the experiments were run using k = 20 eigenfunctions. The regularisation
parameter γ in `1, `2, and nuclear norm regularised optimisation was set to 1, 10, and
20 respectively. The stopping criteria in the optimisation was the number of iterations,
which was 200. The number of regions detected on shapes was 6-7, while the vectors
of HKS and WKS had 100 components. Time parameter t in HKS was sampled from
[1, 20000] interval and the variance in WKS was 6. The point-to-point correspondences
are obtained using the point indicators conversion method described in Subsection
2.2.1. No post-processing iterative refinement was used to compute the correspondences
unless otherwise stated.

4.2. Evaluation Method

To measure the quality of the computed point correspondences, the evaluation method
of [KLF11] is used. For every point p on 2D shape M that is in the ground truth
correspondence set, the geodesic distance between its computed image and its true
correspondence on 3D shape N is measured:

Err( f , ftrue) = ∑
p∈M

dN( f (p), ftrue(p)). (4.1)

The error is normalised by
√

Area(N) or by
√

Area(N)/2 depending on whether the
2D shape is being matched to the whole 3D shape or to one of its sides. The accuracy
measure plots that follow in the next section show what percentage of correspondences
has geodesic distance error less than some threshold value D, i.e. dN( f (p), ftrue(p)) < D.

4.3. Results

The results of matching one side of the 3D shape and the whole 3D shape are presented
separately. An example of a point-wise correspondence, one for each matching case, is
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4. Experimental Results

Figure 4.1.: Example of the obtained point-to-point correspondence.

shown in Figure 4.1. Points on the extremities tend to be matched with higher accuracy.
WKS and HKS descriptors are not able to precisely localise the features on the torso.
Also, when matching to the whole shape, some points are matched to the front and
some to the back side of the body. More examples can be found in the appendix.

The performance of using different combinations of shape descriptors as functional
constraints in all three proposed regularisations is shown in Figure 4.2. As expected,
using only region indicator functions produces the least accurate point correspondences.
When combining the regions with WKS and HKS, there is no clear advantage of using
one over the other or both of them together. The only noticeable difference in the
correspondence accuracy is displayed by the nuclear norm regularisation (Figure 4.2c)
where it is better to use WKS.

When comparing the three proposed regularisations against each other, the `1 and
`2 one achieve better results in the case when one side of the 3D shape is matched
(Figure 4.3a). On the other hand, the nuclear norm regularisation is able to reach higher
percentage of correct correspondences at a lower error measure than the other two
methods when the whole 3D shape is being matched (Figure 4.3b).

How the correspondence matrix C looks when computed using the proposed method
can be seen in Figure 4.4. The `1 and `2-regularisations output very similar looking
matrices (left and middle columns). The application of the weight matrix W has the
desired effect of inducing the diagonal structure, regardless of the norm used. When
this observation is supported by the result of the previously discussed Figure 4.3, it
seems that it does not matter whether `1 or `2 norm is chosen as the regularisation term.
The right column of Figure 4.4 shows the low rank matrix produced by the nuclear
norm regularisation. The entries corresponding to the higher frequency eigenfunctions
are discarded.

As mentioned before, the point-to-point conversion is done by transferring point
indicator functions from one shape to the other. The more efficient conversion method
of looking for the nearest neighbour of every CΦT column in ΨT produces mixed results.
It performs very similar to the point indicators method when matching to the whole 3D
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4.3. Results

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.2.: Comparison of different regularisation terms and shape descriptors used.
The plots (a-c) show the results of matching 2D shapes to one side of the 3D
shape, while plots (d-f) show matching to the whole shape.
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4. Experimental Results

(a) One side of the 3D shape is matched. (b) The whole 3D shape is matched.

Figure 4.3.: The three proposed regularisation terms plotted against each other for
comparison. The functional constraints used are region indicator functions
and WKS.

(a)

(b)

Figure 4.4.: The look of a typical correspondence matrix C computed when one
side of the 3D shape (a) and the whole shape (b) is being matched.
Left is `1, middle is `2, and right is using nuclear norm regularisation
term.
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4.3. Results

shape (Figure 4.5b, see red full and blue dashed line). The situation is very different
when one side of the 3D shape is matched. The point indicators method achieves
significantly better accuracy, even when iterative refinement is used, which improves the
result in both matching cases. The 2D meshes used in the experiments have less than a
thousand vertices, so the conversion does not take more than a couple of seconds to be
executed.

(a) One side of the 3D shape is matched. (b) The whole 3D shape is matched.

Figure 4.5.: The effect the two methods for point-to-point conversion (Section 2.2.1)
have on the accuracy. The dashed blue line represents the point-to-point
correspondence obtained using point indicator functions. The full lines
represent the more efficient method with 0-10 iterations of post-processing
refinement.
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5. Application

5.1. Deformation Transfer

Transferring deformations from one shape to another can accelerate mesh animation.
A correspondence between two shapes has to be established before the deformation
transfer can be performed. The shape matching approach in this work produces the
required correspondence as illustrated by Figure 5.1. How a 2D shape can be deformed
and how the obtained deformation can be transferred onto a 3D shape is explained
below.

Figure 5.1.: Dense point correspondence obtained by the proposed shape matching
approach.

5.1.1. 2D Shape Deformation

Bounded Biharmonic Weights (BBW) [Jac+11] approach is used to deform the 2D shapes.
BBW is a linear blending scheme that produces smooth and intuitive deformations for
the combination of handle types (points, skeleton bones, cages) in real-time. The user
specifies an affine transformation Tj for each handle Hj ⊂ Ω, j = 1, ..., m, and all points
p ∈ Ω are deformed by their weighted combinations:

p′ =
m

∑
j=1

wj(p)Tjp (5.1)

where Ω is the domain obtained by the union of the shape and cage controls (if any),
and wj : Ω→ R is a weight function associated with handle Hj.
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5. Application

The weights are computed by minimising the Laplacian energy subject to the certain
constraints that specify desirable properties of weights such as smoothness and non-
negativity:

min
wj,j=1,...,m

m

∑
j=1

1
2

∫
Ω

∥∥∆wj
∥∥2 dV

subject to: wj|Hk = δjk

wj|F is linear ∀F ∈ FC
m

∑
j=1

wj(p) = 1 ∀p ∈ Ω

0 ≤ wj(p) ≤ 1, j = 1, ..., m ∀p ∈ Ω

(5.2)

where FC is the set of all cage faces and δjk is a delta function.

5.1.2. 2D-to-3D Deformation Transfer

Deformation transfer for triangular meshes proposed by Sumner and Popović [SP04]
copies the deformations of the triangles of the source mesh onto those of the target. The
approach is general and does not require that the number of vertices and faces of the
two meshes be the same.

A correspondence map M between the triangles of the source and target mesh

M = {(s1, t1), (s2, t2), ..., (s|M|, t|M|)} (5.3)

is built from a small set of point correspondences. M is in general many-to-many
mapping and it specifies that a triangle ti on the target mesh should deform like a
triangle si on the source mesh. The set of triangle transformations S1, ..., S|S| induced by
the deformation of the source mesh is mapped through the correspondence M to the
target mesh. However, the transform Si cannot be applied directly to the corresponding
target triangle since Si encodes only the change in orientation and size, and not the
relative position of the triangle to its neighbours. Therefore, a constraint has to be put in
place which requires that shared vertices are transferred to the same place. That is, for
the set of target affine transformations T1 + d1...T|T| + d|T| the requirement is:

Tjvi + dj = Tkvi + dk, ∀i, ∀j, k ∈ p(vi) (5.4)

where p(vi) is the set of all triangles that share vertex vi. The deformation transfer then
solves the following constrained optimisation problem to consistently apply the source
transformations to the target shape:

min
T1+d1...T|T|+d|T|

|M|

∑
j=1

∥∥∥Ssj − Ttj

∥∥∥2

F

subject to: Tjvi + dj = Tkvi + dk, ∀i, ∀j, k ∈ p(vi)

(5.5)
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5.1. Deformation Transfer

The results in the paper show deformation transfer only on 3D meshes. However, the
approach can be applied to transferring deformations from 2D to 3D meshes as well.
Figure 5.2 shows one such transfer. In this example, a set of 20 point correspondences
obtained by the shape matching algorithm proposed in this work is used to establish the
map M between the two reference cats. Four different deformations of the 2D reference
cat are transferred onto the 3D one, generating four new poses which are shown in the
bottom row labelled as "Output". The deformations are transferred to one side of the 3D
cat first. Then, the side is copied and reflected through the bilateral symmetry plane to
make up the full shape.

Figure 5.2.: Deformations of the 2D reference mesh are transferred to the 3D one, creating
new 3D poses.
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6. Conclusion

This work introduced a method for 2D-to-3D dense matching of non-rigid shapes. The
method is based on the functional maps framework modified to address the 2D-to-3D
case. Namely, a functional correspondence matrix is regularised in the optimisation
process in order to promote its characteristic structure, which in turn makes the method
be more robust to noise introduced by the spectral descriptors and eigenfunctions
computed on the shapes. The proposed optimisation of correspondence matrix is convex
allowing for computation of globally optimal solutions. The method is shown to be able
to produce quality dense correspondence. In addition, the produced results can be used
successfully in the application of deformation transfer.

The method is limited to matching side and front views of the shape as there is no
procedure used to automatically determine which part of the 3D shape is being matched.
Secondly, the accuracy of the computed shape matchings depends on the localisation
abilities of shape descriptors. However, WKS and HKS descriptors do not have high
localisation accuracy on more featureless parts of the shapes like human torso. The
use of non-spectral shape descriptors could improve the quality of matching. Finally,
post-processing iterative refinement improves the results of the optimisation process
when partiality is not present. Using a similar iterative refinement for partial matching
could further improve the results.
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A. Additional Shape Matching Results

(a) (b)

(c) (d)

Figure A.1.: Dense point correspondence between pair of shapes (2D on the left, 3D on
the right).

(a) (b) (c) (d)

Figure A.2.: Dense point correspondence under partiality between non-isometric shapes.
The three 2D shapes (b-d) are matched to the 3D cat shape (a).
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A. Additional Shape Matching Results

(a) (b) (c) (d)

Figure A.3.: Dense point correspondence between non-isometric shapes. The three 2D
shapes (b-d) are matched to the 3D human shape (a). The 2D front views of
(c,d) are a picture of the kid shapes taken from [Rod+14].
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Weights for Real-Time Deformation.” In: ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH) 30.4 (2011), 78:1–78:8.

[KLF11] V. G. Kim, Y. Lipman, and T. Funkhouser. “Blended Intrinsic Maps.” In:
ACM SIGGRAPH 2011 Papers. SIGGRAPH ’11. Vancouver, British Columbia,
Canada: ACM, 2011, 79:1–79:12.

[Kov+12] A. Kovnatsky, M. M. Bronstein, A. M. Bronstein, K. Glashoff, and R. Kimmel.
“Coupled quasi-harmonic bases.” In: CoRR abs/1210.0026 (2012).

[Kov+15] A. Kovnatsky, M. M. Bronstein, X. Bresson, and P. Vandergheynst. “Func-
tional Correspondence by Matrix Completion.” In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2015.

51



Bibliography

[KSP09] V. Kraevoy, A. Sheffer, and M. van de Panne. “Modeling from Contour
Drawings.” In: Proceedings of the 6th Eurographics Symposium on Sketch-Based
Interfaces and Modeling. SBIM ’09. New Orleans, Louisiana: ACM, 2009,
pp. 37–44.

[LA11] M. Li and G. Ashraf. “Transactions on Edutainment V.” In: ed. by Z. Pan,
A. D. Cheok, W. Müller, and X. Yang. Berlin, Heidelberg: Springer-Verlag,
2011. Chap. Sketch Based 3D Character Deformation, pp. 177–188.

[Li+14] B. Li, Y. Lu, A. Godil, T. Schreck, B. Bustos, A. Ferreira, T. Furuya, M. J. Fon-
seca, H. Johan, T. Matsuda, R. Ohbuchi, P. B. Pascoal, and J. M. Saavedra. “A
comparison of methods for sketch-based 3D shape retrieval.” In: Computer
Vision and Image Understanding 119 (2014), pp. 57–80.

[Mey+02] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. “Discrete Differential-
Geometry Operators for Triangulated 2-Manifolds.” In: Proc. VisMath. 2002,
pp. 35–57.

[MS67] H. P. McKean Jr. and I. M. Singer. “Curvature and the eigenvalues of the
Laplacian.” In: J. Differential Geom. 1.1-2 (1967), pp. 43–69.

[Nes07] Y. Nesterov. Gradient methods for minimizing composite objective function. CORE
Discussion Papers 2007076. Université catholique de Louvain, Center for
Operations Research and Econometrics (CORE), 2007.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization, second edition. World
Scientific, 2006.

[Ovs+10] M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. J. Guibas. “One Point Isomet-
ric Matching with the Heat Kernel.” In: Comput. Graph. Forum 29.5 (July
2010), pp. 1555–1564.

[Ovs+12] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas.
“Functional Maps: A Flexible Representation of Maps Between Shapes.” In:
ACM Trans. Graph. 31.4 (July 2012), 30:1–30:11.

[Ovs+13] M. Ovsjanikov, Q. Mérigot, V. Patraucean, and L. J. Guibas. “Shape Match-
ing via Quotient Spaces.” In: Comput. Graph. Forum 32.5 (2013), pp. 1–11.

[PB14] N. Parikh and S. Boyd. “Proximal Algorithms.” In: Found. Trends Optim. 1.3
(Jan. 2014), pp. 127–239.

[Pok+12] J. Pokrass, A. M. Bronstein, M. M. Bronstein, P. Sprechmann, and G. Sapiro.
“Sparse Modeling of Intrinsic Correspondences.” In: CoRR abs/1209.6560
(2012).

[RBC14] E. Rodolà, S. R. Bulò, and D. Cremers. “Robust Region Detection via
Consensus Segmentation of Deformable Shapes.” In: Comput. Graph. Forum
33.5 (2014), pp. 97–106.

[RCG08] G. Rong, Y. Cao, and X. Guo. “Spectral mesh deformation.” English. In: The
Visual Computer 24.7-9 (2008), pp. 787–796.

52



Bibliography

[Reu+09a] M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, and M. Spagnuolo. “Discrete
Laplace-Beltrami operators for shape analysis and segmentation.” In: Com-
puters & Graphics 33.3 (2009), pp. 381–390.

[Reu+09b] M. Reuter, F.-E. Wolter, M. Shenton, and M. Niethammer. “Laplace-Beltrami
Eigenvalues and Topological Features of Eigenfunctions for Statistical Shape
Analysis.” In: Comput. Aided Des. 41.10 (Oct. 2009), pp. 739–755.

[Rod+14] E. Rodolà, S. R. Bulò, T. Windheuser, M. Vestner, and D. Cremers. “Dense
Non-rigid Shape Correspondence Using Random Forests.” In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus,
OH, USA, June 23-28, 2014. 2014, pp. 4177–4184.

[Rod+15] E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and D. Cremers. “Partial
Functional Correspondence.” In: Comput. Graph. Forum 34.5 (2015).

[Rus+13] R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal,
and L. Guibas. “Map-based Exploration of Intrinsic Shape Differences and
Variability.” In: ACM Trans. Graph. 32.4 (July 2013), 72:1–72:12.

[Rus07] R. M. Rustamov. “Laplace-Beltrami Eigenfunctions for Deformation Invari-
ant Shape Representation.” In: Proceedings of the Fifth Eurographics Symposium
on Geometry Processing. SGP ’07. Barcelona, Spain: Eurographics Association,
2007, pp. 225–233.

[She94] J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. Tech. rep. Pittsburgh, PA, USA, 1994.

[SOG09] J. Sun, M. Ovsjanikov, and L. Guibas. “A Concise and Provably Informa-
tive Multi-scale Signature Based on Heat Diffusion.” In: Proceedings of the
Symposium on Geometry Processing. SGP ’09. Berlin, Germany: Eurographics
Association, 2009, pp. 1383–1392.
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