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Abstract

Measuring the distances between pairs of points on a three-dimensional surface is a
classical problem in shape analysis. In this thesis, we compare the most common intrinsic
metrics, namely the geodesic, the diffusion, the commute-time and the biharmonic dis-
tance. In order to do so, the concept of metric spaces is introduced and applyed to the
space of three-dimensional surfaces. After presenting the basic concepts of differential ge-
ometry on regular surfaces, we define the different metrics first in the continuous setting
and then show ways to discretize them to triangular meshes. We further introduce our
experiments to measure the qualitative performance of the intrinsic metrics on different
meshes and give some insight into their implementation. Finally we find, that the bihar-
monic distance satisfies most of the preferable properties of an intrinsic metric, while the
other distances have more specialized strenghts.

Zusammenfassung

Das Messen von Distanzen zwischen Paaren von Punkten auf dreidimensionalen Ober-
flächen ist ein klassisches Problem der Shape Analysis. In dieser Arbeit vergleichen wir die
bekanntesten intrinsischen Metriken: die geodätische, die Diffusions-, die commute-time
and die biharmonische Distanz. Zu Beginn wird das Konzept von Metrischen Räumen
eingeführt und auf den Raum der dreidimensionalen Oberflächen angewendet. Nach-
dem die grundlegenden Konzepte der differentiellen Geometrie auf regulären Oberflächen
präsentiert wurde, definieren wir die verschiedenen Metriken im kontinuierlichen Raum
und diskretisieren sie dann auf Dreiecksnetze. Im Folgenden werden unsere Experimente
zur Messung der qualitativen Performance der Metriken auf verschiedenen Gittern vorge-
stellt und ein Einblick in ihre Implementierung gewährt. Abschließend stellen wir fest, das
die biharmonische Distanz die meisten der erwünschten Eigenschaften von intrinsischen
Metriken erfüllt, während die anderen Distanzen spezialisiertere Stärken haben.
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1. Introduction

Measuring the distances between pairs of points on a three-dimensional surface is one of
the most classical problems in the field of computer graphics and shape analysis. Using
this information, there is a wide field of applications to explore: From the segmentation
of a surface into its basic components, the embedding of a shape into another space, to
simplifying bigger problems to the deformation of a surface while retaining its properties
through to the task to classify three-dimensional shapes into different categories, possibly
finding duplicate surfaces in different positions. Especially on the shape matching, there
is a lot of work done up to today, some of it completely unrelated to distances but most of
them are an instance of the minimum distortion correspondence problem. In other words,
the problem searches for a correspondence between two surfaces which distorts their in-
trinsic properties (i.e. the distance between points) the least. In order to come up with a
solution, the generally continuous three-dimensional shape is often given as a bounding
surface which has to be discretized to a triangulated mesh so that we are able to run com-
putations on it. To do the actual computations there are many different approaches, some
examples are described in [20, 3, 16, 21]. To provide some insight to this topic, we give
a short introduction to the basics of metric spaces and how to compute the distortion of
metrics between two shapes.

The main purpose of this paper is to compare the four most prevalent distance functions
on three-dimensional shapes. The first one is the geodesic distance [25, 12], which mea-
sures the distance over the surface of the shape. Its contenders are the diffusion distance
[24], the commute-time distance [10, 14] and the biharmonic distance [14] which are all
based on the eigenfunctions of the Laplace-Beltrami operator on the respective surface. In
practical applications, there are often similar shapes which have undergone rigid or iso-
metric transformations, which means that the metric functions have to be at least invariant
to those changes. Further desirable properties of the considered functions are to be:

1. locally isotropic: close to the source vertex, the metric should behave similar to the
geodesic, increasing equally into all directions.

2. globally shape aware: reflect the overall shape of the surface when y is far from x.

3. insensitive to noise and topology: the distance does not change significantly if noise
or topological changes are added to the mesh.

4. parameter-free: the distance function does not depend on parameter to be set specif-
ically for a given surface.

5. practical to compute: computation times of all distances between all points on com-
mon meshes should take at most a few minutes.

6. smooth: smooth with respect to perturbations of x and y; having no singularities
except derivative discontinuity at the source point.
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1. Introduction

After introducing the different metrics, we present the testing pipeline and the specific
information used. The objective of this paper is to show the properties and the effective-
ness of the metrics on examples and possibly give a overview to their qualities, since often
the functions are not rigorously explained in that aspect.

4



2. Shapes as Metric Spaces

The main question this chapter will be answering is, whether or not there exists such a
thing as a “space of shapes” and if so, how to mathematically discern shapes from each
other. To achieve this, we need the notion of a distance on a shape, in other words, we
have to define a metric.

2.1. Metrics

We start by defining the most important point of this section, the metric space.

Definition 1 (metric space). A set M is called a metric space, if for each pair of points x, y ∈M
there is a distance/metric function dM : M ×M → R+ ∪ {0,∞} such that:

• dM (x, y) = 0⇔ x = y (identity of indiscernibles)

• dM (x, y) = dM (y, x) (symmetry)

• dM (x, y) ≤ dM (x, z) + dM (z, y) ∀x, y, z ∈M (triangle inequality)

In other words, if we can find a distance function which fulfills the given properties,
every set can be a metric space. The ones most important to this thesis are the metric
spaces defined on all three-dimensional shapes. But what are the interesting properties of
such a metric space? For one, there then exists a way to measure how “close” one shape
is to another by watching its individual points and comparing the behavior of the metric
function over the shapes. One interesting term in this context is the isometry:

Definition 2. A surjective, distance-preserving map f is called an isometry, where f being distance
preserving means that for f : X → Y the equation dX(x, y) = dY (f(x), f(y))∀x, y ∈ X holds.
Two metric spaces (X, dX) and (Y, dY ) are isometric, if there exists such an isometry f : X → Y .

Thus, if a shape undergoes a isometric transformation, the distance is retained. The more
intuitive way of describing isometries is, that there are two instances of the same shape
and one is changed a little, like for example by being deformed or scaled. There is also the
notion of near-isometries for almost isometric shapes, like a human in two different poses
(which are not isometric, since some bending and stretching of the surface occurs).

Another thing we are assuming from here on is that our metric spaces are compact.
A metric space being compact implies that it is closed or complete and totally bounded,
which is a reasonable call, since the surfaces we are interested in can mostly be approxi-
mated by 3D-meshes.

Definition 3 (sequentially compact). A subset X ⊂ Y of a metric space Y is sequentially
compact if every sequence in X has a convergent subsequence whose limit belongs to X . Explicitly
this means that for each sequence (xn) with xn ∈ X , there exists a subsequence (xnk

) such that for
k →∞ the subsequence(xnk

)→ x converges to a point x ∈ X .

5



2. Shapes as Metric Spaces

Now there are a few interesting properties of metric spaces. If (X, dX) is a metric space
and Y ⊂ X , then a metric function for Y can be obtained by the restriction of dX to the
subset dY = dX |Y . This is a useful property if for example we wish to compare a part
of a surface to the whole, the metric is unchanged on the partial surface. Moreover, X
is called ambient space for Y and even though the restriction of dX is the simplest, it is
not the only way to define a metric on Y . In many cases, there is a more natural intrinsic
metric, which means that it is not dependent on the ambient space. Now, to define the
distance of a point x ∈ X to a subset Y , the smallest distance between x and Y is used:
dX(x, Y ) = infy∈Y dX(x, y).

Example 2.1. Let us consider the metric space (R2, ‖ · ‖) with the euclidean metric and its subset
S ⊂ R2 containing the points of the unit circle. The restriction of ‖·‖ to S would be a possible metric
function, but a more intuitive, intrinsic metric is the minimal arc length between two points. It is
easily to be seen, that the minimal arc length is in fact a metric, since it is symmetric, equal to zero
if the points are equal and there is no shorter way over a third point and so the triangle inequality
is also fulfilled. Additionally the arc length does not depend on the R2 coordinates of the points but
on their position on the unit circle, what makes the minimal arc length an intrinsic metric. The two
proposed metrics are also not isometric, as the distance between two opposing points x, y ∈ S is
different: ‖x, y‖ = 1 while minarclength(x, y) = 2π.

So if we can define some sort of distance function between shapes, we could distinguish
between shapes with small differences (e.g. two humans in different positions) and shapes
with big differences like a human and a car.

2.2. Gromov-Hausdorff distance

The most commonly used metric to differentiate three-dimensional shapes is the Gromov-
Hausdorff distance as defined in [5]. But before we begin working on the Gromov-Hausdorff
distance, we need to find a intuition of what it means for surfaces to be “close” to each
other. Smooth surfaces in R3 can (at least locally) be parametrized by a domain U ⊂ R2 by
an embedding f : U → R3. Two parametrizations of different surfaces with the same pa-
rameter domain then specify a homeomorphism from one surface to the other. Those two
surfaces are said to be “close” if the homeomorphism only slightly changes some proper-
ties, like distances or derivatives, of the surfaces.

To start off, we consider the problem of comparing two shapes in the same metric space.
For that the Hausdorff distance as seen in figure 2.1 is used.

Definition 4 (Hausdorff distance). The Hausdorff distance between two compact subsetsX,Y ⊂
(Z, dZ) is defined by

dZH(X,Y ) = max

®
sup
x∈X

dZ(x, Y ), sup
y∈Y

dZ(y,X)

´
.

dZH(X,Y ) is a semi-metric on the space of compact subsets of a metric space.

Even though it is called distance, the Hausdorff distance is only a semi-metric since
there are cases, where dZH(X,Y ) = 0 ⇔ X = Y does not hold. Take for example the set

6



2.2. Gromov-Hausdorff distance

X = (0, 1) and its closure Y = [0, 1]. The biggest distance should be between either 0 or 1
and X which in both cases is zero although X 6= Y . Also note, that even one stray point
can make the Hausdorff distance arbitrarily large.

Y

d1 d2

X

Z

Figure 2.1.: A visualisation of the two relevant distances of the Hausdorff distance: d1 =
supx∈X dZ(x, Y ) and d2 = supy∈Y dZ(y,X). The Hausdorff distance is defined
as the bigger one, d2 in this case.

But with the Hausdorff distance, we can only find the distance between sets which are
subsets of a common metric space. To be able to define a distance between different metric
spacesX,Y , the basic idea is to use a isometric embedding into another metric space Z and
use the Hausdorff distance there. The Gromov-Hausdorff distance dGH(X,Y ) is defined
as the minimum r for which such an embedding space Z and the isometric embeddings
X ′, Y ′ ⊂ Z exist with dZH(X,Y ) < r.

Definition 5 (Gromov-Hausdorff). The Gromov-Hausdorff distance between two metric spaces
X and Y is defined by

dGH(X,Y ) = inf
Z,f,g

dZH((f(X), g(Y ))

taken over all ambient spaces Z and isometric embeddings f : X → Z, g : Y → Z.

dGH(X,Y ) is a metric on the space of isometry classes of compact metric spaces thus
we can say that there exists a “space of shapes”. Note however, that from a practical
perspective, the possibilities for choosing Z, f and g are far to huge to simply compute the
Gromov-Hausdorff distance directly without further restrictions.

To begin with, we restrict the search space to possible correspondences between X and
Y .

Definition 6 (correspondence). A correspondence between two setsX and Y is a setR ⊂ X×Y
which satisfies

• for all x ∈ X there exists y ∈ Y such that (x, y) ∈ R.

• for all y ∈ Y there exists x ∈ X such that (x, y) ∈ R.

Note that a correspondence does not have map one point to exactly one other, this is just
the case for one-to-one correspondences. A correspondence R is associated to a map f :
X → Y if R = {(x, f(x)) : x ∈ X} contains the image of f . Our next target is to show that

7



2. Shapes as Metric Spaces

the Gromov-Hausdorff distance can be alternatively defined by using correspondences
between two metric spaces. Remember that the Gromov-Hausdorff distance was defined
to measure the difference between two metric spaces. Now we can define the distortion

Figure 2.2.: The figure shows two different given correspondences. For the black corre-
spondences, additionally the shortest path between them is given. Since the
metric distortion measures the change of these distances by the correspon-
dence, we can see that the distance on the left shape is not being preserved,
while the distance on the right set of meshes is preserved almost perfectly.
Therefore the correspondence on the left side results in great metric distortion,
whereas the right correspondence will have a lower distortion, based on the
given distances.

between two given metric spaces by using a correspondence.

Definition 7 (metric distortion). Let (X, dX) and (Y, dY ) be compact metric spaces and R ⊂
(X, dX)× (Y, dY ) be a correspondence. Then the distortion of R is defined as

disR = sup{ |dX(x, x′)− dY (y, y′)| : (x, y), (x′, y′) ∈ R}. (2.1)

How the distortion of a metric shows on meshes can be seen in figure 2.21. By the
definition of isometry, the distortion of R is zero if and only if the map associated with R
is an isometry. This leads to another definition of the Gromov-Hausdorff distance.

Definition 8 (Gromov-Hausdorff distance (alternative)). The Gromov-Hausdorff distance be-
tween two metric spaces X and Y is defined by

dGH(X,Y ) =
1

2
inf

R⊂X×Y
disR. (2.2)

In this formulation, the Gromov-Hausdorff distance is defined as the infimum of r > 0
for which there is a correspondence with disR = 2r. And unlike the first definition, we
now minimize over a finite set of correspondences instead of all possible ambient spaces
and their corresponding embeddings.

1taken from http://vision.in.tum.de/_media/teaching/ss2014/lecture_shape_analysis/
04_-_euclidean_embeddings.pdf
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2.2. Gromov-Hausdorff distance

Another improvement is to use open ball coverings of the metric spaces. This means
that instead of using all points within a metric space, we choose representatives such that
they cover all points on the mesh.

Definition 9 (open ball covering). Let x ∈ (X, dX) be a metric space. An open ball of radius
r > 0 centered at x is defined by

BX(x, r) = {z ∈ X : dX(x, z) < r}.

For a subset A ⊂ X , we define the open ball as

BX(A, r) =
⋃
a∈A

BX(a, r).

A set C ⊂ X is a r-covering of X if BX(C, r) = X .

The interesting point of this is that the r-covering of a shape is close to the original shape
in a Gromov-Hausdorff sense. Let {x1, . . . , xn} ⊂ X be a r-covering of a compact metric
space (X, dX). Then dGH(X, {x1, · · · , xn}) ≤ r holds as stated in [5], which means that
dGH is consistent to sampling. This further leads to us only having to compute dGH for a
dense enough r-covering of our metric spaces X and Y to have a good approximation of
its behavior in the originally continuous spaces. Also, this shows that the approximation
of shapes by triangulated meshes, which more or less are point samples, is well posed in
this context up to a certain error.

Since it is not easy to compute an optimal covering, the farthest point sampling was
devised. It is efficient to compute, once the metric function is available and is at most
worse than an optimal sampling by a factor of two. Its basic idea is to iteratively select
points from the metric space, until the needed number of points is reached. The algorithm
is initialized by either choosing a arbitrary point or by choosing two points which are the
farthest away from each other and declaring them as our initial coveringC0. After that, the
algorithm selects a point x fulfilling the equation argmaxx dX(x,C) in each step, adding it
to the previously selected Ck = Ck−1 ∪ {x}. The result is a progressively denser sampling
of the shape which in general is not unique but “almost” optimal. This can then be used
to create a Voronoi sampling of the shape by assigning all points to their closest sampled
point x ∈ Ck.

Minimizing the Gromov-Hausdorff distance is a common approach followed in shape
analysis. In order to reduce the problems complexity, the equation from (2.2) can be relaxed
to a quadratic assignment problem [15], whose solving or optimizing is still an active area
of research.

9





3. Differential Geometry

3.1. Regular Surfaces and the First Fundamental Form

Since all of the metrics in this thesis are based on the fact that 3D shapes can be modeled as
regular surfaces in R3, this section will give some insight into the basics of the math behind
them. For all practical purposes these regular surfaces are approximated by piecewise
linear triangular meshes, consisting of vertices and edges. To begin with, we narrow down
our choice of meshes to those, which are 2-dimensional manifolds without a boundary, so
that we do not have to worry about boundary conditions. The answer to the question, how
a complex mesh can be represented mathematically, is given by the second chapter of [8]:
The intuitive answer is to take pieces of a plane and to deform and arrange them, such that
they cover the whole surface. The only constraints to ensure the ability to apply differential
geometry are, that the resulting surface is not allowed to have sharp points/edges or self-
intersections. A more rigorous definition is the following:

Definition 10 (regular surface). A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there
exists a neighborhood V ∈ R3 and a map x : U → V ∩ S of an open set U ⊂ R2 onto V ∩ S ⊂ R3

such that:

1. x is differentiable. That means that if we write

x(u, v) = (x(u, v),y(u, v), z(u, v)), (u, v) ∈ U,

the functions x(u, v),y(u, v), z(u, v) have continuous partial derivatives of all orders in U .

2. x is a homeomorphism. Since x is continuous by condition 1, this condition requires that x
has an inverse x−1 : V ∩ S → U which is continuous.

3. For each q ∈ U , the differential dxq : R2 → R3 has full rank.

This definition states, that for every point on the surface there exists a neighborhood
with a map x, which maps from the parameter domain U ⊂ R2 to S (in correspondence
to the plane patch from earlier) and the collection of all those neighborhoods defines the
regular parametrized surface as can be seen in figure 3.1.

Remark 3.1. The first condition ensures that we can use differential geometry on the regular sur-
face, while the second one restricts the surface, such that it can not have intersections with itself.
Even though the differential of the map dxp is covered later in this section, it can already be told
that the third condition is responsible for the surface only having non-degenerated tangent planes.

One of the important points of regular surfaces is, that its local properties do not change,
if we use another parametrization. Thankfully, it has already been proven, that there al-
ways exists a diffeomorphism that can transfer points from one parameter domain to the

11



3. Differential Geometry

y

x

e1

e2

α
β

U
x

q

x1

x2

x3

p

βαdxp
S

Tp(S)

Figure 3.1.: A graphical example of a regular surface: The points of the parameter domain
U are mapped to the surface S by the parametrization x with p = x(q). The
derivative of the map dxp maps tangent vectors of U (in the basis e1, e2) to
tangent vectors on S (in the basis dxp(e1), dxp(e2).

other and therefore make different maps interchangeable: Let p be a point on a regular sur-
face S and x : U → S and y : V → S be parametrizations of S with p ∈ x(U) ∩ y(V ) = W .
Then the change of coordinates h : y−1(W ) → x−1(W ), h = x−1 ◦ y is differentiable and
has a differentiable inverse.

Now that we have defined regular surfaces, the next step is to find a way to describe
functions defined on the surface. Since we already know that a regular surface is just a
image of a two dimensional parameter domain, we can use that knowledge to define our
function there.

Definition 11 (differentiable function on surfaces). Let f be a function from an open subset
V ⊂ S of a surface S to R. Then f is called differentiable at p ∈ V if, for a parametrization
x : U → S, p ∈ x(U) ⊂ V , the composition f̃ = f ◦x is differentiable at x−1(p). f is differentiable
in V, if it is differentiable at all points of V .

This means we can now transfer functions from one domain into the other, given a
parametrization.

After defining how to transcribe functions between the parameter domain and the actual
surface, we will now continue with the behavior of vectors under the differential map x.
Let us begin with the best visual concept of differentiating a map, the tangent plane. The
concept of a tangent plane is that at a certain point on the surface, the tangent vectors of
all differentiable parametrized curves through that point constitute a plane.

Definition 12 (tangent plane). Let x : U ⊂ R2 → S be a parametrization of a regular surface S
and let q ∈ U . The vector subspace of dimension 2, dxq(R2) ⊂ R3, coincides with the set of tangent
vectors to S at x(q) and is called tangent plane to S at p = x(q) and will be denoted by Tp(S).

Notice, that the above definition of the tangent plane is not dependent on the parametriza-
tion x. The parametrization only determines the basis (∂x/∂u)(q), (∂x/∂v)(q) of the tan-
gent plane Tp(S). From here on out, they are abbreviated as (∂x/∂u) = xu and (∂x/∂v) =
xv. Before we take a look at vectors specifically, we have to understand the concept of the
differential of a map which was already used a few times in this thesis:

12



3.1. Regular Surfaces and the First Fundamental Form

Definition 13 (differential of a map). Let x : U → S be a differential map and let α : (−ε, ε)→
U be a differential curve in the parameter domain with α(0) = q, α′(0) = w. The composition of
them is called β = x ◦ α. Then the differential of x at q is

dxq(w) = β′(0).

Since β is the image of α on the surface S, dxq maps tangent vectors from the parameter
domain to tangent vectors of the surface by definition. Also, dxq is not dependent on α but
is solely a property of the differential map x and it is a linear map. This can be seen, if we
apply the chain rule to the definition of dxq where (u, v) are coordinates in U and (x, y, z)
are coordinates in R3:

dxq(w) = β′(0) = (x ◦ α)′(0) = x′(α(0)) · α′(0) =

Ö
∂(x)/∂(u) ∂(x)/∂(v)
∂(y)/∂(u) ∂(y)/∂(v)
∂(z)/∂(u) ∂(z)/∂(v)

èÇ
∂u/∂t
∂v/∂t

å
Notice that the first matrix indeed does not depend on a specific α.

The last point in this section is the introduction of the first fundamental form, which is
a replacement for the natural inner product on a surface S.

Definition 14 (first fundamental form). The quadratic form Ip : Tq(s) → R on Tq(S), defined
by

Ip(w) = 〈w,w〉p = |w|2 > 0,

is called the first fundamental form of the regular surface S ⊂ R3 at p ∈ S.

It can be used to determine geometric values like lengths of curves and areas of regions
on regular surfaces without referring back to the ambient space.

Given a certain basis xu, xv associated to a parametrization x(u, v) at p, we can express
the first fundamental form in that basis. Since a tangent vector w ∈ Tp(S) is the tangent
vector to a parametrized curve α(t) = x(u(t), v(t)), t ∈ (−ε, ε), with p = α(0) = x(u0, v0),
we obtain

Ip(α
′(0)) = 〈α′(0), α′(0)〉p

= 〈xuu′ + xvv
′, xuu

′ + xvv
′〉p

= 〈xu, xu〉p(u′)2 + 2〈xu, xv〉pu′v′ + 〈xv, xv〉p(v′)2

= E(u′)2 + 2Fu′v′ +G(v′)2

=
Ä
u′ v′

äÇE F
F G

åÇ
u′

v′

å
where the values of the functions involved are computed for t = 0 and E,F and G are
dependent on the basis xu, xv of Tp(S). By letting p run in the coordinate neighborhood
corresponding to x(u, v) we obtain functions E(u, v),F (u, v) and G(u, v) which are differ-
entiable in that neighborhood. These coefficients play important roles in many intrinsic
properties of the surface. Now we can even use two different vectors (α, β), (δ, γ) ∈ Tp(S)
to insert into the matrix notation to get the more general bilinear form of the first funda-
mental form:

Ip((α, β), (δ, γ)) =
Ä
α β

äÇE F
F G

åÇ
δ
γ

å
One nice property of the first fundamental form is that it is invariant to isometries [8],
which makes it a good candidate for a base of an intrinsic metric.
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3. Differential Geometry

3.2. Minimal Geodesics on Surfaces

One of the most fundamental metrics is the idea of constructing the shortest path between
two points and define the length of that path as the distance between those two points. In
the Euclidean domain, this metric is defined by the Euclidean norm of the vector joining
the two points. On a regular surface, defining this distance is not as easy, since a lower di-
mensional set is embedded into a higher dimension. The basic idea is, to find the shortest
path along the surface from one point to the other and take its length as the distance. It is
commonly known, that such a path is a straight line and its generalization to curved sur-
faces is called a minimal geodesic, which will be defined during the course of this section.

Since a geodesic is definitely some kind of curve, we start by introducing the core con-
cepts needed for the definition of a geodesic.

Definition 15 (parametrized curve). A parametrized curve α is the restriction of a differentiable
mapping (0 − ε, l + ε) → S), ε > 0 to the interval [0, l]. The curve α is called to join two points
p, q ∈ S if and only if α(0) = p and α(l) = q and it is called regular, if its derivative α′(t) is
nonzero for t ∈ [0, l].

Now let w(t) be a vector field along the curve α. Then w is called differentiable, if for
the parametrization x(u, v) the vector field w(t) can be written as w(t) = a(t) · xu + b(t) ·
xv, where a and b are differentiable functions. Another important part is the covariant
derivative of a vector field.

Definition 16 (covariant derivative). Let α(t) be a parametrized curve on S with α(0) = p ∈
S, α′(0) = y ∈ Tp(S) and a differential vector field w(t) constricted to α. The normal projection
of the derivative of w in respect to time dw

dt (0) onto the tangent space Tp(S) is called the covariant
derivative at p of the vector field w relative to y : Dwdt (0)

The covariant derivative is well-defined for differentiable vector fields and is further-
more intrinsic. This can be seen, if we look at the expression for the covariant derivative:

Dw

dt
= (a′+Γ1

11au
′+Γ1

12av
′+Γ1

12bu
′+Γ1

22bv
′)xu+(b′+Γ2

11au
′+Γ2

12av
′+Γ2

12bu
′+Γ2

22bv
′)xv

where (u′v′) = y and the Γ are the so called Christoffel symbols, which are only dependent
on first fundamental form and therefore Dw

dt is an intrinsic property of the surface as shown
in chapter 4.3 of [8]. A geometric interpretation of the covariant derivative would be the
second derivative of the vector field w as seen from the surface.

Definition 17 (parallel vectorfield). The vector field w along the parametrized curve α is called
parallel if it satisfies

Dw

dt
= 0

for all points on α.

An example for parallel vector fields can be seen in figure 3.2. Now every aspect of the
following definition has been introduced:

Definition 18 (geodesic curve). A non-constant, parametrized curve γ : I → S is called geodesic
at t ∈ I if the field of its tangent vectors γ′(t) is parallel along γ at t. Consequently, the curve γ is
called geodesic, if Dγ

′

dt = 0 ∀t ∈ I .

14



3.2. Minimal Geodesics on Surfaces

w α

α'

α''

Figure 3.2.: Left: parallel vector field w of a curve α. Right: The second derivative of a
curve α on the meridian of a sphere is normal to the surface of the sphere and
therefore is a parallel vector field.

To be a minimal geodesic, the curves length has to be less or equal to the length of any
other piecewise regular curve on the surface.

Example 3.2. If we look at the sphere S2, its geodesic curves are obtained by intersecting the
sphere with a plane passing through the center point of the sphere. This results in circle-shaped
curves whose tangential vector field is parallel, since it is always pointing into the same direction
if seen from the surface (see figure 3.2). So there are at least two geodesics joining two points p1

and p2, just by following the intersection in different directions, starting from p1. On the S2 the
minimal geodesic would be either the shorter arc joining p1 and p2 or, if they are antipodal points
like the north and the south pole, there is an infinite number of minimal geodesics joining p1 and
p2.

On the other hand, the existence of a minimal geodesic is not granted: Let p be a point
on the minimal geodesic joining the points p1 and p2 (which are not a pair of antipodal
points/sufficiently close) on the sphere S2 and let the surface be S2 − p. Then there exists
no minimal geodesic between p1 and p2, since the only other geodesic joining them goes
the long way around and is therefore longer than a piecewise regular curve almost equal
to the minimal geodesic on S2 except for going around the hole at p. One way to ensure
the existence of a minimal geodesic is to constrain the surfaces to have certain properties.
In general, most of the surfaces examined are both closed and bounded which means, they
are compact. As shown in [8, 331-332], compact surfaces are complete and we can use the
theorem of Hopf and Rinow:

Theorem 3.3. “Let S be a complete surface. Given two points p, q, there exists a minimal geodesic
joining p and q.” [8, 333]
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3. Differential Geometry

Hence we can safely assume that there exists a minimal geodesic on the regular sur-
faces considered. This approach is not very practical on actual meshes, since it needs a
parametrization of the surface and comparing the length of all possible geodesic curves is
not feasible.

Discretization to triangulated meshes

There are two main ways to compute shortest geodesic paths on triangulated meshes: One
is solving the Eikonal equation with the Fast Marching Method to approximate geodesics
on the mesh as proposed by Kimmel and Sethian in [12]. The second way, which will be
used later in this paper, has been proposed by Mitchel, Mount and Papadimitriou (MMP)
in 1987. Their basic ideas are presented here, for further information, we refer to [25].
The fundamental idea is to use a simple parametrization of the geodesic distance on each
edge and propagate the distance information starting from the source point over the whole
surface. Take note, that geodesics on a triangular mesh need to have two properties:

• They need to be straight lines within each face.

• When crossing over an edge, the shortest paths need to correspond to a straight line
if the faces are unfolded into a common plane.

Additionally, there are two kinds of vertices which need additional attention: boundary
vertices and saddle vertices, which have a total angle greater than 2π. With this in mind,
we can take a look at the MMP algorithm. The main element of this are the so called win-
dows, which bundle multiple shortest paths that traverse an edge into the same direction,
into one tuple of six parameters.

p0 p1b0 b1

d1d0

s
y

x

w
d0 d1

s

vs

σ

Figure 3.3.: Visualization of the window parameters

The window parameters Let’s first assume, that the shortest path from the source vertex
vs to the point p does not pass through any boundary or saddle vertices. In that case, all
traversed triangles can be unfolded into a common plane, so that the path is a straight
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3.2. Minimal Geodesics on Surfaces

line in that plane. If we now consider some neighboring points of p, whose shortest paths
pass through the same sequence of faces, we get at set of straight lines emanating from
vs intersecting the same edges. So these paths are combined into one window and it is
saved for the edge e by first defining its width through determining the beginning and
the end point of the window by b0, b1 ∈ [0, ||e||]. Additionally, the relative position of the
source vertex to the window is encoded by the distance d0, d1 to the two window endpoints
and a binary direction τ . In the case, that the path passes through one or more saddle or
boundary vertices, let s be the one closest to p. All paths of p and its neighboring points
pass through s, which therefore is a (pseudo-)source for them. The window now stores
the distance information to s as its source and an additional parameter that contains the
distance of s from vs: σ = D(s). So the distance field D over the window is described by
the tuple (b0, b1, d0, d1, σ, τ) which are visualized in figure 3.3.

p0
p1b0 b1

sy

x

w

w'

p2
b0'

b1'

p0
p1b0 b1

sy

x

w

p2

w' w''

p0
p1

s

y

x

w

p2

Figure 3.4.: Visualization of the three possible situations during the propagation step.

Window propagation To compute the distance function over the whole mesh, the win-
dows are propagated over it. Given a window w on the edge e1, the distance field will be
propagated over a adjacent face f , resulting in new windows on the opposing edges e2, e3

of that face. Since there are possibly already existing windows on those edges, we later
need to intersect them with the existing ones and only keep the information of the shortest
distances. After again unfolding the mesh into a common plane, we extend the connec-
tions of the endpoints of w, b0 and b1, and the source s until they intersect with one of the
opposing edges. This results in either one or two new windows, depending on whether
or not there is an vertex in between the two intersection points. Now we already have
the values of b′0, b

′
1 of the new window w′ and only need to compute the new distances

between s and the new endpoints to obtain d′0 and d′1. The pseudosource distance σ′ = σ
stays the same and the direction τ is assigned to point into the face f .

The special case of w being adjacent to a saddle or boundary vertex v results in a few
additional windows. Since shortest paths may pass through v, we need to add windows
to the parts of the face, which can be reached through v and are not already taken care
of by the preceding steps. As seen in figure 3.4, if p0 is a saddle or boundary vertex and
part of the window, the algorithm first generates the regular window on the edge p1p2.
But additionally it adds windows to the darker blue part of the triangle, since those are
the parts of the face, which can probably only be reached by passing through p0. These
windows will have the pseudosource p0 and σ = D(p0) is set accordingly. This scenario is
treated in a symmetric manner for the mirrored case where p1 is part of the window.

17



3. Differential Geometry

b0 b1

y

x

s0 s1 y

x

s0 s1

p

w1 w2w1 w2

δ

Figure 3.5.: Left: initial situation before the intersection. Right: the starting and ending
points of the two windows have been adjusted to the point p

Intersection of windows Once all new windows were created, we can intersect them
with the existing ones, resulting in windows with the minimal distance. Let δ be the non-
empty intersection interval of two windows w1 and w2. In the simple case, that one of the
windows has a larger distance all over δ, then δ is just cut away from its interval. This
leaves only intersections, were one window has a shorter distance on one end, while the
other window is nearer to the source on the other end (figure 3.5). To intersect those two
windows, we need to find the point p ∈ δ in between them, which is exactly as far away
from the source in one window, as it is in the other. This means, that p has to fulfill the
following condition:

||s0 − p||+ σ0 = ||s1 − p||+ σ1

This equation can be reduced to a quadric which has only one solution with the constraint
p ∈ δ. Finally, we only need to adjust the boundaries b1 of w1 and b0 of w2 to match the
point p and recompute the endpoint distances.

Propagation order The described algorithm propagates the distance information from
the source point outwards in a Dijkstra-like manner. This means, that every time, a win-
dow is created or modified, it will be placed in a priority queue from which then the first
window is taken and propagated across a face next. Even though the algorithm com-
putes the same result even without an specific ordering of the queue, the performance
is increased, if the queue is ordered by the windows distance from the source. Notice,
that windows can be added, modified and removed in one step and the queue has to be
updated accordingly.

During initialization, on each edge adjacent to the source vertex vs a window is created.
The distance fields on those windows are trivial, e.g. the distance of every vertex adjacent
to vs is equal to the edge length. After that, one window is popped of the priority queue
in each step and processed.

Construction of geodesic paths After the distance information was propagated through-
out the whole mesh, it is easy to find the shortest or geodesic path from any given point p
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to the source s. In the most general case of p lying on the interior of a face, we first collect
all the windows on its edges and minimize the length of the path going from p through the
window to the source. So in other words, we minimize ||p − p′|| + D(p′) for all p’ within
those windows.

The next step is to trace back the path from p′ to s. To do this, we take the direction τ of
the window containing p′ and locate its pseudo-source vs using the distance information
provided. The next point in the backtracing process is obtained by intersecting the line
vsp′ with the opposite edges of the face. Now the algorithm is repeated with the window
containing the intersection.

A special case again are pseudosources, which are boundary or saddle vertices: To trace
them back, we look at the adjacent windows and iteratively go through them, until we
find one with a pseudosource different from the boundary or saddle vertex we are cur-
rently looking at. Using that knowledge, we can compute the minimal geodesics and their
lengths on triangulated surfaces like it can be seen in figure 3.6.

Figure 3.6.: A visualization of geodesic paths on the mesh of a cat. The plotted paths are
the minimal geodesics connecting one point on the head to the other points.

3.3. The Laplacian and Metrics based on its Eigenfunctions

3.3.1. The Laplacian on Regular Surfaces

The Laplace-Beltrami operator (or Laplacian for short) on a regular surface is the restric-
tion of the general Laplace operator onto the surface. Geometrically, the Laplacian can
therefore be seen as the second derivative of a function on a surface, in analogy to the one-
dimensional case of the Laplace operator in Euclidean space ∆f = f ′′. But the point we
are interested in is that its eigenfunctions are orthogonal to each other and, even more in-
teresting, the Laplace-Beltrami Operator only depends on the first fundamental form and
therefore is invariant to isometries.

19



3. Differential Geometry

Definition of the Laplacian

Since the Laplace operator is defined as the divergence of the gradient of a function f ,

∆f = div(∇(f))

we first need to prove that those two functions are well defined on a regular surface.

The Gradient In Euclidean space Rn, the gradient is defined as

∇f =

Å
∂f

∂x1
, . . . ,

∂f

∂xn

ã
.

The resulting vector points into the direction of the greatest increase of the function and its
magnitude corresponds to the slope of the function. By the Riesz Representation Theorem,
it is also used to define the directional derivative dfp(v) of f at the point p in the direction
of the vector v ∈ Rn:

〈∇f(p), v〉 = dfp(v) (3.1)

Another way to define the directional derivative dfp(v) is to watch its behavior over time:

dfp(v) =
d

dt|t=t0
f(p+ tv) (3.2)

or, in a more general way, by using γ : (−ε, ε)→ Rn fulfilling γ(0) = p, γ̇(0) = v

dfp(v) =
d

dt|t=t0
f(γ(t)). (3.3)

Now the second equation can be used on a regular surface S, since it is not necessary to
use f(p + tv) which could possibly go out of S but any γ. If the directional derivative
dfp(v) of f : S → Rn and v ∈ Tp(S) is calculated, a γ satisfying the conditions exists by the
construction of Tp(S), so that dfp(v) exists and can be used to define the gradient on the
manifold. After converting (3.1) into the arithmetics of regular surfaces, it looks like this:

Ip(∇f(p), v) = dfp(v) for ∀v ∈ Tp(S) (3.4)

This equation implies that exactly one∇f exists for v ∈ Tp(S) to satisfy the equation above.

The Divergence The divergence operator div converts a vector field V : S → Tp(S) into
a scalar field. Even though the formula for doing so in the Rn

div V =
n∑
i=1

∂Vi
∂xi

(3.5)

seems complex, the idea behind it is simple: It basically interprets the vector field as the
definition of a flow, whose direction and volume in a certain point is defined by the cor-
responding vector. The operator will then compute the current volume change under the
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influence of V . It can be proven, that for a function f with a compact support and a vector
field V, the divergence is the negative adjoint operator to the gradient:[11]

〈V,∇f〉 = 〈−div V, f〉 (3.6)

Since we already know that the first fundamental form of our surface is the equivalent of
the inner product in Euclidean space and there exists a unique gradient for every f on S,
there also exists a unique function fulfilling the above equation.

Definition 19 (Laplace-Beltrami operator). Let S be a regular Surface with x : U ⊂ R2 → S
as its parametrization and Tp(S) being its tangent plane. Then the Laplace-Beltrami operator is
defined as

∆f = div(∇(f))

Combining our knowledge about the gradient and the divergence together, we come to
the conclusion that the Laplace-Beltrami-Operator is well-defined on regular surfaces. It
can even be expressed in the parameter domain of S, but again, since we are working on
actual meshes, we will now take a look at the discretization of our new defined operator
on triangular meshes.

Discretization of the Laplacian and its Eigenfunctions

Since the Laplacian maps functions to functions, we first take a look at the way functions
are represented on a mesh based on the approach in [6]. Generally, a function f is repre-
sented by its values at each vertex of the mesh. The missing information about the function
values inside the faces can be filled in by interpolation, for example by assuming that the
function behaves linearly inside of every triangle. To achieve this, we use the finite el-
ement method, which approximates a function f by breaking it into a finite set of basis
functions {φi}. The resulting representation of f is a linear combination of the basis func-
tions f̃ =

∑
i fiφi with weights fi ∈ R. For triangulated meshes, the most natural choice of

basis functions are the piecewise linear hat functions φi which equal one at their associated
vertex and zero at all other vertices.

Computation of the Laplacian Next, we define the function h = ∆f and get the dis-
cretized representation h =

∑
i hiφi. One could think that the Laplacian should vanish,

since it is a second derivative and all hat functions φi are linear. But due to Green’s iden-
tity, by breaking up the integral into a sum over all triangles σ, it holds that

〈∆f, φj〉 =
∑
k

〈∆f, φj〉σk (3.7)

=
∑
k

〈∇f,∇φj〉σk +
∑
k

〈N · ∇f, φj〉∂σk . (3.8)

As long as the mesh has no boundary, the second sum vanishes since the normals N of
each edge of the mesh cancel each other out as adjacent triangles have mirrored normals.
Consequently, we are left with the term 〈∇f,∇φj〉 for each triangle and as long as that term
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does not vanish, the resulting Laplacian is not zero. Because f is a linear combination, we
can further simplify:

〈∇f,∇φj〉 =
∑
i

fi 〈∇φi,∇φj〉︸ ︷︷ ︸
Cij

(3.9)

=
1

2

∑
i∈neighbor(j)

(cotαij + cotβij)(fi − fj) (3.10)

= (Cf)j (3.11)

where fi is the value of f at the vertex vi and αij , βij are the angles opposite of the edge
between the vertices vi and vj on the adjacent faces. Since we are searching for the coeffi-
cients hi of the Laplacian and h is a linear combination, we can reformulate:

〈h, φj〉 =
∑
i

hi

∫
φi(x)φj(x)dx︸ ︷︷ ︸

Mij

= (Mh)j (3.12)

If we now combine (3.11) and (3.12), the result is a matrix representing the Laplace opera-
tor:

〈h, φj〉 = 〈∆f, φj〉Mh = Cf ⇒ h = M−1Cf = Lf (3.13)

Here the matrix M is a mass matrix, containing area elements derived from the triangular
faces of the mesh and C is called the stiffness matrix, which contains the cotangents. The
resulting matrix L describes the discrete Laplacian and maps the coefficients of f to the
coefficients of h = ∆f and has the dimension of the number of vertices to the power of
two. For further information on this method, see [19].

Eigenfunctions of the Laplacian Because the Laplace-Beltrami operator is linear, it has
to have eigenfunctions, which are used in the metrics later described. Since we already
showed that the Laplacian can be represented by a matrix L to map functions to functions,
the eigenvectors of L represent functions on the mesh. Using the Helmholtz equation and
the knowledge obtained until now, we can use the matricesM andC to solve a generalized
eigenvalue problem.

∆f = λf ⇒M−1Cf = λf → Cf = λMf (3.14)

As C and M are symmetric, we can use the QZ-algorithm as described in [17] to solve for
the eigenvalues and eigenfunctions of the Laplacian. Note that the QZ-algorithm returns a
orthonormal (with respect to the M -inner product) basis of eigenvectors which in general
is not unique, since eigenvectors can be scaled and still belong to the same eigenvalue.
Therefore the computed eigenfunctions can have switched signs due to the algorithm, but
apart from that they are invariant to isometries as is the Laplacian.

3.3.2. The Diffusion Distance

The first metric to be discussed is the diffusion distance. Specifically we consider heat
diffusion over a surface, which is fully described by the heat kernel and associated with
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the Laplacian. The heat kernel takes into account the heat transfer between all points at
certain time steps, as explained in [24]. By preserving certain properties of the heat kernel,
the diffusion distance is a stable and isometry invariant metric on a mesh.

Heat Operator and Heat Kernel We start by introducing the basic facts about heat dif-
fusion and the heat kernel. Let S be a compact regular surface possibly with a boundary.
The heat diffusion process over S is dominated by the heat equation

∆Su(x, t) = −∂u(x, t)

∂t
(3.15)

where ∆S is the Laplacian of S and, if S has a boundary, u is required to satisfy the Dirichlet
boundary condition u(x, t) = 0 ∀x ∈ ∂S, t ∈ R+. The heat operator Ht(f) describes the
heat distribution after time t given the initial heat distribution f : S → R, specifically
fulfilling equation (3.15) at all T and converging to f for t→ 0. Both the heat operator and
∆S are mapping real-valued functions defined on S to another and it can easily be verified
that they are related by Ht = e−λ∆S . Hence both operators have the same eigenfunctions
and if λ is an eigenvalue of ∆S , then e−λt is an eigenvalue of Ht corresponding to the same
eigenfunction.

Definition 20 (heat kernel). The heat kernel is the minimum function kt(x, y) : R+×S×S → R
satisfying

Htf(x) =

∫
S
kt(x, y)f(y)dy. (3.16)

For compact S the heat kernel has the eigen-decomposition

kt(x, y) =
∞∑
i=0

e−λitφi(x)φi(y), (3.17)

where λi and φi are the ith eigenvalue and eigenfunction of the Laplace-Beltrami operator.

From a intuitive perspective, the heat kernel kt(x, y) is the amount of heat transfered
from x to y in time t from the starting heat distribution of one heat unit at x. Another inter-
pretation is that the heat kernel is the transition density function of Brownian motion on
the regular surface. This means that for x, y ∈ S, the heat kernel describes the probability
of a random walker arriving at y in time t after starting at x.

According to [24] the most interesting properties of the heat kernel are that it is symmet-
ric, isometry invariant, multi-scale and stable. Its symmetry is obvious, since it does not
make a difference for the heat transfer from which point the heat originates, the amount
of heat transferred stays the same. That the heat kernel is isometry invariant is a conse-
quence of the relation to the Laplacian which is invariant to isometries and only depends
on intrinsic properties of the shape. Due to this property, the heat kernel can be used
to analyze shapes undergoing isometric deformations, for example matching articulated
shapes. The multi-scale property comes from the heat kernels dependency on the time
parameter. It means that for small values of t, the function kt(x, ·) is mainly determined
by small neighborhoods of x and these neighborhoods grow bigger as t increases. This
implies that kt(x, ·) reflects the local properties of the shape around x for small values of
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t, while it captures mainly the global structure of the shape from the point of view of x
for large values of t. Lastly, the heat kernel being stable means that it is only slightly in-
fluenced by perturbations of the underlying regular surface. The majority of deformable
shapes in practice are not isometric and therefore a reliable metric should not be sensitive
to small perturbations. To explain the stability, we refer back to the heat kernels interpre-
tation as the transition probability of the Brownian motion on the surface. Intuitively, this
means that kt(x, y) is a weighted average of over all paths between x to y in time t, which
should not be greatly affected by local perturbations.

Connection to Diffusion Distances The heat kernel is closely related to diffusion maps
and diffusion distances proposed by Lafon [13] for data representation and dimensionality
reduction. The diffusion distance between x, y ∈ S at time scale t is defined as

d2
t (x, y) = kt(x, x) + kt(y, y)− 2kt(x, y)

=
∞∑
i=0

e−λit(φi(x)− φi(y))2.
(3.18)

This fact is pretty interesting, since we will see later on, that the Biharmonic distance as
well as the Commute-time distance can be obtained by just replacing the heat kernel kt by
their respective “kernels”. Notice, that the Heat Kernel Signature and its corresponding
distance function is not scale invariant. If we use the truncated sum from (3.18), we get
a good approximation of the distance between two points. Since the eigenvectors and
eigenfunctions of the Laplace-Beltrami operator can be computed on a discretized mesh,
we will use the truncated sum to approximate the distances between heat kernel signatures
on a given mesh.

3.3.3. Commute-time Distance

A problem with The diffusion distance is that for one it is not scale invariant and second
that it depends on a time parameter, which has to be set for each shape specifically. To
solve the second problem, we can integrate the heat kernel over time, so that the result is
no longer dependent on the time parameter:∫ ∞

0
kt(x, y)dt =

∫ ∞
0

∑
i

eλitφ(x)φ(y)dt

=
∑
i

φ(x)φ(y)

∫ ∞
0

eλitdt

=
∑
i

1

−λi
φi(x)φ(y) = gC(x, y)

(3.19)

The result is the commute-time kernel, which corresponds to the probability density func-
tion of a random walk of any length transitioning from point x to y. It can be used to define
the commute-time distance in a similar fashion as the diffusion distance:

d2
C(x, y) = gC(x, x) + gC(y, y)− 2gC(x, y) (3.20)

=
∞∑
i=0

1

−λi
(φ(x)− φ(y))2. (3.21)
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Furthermore, the commute-time distance is scale-invariant. Note that the commute-time
kernel is the harmonic Green’s function of the Laplacian, which means that it fulfills the
equation ∆

∫
gC(x, y)f(y)dy = f(x) for a given f . The disadvantage of this is that the

harmonic Green’s function has a singularity at the diagonal, which means that (3.20) is not
defined in the continuous case.

3.3.4. The Biharmonic Distance

The biharmonic distance was proposed by Lipman, Rustamov and Funkhouser after re-
viewing the above described metrics on shapes in their paper [14]. Their new distance
operator is quite similar to the diffusion distance and the commute-time distance, but they
exchanged the diffusion kernel with the Green’s function of the biharmonic differential
equation. In the continuous case, the biharmonic distance can be defined using the eigen-
vectors and eigenvalues of the Laplace-Beltrami operator

dB(x, y)2 =
∞∑
i=0

(φi(x)− φi(y))2

λ2
i

. (3.22)

This definition is only slightly different from the other two distances, the only part chang-
ing is the factor in font of the difference between the two eigenvectors. While the bihar-
monic distance has a factor of 1/λ2

i , the power of the λ in the definition of the commute-
time distance is one and the factor of the diffusion distance is e−λit. So even though it is a
seemingly minor change, the behaviour and the properties of the distance functions differ
largely. The basic idea behind this is that it is related to how fast the normalized λi in
the factors decay: if the decay is to slow it will produce a logarithmic singularity at the
diagonal of the harmonic Green’s function (like

∑
i 1/λi ∼

∑
i 1/i). On the other hand, if

the decay is to fast, the eigenvectors with high frequencies are basically ignored and the
distance becomes “too global”. The paper states, that the factor of 1/λ2

i provides a good
balance as it decays fast enough to be shape-aware over the whole mesh and slow enough
to get good local properties around the source point.

The biharmonic distance as defined in (3.22) can further be written to fit the diffusion
distance formulation with a different kernel:

d2
B(x, y) =

∞∑
i=0

|φi(x)|2

λ2
i

+
∞∑
i=0

|φi(x)|2

λ2
i

− 2
∞∑
i=0

φi(x)φi(y)

λ2
i

= gB(x, x) + gB(y, y)− 2gB(x, y).

(3.23)

using the Green’s function gB(x, y) of the biharmonic operator ∆2, which means that it
satisfies the relation

∆2
(x)

∫
gB(x, y)f(y)dy = f(x) (3.24)

for smooth enough f . This information can used to discretize the biharmonic distance by
obtaining the discretized gB from (3.24) and applying it to (3.23) to obtain the biharmonic
distance on the mesh. Another way to practically compute it is to approximate the dis-
tance by using the truncated sum, as it is the standard methodology for approximating the
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diffusion distance. We compute the first N eigenfunctions of the discrete Laplacian and
computing dB(x, y) as follows:

d̃B(x, y)2 =
N∑
i=0

(φi(x)− φi(y))2

λ2
i

. (3.25)

Although the error bound is (in general) linear in 1/K this approximation provides con-
siderable speedup in trade-off of accuracy over the exact computation. Additionally, since
the approximate distance uses a fixed set of eigenvectors, it is smooth.
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4. Testing Purposes and Pipeline

In order to get a grasp of the properties and the behavior of the different distances, we
ran a set of experiments on a set of meshes from the datasets TOSCA [4], SHREC 2010 [2]
and SHREC 2011 [9]. These datasets contain triangulated meshes, undergoing different
transformations, ranging from scaling through holes in the mesh to noise and topology
changes. These shapes will allow us to get a understanding of the performance of the four
different metrics if subjected to these kinds of transformations.

4.1. Timing

The first experiment we ran was to compare how long it took the different metrics to com-
pute the distances between points, a task not uncommon in shape analysis applications.
In order to do so, we used Matlab on a 2.40GHz Intel Core 2 Duo processor. We timed
the computation of distances on meshes with varying amounts of vertices from one vertex
to all other vertices. Additionally, in this experiment we take a deeper look at the com-
putations which can be done beforehand. The computation of the distances based on the
Laplacian’s eigenfunctions/-vectors can be sped up by precalculating them and then using
the saved eigenfunctions and eigenvectors for the remaining computation steps, making
the overall computation-time shorter. Notice however that there cannot be any time sav-
ing steps taken for the geodesic distance, at least not with the method described in chap-
ter 3.2. As a side note, an alternative approach, which approximates the geodesic distance
by using the heat diffusion process based on the Laplacian, was proposed in [7]. It takes
advantage of the fact, that heat distributes over a mesh based on the distance between the
origin of the heat and the point of question.

4.2. Sensitivity to Noise, Tessellation and Deformation

To test the robustness of the metric functions, we compute the distance function for dif-
ferent kinds of changes of the original surface. We then compare the result visually by
correlating the color and the shape of the isolines of the original mesh and the changed
one. As the SHREC datasets provide different strengths of modifications in a multitude
of areas, we will depict those showing the clearest result to make a point in the resulting
figure. To be specific, the different deformations we will take into account are:

• isometry: The surface undergoes a isometric transformation, for example if the mesh
of a person is changed to have a different pose.

• changes in local/global scale: These changes include the shrinking and growing in
size of parts of the mesh or the whole mesh.
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• micro holes/holes: Not watertight meshes with holes of varying sizes.

• shot noise/noise: Here, different amounts of noise is added to the vertex coordinates
of parts of the mesh or the whole mesh.

• topology: Summarizes changes which change the topology of a mesh like a different
tessellation of the surface or additional edges or faces.

Farthest point sampling In the next experiment we watched the behavior of the different
metrics, if they are used to obtain a farthest point sampling, FPS for short, of a given mesh.
The idea behind the FPS is that meshes can get quite complex with huge amounts of ver-
tices, slowing down the computations on the mesh. The FPS provides a fast and practical
way to obtain an almost optimal approximation of an open ball covering if it is given a
metric on the mesh. The way the farthest point sampling works is to start from a random
vertex or with the two vertices farthest away from each other and then, with each iteration
step, add the vertex to the set, which is farthest away from the currently selected. The
resulting set in general is not unique but can then be used to assign all vertices to vertices
of the set, representing them and resulting in a so called Voronoi sampling. The obtained
FPS and the Voronoi sampling can then be used to save computation time on tasks like
shape matching, so the usage of the FPS is a common procedure in shape analysis. During
the experiments, we compared the FPS of 150 points of the original shape with the FPS
of shapes with the above mentioned changes and how good the set covers the mesh. In
this experiment one additional metric was used: The Euclidean distance is not isometry
invariant, which makes it not fitting to use for shape matching in general, but it is known
to produce good results if used in the FPS. And to keep the computation times within a
reasonable range, we approximated the exact geodesic distance by the Dijkstra algorithm
on the larger meshes.

Error measurement As a last experiment, we wanted to get a quality measure of the
different metrics. We did so by comparing the relative errors which resulted from the
deformations mentioned above. The ideal result for a metric was, if it did not change
under isometric deformations and only had slight changes under the other deformations.
To test the completion of this task, we first computed the distances from one point to all
other points on the mesh. After selecting one mesh as the reference mesh, also called the
null shape, we subtracted the distances of corresponding points. To make the resulting
error more informative, we divided it by the maximum distance on the reference mesh
and only considered its mean and the maximum error.

Example 4.1. Let p0 be the origin point of the distances on the null shape M and p1, · · · , p4 other
points on the same mesh. Further, let d(p) be the distance from p0 to p on the original shape and
p′0, · · · , p′3 are the corresponding points on the deformed meshM ′ with the distance function d′. An
important thing to notice is that not every point onM has to have a corresponding point onM ′, like
p4 has no correspondence in this example. To calculate the errors, we repeat for all corresponding
points pi ∈M,p′i ∈M ′:

ei =
d(pi)− d′(p′i)
maxp∈M d(p)
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To finish the error computation, we compute the mean of the errors in all the points and the save it
together with the maximum error.
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5. Implementation Details

This chapter concentrates on the specific implementation choices during the testing pro-
cess. The main software used to implement and run the computations is Matlab R2014a
under GNU/Linux 3.14. In addition to that, we used a collection of functions for graphs
and meshes called “Toolbox Graph” from the official Matlab file exchange[18] and an im-
plementation of the geodesic distance as described in 3.2 taken from Google Code[1]. The
whole project has been made available online to check the actual source code under [22].

5.1. The Metrics

The Geodesic Distance The implementation of the geodesic distance is written for Win-
dows in C++, to be compiled into a shared library and then called with a Matlab API. This
resulted in a small amount of problems, most of which were small differences due to the
change of the underlying operating system. Apart from that, the general idea behind the
computation is to first input the mesh through the API and to specify the Algorithm type,
which has to be either the exact geodesic distance, the Dijkstra algorithm on the original
shape or Dijkstra performed on the mesh with a certain number of subdivisions of the
edges. It is obvious, that the exact algorithm is the slowest one, while Dijkstra is the fastest
of these three algorithms, trading accuracy with speed.

We wrote our own wrapper function around the Matlab API to increase the comfort of
using them, by only having to input the mesh information, consisting of the data of the
vertex positions and the faces together with the origin point of the geodesic distance to
be computed. Further we chose to return the distance from the origin point to all other
vertices, since after the propagation of the distances over the whole mesh, these can be re-
trieved easily. As stated before, no computations could be carried out beforehand and be
reused later to speed up the computation. Also, each origin point has to be handled sepa-
rately, since the computed data does not coincide between different source points, leaving
only the initiation of the mesh and the algorithm to be performed once of all following
computations.

One peculiarity of the chosen implementation is that it checks the input meshes, whether
or not they are sane in different aspects. This led to problems with a few of the de-
formed meshes, leading to the program to crash since the input mesh did not fulfill the
requirements for continuation. In particular, the algorithm used by the SHREC datasets
to decrease the amount of vertices and create the sampled meshes of the dataset generated
meshes not fulfilling these requirements. While not all of those meshes resulted in a crash,
the whole set of meshes modeled to have holes and some of the meshes with micro holes
in the original mesh also were rejected by the mesh check of the geodesic distance imple-
mentation. To avoid this problem, we removed those meshes from our testing set.
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The Laplacian’s Eigenfunctions and Eigenvalues To compute the normalized Laplacian
matrix L, we used the function compute mesh laplacian() from the Toolbox Graph.
The eigenfunctions φi and eigenvalues λi were then obtained by using Matlabs internal
function eigs() to compute the first n eigenvalues. The algorithm returned the positive
eigenvalues, sorted in an ascending order, and their orthogonal eigenvectors. An impor-
tant note is that the first eigenvalue was either zero or at least very close to zero and should
therefore be discarded to grant the numerical stability of the resulting distance functions.
We chose to use the first 200 eigenfunctions to get a reasonably good approximation of the
distance functions.

Distances based on the Laplacian The distance functions based on the Laplacian eigen-
function are approximated by using the general formula:

d2(x, y) =
200∑
i=1

(φi(x)− φi(y))2 · f (5.1)

were the factor f is a function that changes depending on which distance function we are
using. To compute the diffusion distance we used ft(λi) = e−2tλi , for the commute-time
distance fC(λi) = 1

λi
was used and for the biharmonic distance, the factor was set to be

fB(λi) = 1
λ2i

. Since the input and the computations were almost the same for the different
functions, we decided to combine them into one function with a parameter to choose the
wanted one through a function handle. The most efficient way we found to implement
this is to compute this sum for one x and all other y one by one within one function to
minimize the overhead and maintain the described flexibility. Note that the square root of
the results of (5.1) has to be taken, as the equation computes d2.

One special adjustment was made on the computation of the diffusion distance. Since it
is known that it is not scale invariant, we used a method described in [14]: By rescaling the
time parameter to t ← t/λ1 where λ1 is the smallest eigenvalue not equal to zero, we can
use the resulting t to select an equal scaling of the diffusion distance over different meshes.

5.2. Testing

Timing of the computation We chose different meshes with vertex counts of approxi-
mately 1k, 5k, 10k, 20k and 50k to measure the computation time of the different metrics.
To do that, we used the tic() and toc() functions of Matlab to time the pure compu-
tation times, starting from the function call until the result is returned. The experiment
computed the distance from one vertex to all other vertices and averages the computation
time over ten independent repetitions, writing the results to a text file.

Plotting of the distance functions To plot the metrics, we construct an approximation
of equidistant isolines on the mesh. The isolines divide the surface into level sets, regions
with similar values, and therefore visualize the change of the metric over a mesh. In order
to compute the shape of the isolines, an algorithm first searches for border vertices between
two out of a given set of equally spaced level sets. Then it constructs line segments between
two neighboring border vertices, resulting in a set of line segments, which are combined
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to obtain isolines. Since the isolines are bound to vertices, it only approximates the real
isolines, which in general do not need to cross a vertex. These isolines are then plotted
onto the mesh and exported as a TIFF-file for the following visual processing.

In order to speed up the computation, we precomputed the Laplacian eigenfunctions
and -values. This results in computation times within a few minutes instead of an hour.
Additionally, we used correspondence files so that we did not need to find corresponding
vertices by hand, but could look them up.

Error measurement In order to measure the maximum error and the mean error, we use
the same tricks to speed up the computation as in the previous paragraph. Using pre-
computed eigenfunctions and correspondence files, we basically proceed just as stated in
the theoretical chapter of this paper. After computing all distances from one point to all
the other points on all meshes (with their corresponding points), we compute the rela-
tive error by subtracting the distance of the base mesh from the distance on the current
shape and divide the result by the maximum distance on the base mesh. Then the mean
and the maximum error are computed and saved for all metrics. This process is repeated
over meshes with different deformations and different starting points to get an idea of the
metrics properties.

Farthest point sampling The last experiment we implemented is the farthest point sam-
pling based on the different metrics. We used function handles to switch between the
different distance functions and built a generic implementation of the farthest point sam-
pling around that. As the basic idea behind the farthest point sampling is to start with one
point and then add the points to the set, which are farthest away from the set, we basically
do the following: We save the minimal distances from all points to the points of the set in
a vector d. After a point pi was added to the set, we update d by computing the distance
from pi to all other vertices and then taking the minimum between the resulting vector
and d. Then we choose the next point pi+1 to be added as the point corresponding to the
minimal distance in d.

Additionally, we are using the standard euclidean distance in this experiment. To obtain
the distance from one point to the other points, we simply use the standard formula for
the euclidean distance as:

d2
euclidean(v, u) = (v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2, (5.2)

where u, v ∈ R3 are two vertices of the mesh.
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6. Testing Results

6.1. Timing

Table 6.1.: The table shows the time in seconds to compute the different distances. Take
note, that all metrics except the geodesic distance need to have the Laplacian’s
eigenfunctions computed.

|V ertices|
Laplacian

eigenfunctions
/-values

diffusion
commute

time
biharmonic

geodesic
exact

geodesic
Dijkstra

1k 2.98 0.033 0.016 0.017 0.057 0.006
5k 12.46 0.122 0.064 0.070 0.481 0.014
10k 30.35 0.283 0.157 0.169 1.449 0.036
20k 65.08 0.487 0.268 0.288 3.632 0.063
50k 206.58 1.193 0.655 0.705 12.123 0.149

The average computation times to compute the distance from one point to all other
points are condensed into table 6.1. We can see that the computation of the Laplacian’s
eigenfunctions and eigenvalues takes the most time. But after obtaining them, the com-
putation times of the diffusion, the commute-time and the biharmonic distance are really
short. Since they all have the same basic structure, the small differences in speed are re-
sults of the different factors: While the factor 1

λi
of the commute-time distance is the fastest

to compute, the additional square of the eigenvalue for the biharmonic distance makes it
slightly slower. The fact that the factor of the diffusion distance consists of an exponentia-
tion and a product makes it the slowest one of those three.

One important thing to note here is that even though the computation of the Laplacian’s
eigenfunctions and eigenvalues takes quite a bit of time, the result can be saved and reused
every time the distance has to be computed. So if we were to compute the distance between
all points of the mesh (even with respecting the symmetry of the metric and therefore half
the computations), the computation of the Laplacian based metrics is already faster then
the exact geodesic distance on the mesh with 5000 vertices by an approximate factor of 4.

Even though the implementation of the geodesic is highly optimised, the exact geodesic
distance is definitely the slowest metric to compute. Here the propagation of the windows
over all edges of the mesh comes into play. In the paper [25] it is stated, that the windows
per edge increase exponentially and, since each new vertex is connected to the rest of the
mesh by at least one edge, this means that the computation time has to increase at least at
the same speed. If you approximate the geodesic distance by the Dijkstra algorithm, the
computation gets faster than every other metric but its quality decreases significantly.
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6.2. Sensitivity to noise, tessellation and deformation

6.2.1. Isolines

Our first set of experiment results provides a visualisation of the different metrics on
shapes from the SHREC 2010 dataset. Similar to the experiments in [14], we computed
the distance from a single source vertex to all other vertices on the mesh, color coding it
onto the mesh by using Phong shading, which results in a dark blue color for small dis-
tances and bright red colors for bigger values. In addition to that we plotted white, equally
spaced isolines onto the mesh to give a better visualisation of the properties of the chosen
metric.

Figure 6.1.: Comparison of the geodesic distance under different deformations of the mesh;
from left to right: the null shape, isometry, noise, microholes, local scaling and
topology changes.

The geodesic distance It is commonly known that the local properties of the geodesic
distance are desirable. As we can see on all meshes in figure 6.1, the geodesic distance is
isotropic and increases in a circular fashion, extending over the whole mesh. There also
lies its biggest flaw: The geodesic distance is not globally shape-aware, which can be seen
on the meshes as that the isolines run diagonal along the arms and legs. This also means,
that the shape of the isolines far from the source vertex depends on the exact placement of
the starting point. For example, would the source point lie somewhere on the left arm of
the mesh, then the isolines would run perpendicular to the direction of the arm, forming
small circles, instead of being distorted as they are in figure 6.1. Another point is that
the geodesic distance is not smooth, as can be best seen on the locally scaled shapes left
knee, where there is a big cusp. In general, the geodesic distance results in cusps and
ridges on the mesh, especially at the opposite side of the source vertex. Furthermore,
it is susceptible to topological changes or bigger holes in the mesh (which could not be
tested): On the corresponding mesh, the right hand is connected to the right thigh through
a face, resulting in a significant change of the isolines (and therefore also the metric), since
the shortest path through the upper leg is shorter than the geodesic distance before the
change. The isometric transformation from the null shape resulted in changed isolines on
the legs, which again are a result of the missing global-shape awareness of the geodesic
distance. Apart from that, the geodesic distance is largely invariant to noise, small holes
and local scalings.
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The diffusion distance To begin with, the main difficulty with the diffusion distance is
that it is not parameter-free. It is possible to adjust the amount of global and local shape-
awareness by choosing bigger or smaller t, but it is not possible to have both at the same
time. We start by looking at the results of the diffusion distance with t = 1. The global

Figure 6.2.: Comparison of the diffusion distance with t = 1 under different deformations
of the mesh; from left to right: the null shape, isometry, noise, holes, local
scaling and topology changes.

shape-awareness of the diffusion distance is really dominant, resulting in isolines perpen-
dicular to the central axis of protrusions as the arms or legs. What can be seen close to
the source point is that the global shape has an unwanted influence on the local distances,
resulting in elliptic isolines close to the source vertex instead of circular ones. This shows
also, as with increasing t the isolines close to the source vertex get closer and closer to being
parallel instead of being circular. As we already presumed the time parameter in this case
favors the global properties, resulting in a not isotropic propagation close to the source.
Apart from that, the diffusion distance seems almost invariant to the shown deformations
of the shape.

Figure 6.3.: Comparison of the diffusion distance with t = 0.1, 0.05, 0.01 on the null shape
and an isometric deformation; the value of t decreases from left to right.

In the second figure 6.3 we decided to show the behaviour of the diffusion distance with
smaller t. Even though the parameter with t = 0.1 is set to a relatively small value, it still
has some good global properties, such as the isolines perpendicular to the central axis of
protrusions as the arms or legs. But on the other hand, the isolines close to the source
vertex return to a more circular appearance. This effect get more and more prominent,
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the smaller t gets, revealing more and more detail close to the source vertex and loosing
its global properties up to a degree, that the vertices far away from the source vertex are
assigned near constant values, resulting in level sets with large areas.

Figure 6.4.: Comparison of the commute-time distance under different deformations of the
mesh; from left to right: the null shape, isometry, noise, holes, local scaling and
topology changes.

The commute-time distance The commute-time distance is, as mentioned in the subsec-
tion 3.3.3, the integral of the diffusion distance over all t and therefore being multi-scale
without depending on a parameter. As we can see in figure 6.4, it obtained some of the
diffusion distances properties: The global shape-awareness has been preserved, as the iso-
lines on the limbs are still vertical to their central axis, while the isolines close to the source
point are close to circular. But some of the influences of the diffusion distances result in
unwanted behaviour, such as the local maxima at the belly button and around the chest.
These extrema in particular can also be seen with the diffusion distance in figure 6.3 with
really small t. In addition to that the commute-time distance is not smooth, which can be
seen by the isolines having crooks and cusps. Concerning the different deformations, the
commute-time distance seems to be only affected lightly by them, resulting in the isolines
wandering a small distance up or down the limbs, but generally retaining their shape. The
only one which has large effect is the appearance of holes in the mesh. For one, there are
multiple local maxima at the edge of a hole, which is supplemented by the fact that we
had to manually change the distance of the 60 (out of around 50k) vertices, which had the
largest distance from the source point, to zero. This minority of points had distance values
up to double the maximal distance plotted in figure 6.4. So even though the isolines on the
mesh with holes still resemble the others, the behaviour of the commute-time distance in
this experiment is not desirable.

The biharmonic distance The last set of results, which shows the performance of the
biharmonic distance, can be seen in excerpts in figure 6.5. As it was designed to be, it
is shape-aware and at the same time close to the geodesic distance in proximity of the
source point. This can be seen in the circular shape of the isolines close to the source,
while the isolines follow the shape more and more, the farther they are from the source
point. Under the different deformations, the isolines and therefore the behaviour of the
biharmonic metric is preserved in general. Only on the arms undergoing local scaling
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Figure 6.5.: Comparison of the biharmonic distance under different deformations of the
mesh; from left to right: the null shape, isometry, noise, holes, local scaling and
topology changes.

and topology changes the distance changes slightly, increasing the distance to one hand
while decreasing the distance to the other. But altogether, the biharmonic distance keeps
its properties across all deformations.

6.2.2. Farthest point sampling

Figure 6.6.: A selection of farthest point samplings of the different intrinsic metrics on
shapes with holes, topology changes, local scale changes and the null shape;
from left to right: Euclidean, geodesic, diffusion with t = 0.1, diffusion with
t = 1, commute-time and biharmonic distance.

The results of this experiment are quite straight forward: Using the Euclidean distance
results in the best, equally distributed set of vertices over the mesh, closely followed by the
geodesic distance as can be seen in figure 6.6. The diffusion distance has an interesting ef-
fect, that depending on the parameter t the points either cluster around the head of the dog
or around the torso, leaving only a small number of vertices on the remaining body parts.
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As has already happened during the plotting experiments, the commute-time distance in-
tensifies the effects of small t, resulting in almost no vertices on the torso and clusters of
points on the head and the legs of the dog. While the FPS based on the biharmonic dis-
tance seems to be almost equally distributed on the upper part of the figure, the vertices of
the lower part, showing the mesh with a number of holes, are concentrated on the legs and
the head while covering almost nothing of the rest of the mesh. This is probably for one a
result of the difficulties of the metric to handle a mesh with holes and it can also be seen
on the upper picture, that the biharmonic distance has a tendency to distribute the points
with a bigger focus on the head and legs then on the torso. Therefore the best results are
being produced by the fastest and simplest metric of the set: the Euclidean distance. Even
though it is unusable in any of the other use cases of intrinsic metrics, like for example
shape matching because of its missing invariance to isometries, for the task of computing
a farthest point sampling the Euclidean distance is the best.

6.2.3. Error measurement

We now review the results of our error computation with the different metrics. As a re-
minder, the calculated values are the mean and maximal error between a mesh under a cer-
tain deformation and the null shape, divided by the maximum distance on the null mesh.
As can be seen in table 6.2 there is no clear answer as to which metric is superior in regards

Table 6.2.: The mean error of the distances, grouped by the type of deformation. The min-
imum value is underlined.

metric isometry
local
scale

scale topology noise
shot
noise

micro
holes

holes

geodesic .0232 .0407 .1580 .0508 .0218 .0419 .0417 -
diffusion t=0.1 .0043 .0310 .0058 .0408 .0241 .0044 .0059 .0434
diffusion t=1 .0022 .0320 .0029 .0223 .0180 .0018 .0031 .0528
commute-time .0034 .0092 .0037 .0138 .0309 .0031 .0035 .0331
biharmonic .0049 .0220 .0016 .0420 .0625 .0024 .0017 .0388

to the metric distortion of the distance from one source point to all other points. While
it is obvious, that the geodesic and the diffusion distance with a small t are no competi-
tion, the other metrics compete for the best mean errors. The diffusion distance with t = 1
is clearly the best for the categories isometry and noise, whereas the commute-time has
the best mean errors for topology changes, changes in local scale and meshes with holes.
This can be tied to the alternate definition as the average time a random walker takes to
go from one point to the other and return, which is not as strongly influenced by those
deformations as the other metrics. Finally, the biharmonic distance provides the small-
est mean errors for scaled meshes and micro holes. The bad performance of the geodesic
and the more local version of the diffusion distance probably based on their bad shape-
awareness. Additionally, one can see that the geodesic distance is not scale-invariant, as
the corresponding mean error is disproportionally high.

In our experiments measuring the maximum (relative) error, which can be seen in ta-
ble 6.3, the biharmonic distance had the best performance. In five out of eight categories
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6.2. Sensitivity to noise, tessellation and deformation

Table 6.3.: The maximum error of the distances, grouped by the type of deformation. The
minimum value is underlined.

metric isometry
local
scale

scale topology noise
shot
noise

micro
holes

holes

geodesic .0984 .1554 .4064 .2227 .1311 .1567 .1566 -
diffusion t=0.1 .0258 .2745 .0347 .0774 .0728 .0365 .0346 .2209
diffusion t=1 .0217 .1473 .0301 .2042 .0685 .0330 .0302 .4938
commute-time .0288 .0899 .0493 .1598 .1381 .0487 .0469 .6374
biharmonic .0188 .0648 .0285 .3226 .1113 .0275 .0276 .5229

the biharmonic metric resulted in the smallest maximum error. Only on meshes under
topology changes, noise and with holes the diffusion distance was superior to the bihar-
monic distance. Apart from that, note that the commute-time distance again showed in-
consistent behaviour on meshes with holes, as it resulted in the smallest mean error but,
similar to the isolines experiment, the biggest maximum error.

Additionally, the deformations can be separated into two classes, based on the perfor-
mance of the metrics in regards to the maximum error and independent of the specific met-
ric: The deformations resulting in relatively small maximum errors approximately ranging
from two to 8 percent, namely isometry, local scale, scale, micro holes and shot noise and
the more “challenging” deformations with maximum errors ranging from ten to over 40
percent, namely noise, holes and topology. The exact same partitioning of deformations
can be extracted from table 6.2 by separating the deformations by the question, whether or
not the majority of the metrics have a mean error below or above one percent, which means
we can safely conclude that noise, holes and topology changes are the most challenging
deformations of a mesh for all considered intrinsic metrics.
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7. Conclusions and Future Work

This work compares the most commonly known intrinsic metrics, the geodesic distance,
the diffusion distance, the commute-time distance and the biharmonic distance based on
their local and global properties as well as on their performance and their invariance to dif-
ferent common deformations of three-dimensional surfaces. We found, that the geodesic
distance has good local properties and results in a decent FPS, but becomes almost unus-
able on a global scale, having generally the biggest mean and maximum errors and being
not shape-aware.

In comparison, the diffusion distance can have either good local or good global proper-
ties, based on the time parameter t. Its problem lies in the fact that the diffusion distance
can not be good at both at the same time, but can only have good global shape-awareness
for large t or a solid local behavior using small t. If the diffusion distance is used for a
farthest point sampling, the points cluster around different parts of the mesh, not equally
distributing themselves and therefore not completing the basic task behind the farthest
point sampling. Concerning the error calculations, the diffusion distance gives a solid
performance for noisy surfaces and performs moderately for the other deformations.

The commute-time distance is the integral over the diffusion distances over all t, re-
sulting in decent local and global properties, coming at the cost of having local maxima.
During our experiments, the commute-time distances had a small edge in the categories
local scale and topology, where it had the smallest mean error and also had the second
smallest maximum error. On the other hand, the commute-time distance had difficulties
with handling meshes with holes, resulting in additional local maxima and therefore big
maximum errors while having a small mean error. Apart from that, the commute-time
metric had no special traits to clearly distinguish it from the rest.

Finally, the newest of the intrinsic metrics, the biharmonic distance, excelled in most of
our experiments. Since it is tuned to be smooth and have equally good local and global
properties, being shape-aware far from the source while being isotropic close to it, the
biharmonic distance performed best in the visual comparison. And even though it is not
appropriate to use for the farthest point sampling, it performed best in the metric distortion
tests out of all the tested metrics.

Altogether this thesis gives more insight into the properties and theoretical and practical
ties of the most commonly used intrinsic metrics. And as the usage of intrinsic metrics
is one of the fundamental approaches in shape analysis, there is a wide range of future
work possible. Possibly the first one would be to study the influence of different intrinsic
metrics on different applications like the matching and segmentation of three-dimensional
surfaces. Another point would be to include newly developed distances like the earth
mover’s distance, which was only presented this year in [23], into this comparison.
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A. Detailed Results

A.1. Timing of the computations

Here we give the exact output of the experiments for the timing and the error measure-
ment. To start of, the following output gives the time in seconds it took to compute the
distance from one vertex to all other vertices with the respective metrics on the different
meshes.

raw data

---------------------30-Aug-2014----------------------------
times: laplacian geodesic_dijkstra diffusion commute_time biharmoinc

shrec2010_0003.sampling.5: 964 verts
times: 3.344817 0.005798 0.038892 0.030821 0.032886

shrec2010_0003.sampling.4: 4573 verts
times: 12.515630 0.014021 0.166007 0.132712 0.137609

shrec2010_0002.sampling.3: 10762 verts
times: 30.154200 0.035964 0.374983 0.290331 0.303356

shrec2010_0002.sampling.1: 20237 verts
times: 64.855514 0.063136 0.683523 0.530818 0.551047

shrec2011_0001.null.0: 52565 verts
times: 206.082749 0.149082 2.292431 1.739161 1.777857

---------------------31-Aug-2014----------------------------
times: 0 geodesic_exact 0 0 0

shrec2010_0003.sampling.5: 964 verts
times: 0.000003 0.064268 0.000000 0.000000 0.000000

shrec2010_0003.sampling.4: 4573 verts
times: 0.000002 0.482627 0.000000 0.000000 0.000000

shrec2010_0002.sampling.3: 10762 verts
times: 0.000002 1.465620 0.000000 0.000000 0.000000

shrec2010_0002.sampling.1: 20237 verts
times: 0.000003 3.653875 0.000000 0.000000 0.000000

shrec2011_0001.null.0: 52565 verts
times: 0.000002 12.020188 0.000000 0.000000 0.000000
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---------------------02-Sep-2014----------------------------
times: laplacian geodesic_exact diffusion commute_time biharmoinc

shrec2010_0003.sampling.5: 964 verts
times: 2.979829 0.057016 0.032513 0.015851 0.017184

shrec2010_0003.sampling.4: 4573 verts
times: 12.459126 0.480894 0.121599 0.064065 0.069511

shrec2010_0002.sampling.3: 10762 verts
times: 30.346754 1.449161 0.283143 0.157000 0.169491

shrec2010_0002.sampling.1: 20237 verts
times: 65.081098 3.632062 0.486950 0.267707 0.287883

shrec2011_0001.null.0: 52565 verts
times: 206.580039 12.122674 1.192548 0.654706 0.705106

A.2. Error computations

The following is the output of the error computation. To obtain the tables 6.2 and 6.3,
first the average of the absolute values of the different points on one mesh was computed
and then the results of meshes from the same deformation type were averaged again. The
values are relative errors, meaning that it is given in relation to the calculated maximum
distance on the original shape.

raw data

---------------------06-Sep-2014----------------------------
1 geodesic, 2 diffusion t=0.1, 3 diffusion t=1, 4 commute-time, 5 biharmonic

max error, avg error for distances from point 910

shrec2010_0001.isometry.1:
1: mean 0.052910, max error 0.155468
2: mean -0.007574, max error 0.053344
3: mean -0.004927, max error 0.044472
4: mean -0.005253, max error 0.065969
5: mean -0.001054, max error 0.037862

shrec2010_0001.isometry.2:
1: mean 0.004197, max error 0.048823
2: mean 0.002476, max error 0.017797
3: mean 0.001947, max error 0.015873
4: mean -0.004235, max error 0.012502
5: mean -0.007491, max error 0.012036

shrec2010_0001.microholes.1:
1: mean 0.052837, max error 0.155468
2: mean -0.007467, max error 0.053428
3: mean -0.004751, max error 0.044403
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A.2. Error computations

4: mean -0.004871, max error 0.067332
5: mean -0.002006, max error 0.037556

shrec2010_0001.microholes.2:
1: mean 0.052800, max error 0.155389
2: mean -0.008136, max error 0.052877
3: mean -0.005573, max error 0.044370
4: mean -0.006292, max error 0.067473
5: mean -0.002547, max error 0.037528

shrec2010_0001.localscale.1:
1: mean 0.053049, max error 0.155473
2: mean 0.023298, max error 0.273737
3: mean 0.023835, max error 0.098575
4: mean -0.007644, max error 0.106460
5: mean -0.020654, max error 0.043352

shrec2010_0001.localscale.2:
1: mean 0.050533, max error 0.153274
2: mean 0.032746, max error 0.288551
3: mean 0.043470, max error 0.209265
4: mean -0.014668, max error 0.092477
5: mean -0.029063, max error 0.096429

shrec2010_0001.noise.1:
1: mean 0.044233, max error 0.148110
2: mean -0.021256, max error 0.071856
3: mean -0.033226, max error 0.029755
4: mean 0.026016, max error 0.154957
5: mean 0.062665, max error 0.189193

shrec2010_0001.noise.2:
1: mean 0.017823, max error 0.122251
2: mean 0.008985, max error 0.088037
3: mean 0.001334, max error 0.141139
4: mean -0.013420, max error 0.077807
5: mean -0.053732, max error 0.060876

shrec2010_0001.scale.1:
1: mean 0.273772, max error 0.566791
2: mean -0.007603, max error 0.053150
3: mean -0.004925, max error 0.044477
4: mean -0.005765, max error 0.066461
5: mean -0.001069, max error 0.037811

shrec2010_0001.scale.2:
1: mean 0.108125, max error 0.241885
2: mean -0.007578, max error 0.053298
3: mean -0.004928, max error 0.044469
4: mean -0.004977, max error 0.066284
5: mean -0.001052, max error 0.037868

shrec2010_0001.topology.1:
1: mean 0.061550, max error 0.286327
2: mean -0.022882, max error 0.147108
3: mean -0.004827, max error 0.318274
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4: mean 0.008132, max error 0.206154
5: mean 0.033896, max error 0.391453

shrec2010_0001.topology.2:
1: mean 0.079992, max error 0.288813
2: mean -0.055920, max error 0.033784
3: mean -0.037315, max error 0.210891
4: mean 0.018111, max error 0.154698
5: mean 0.060428, max error 0.345446

shrec2010_0001.shotnoise.1:
1: mean 0.052903, max error 0.155468
2: mean -0.006892, max error 0.054179
3: mean -0.003770, max error 0.045084
4: mean -0.005322, max error 0.063821
5: mean -0.002492, max error 0.037817

shrec2010_0001.shotnoise.2:
1: mean 0.052894, max error 0.155468
2: mean -0.006003, max error 0.055461
3: mean -0.002306, max error 0.045791
4: mean -0.006528, max error 0.067352
5: mean -0.004952, max error 0.037461

time needed: 274.735655

---------------------06-Sep-2014----------------------------
1 geodesic, 2 diffusion t=0.1, 3 diffusion t=1, 4 commute-time, 5 biharmonic

max error, avg error for distances from point 10000

shrec2010_0001.isometry.1:
1: mean 0.030846, max error 0.157851
2: mean -0.003945, max error 0.016395
3: mean -0.000907, max error 0.015667
4: mean 0.002150, max error 0.021229
5: mean 0.002161, max error 0.019082

shrec2010_0001.isometry.2:
1: mean -0.005000, max error 0.031417
2: mean 0.003238, max error 0.015826
3: mean -0.001032, max error 0.010824
4: mean -0.001842, max error 0.015633
5: mean -0.008730, max error 0.006179

shrec2010_0001.microholes.1:
1: mean 0.030677, max error 0.157851
2: mean -0.003814, max error 0.016308
3: mean -0.000781, max error 0.016549
4: mean 0.001767, max error 0.024561
5: mean 0.001257, max error 0.017667

shrec2010_0001.microholes.2:
1: mean 0.030651, max error 0.157734
2: mean -0.004340, max error 0.015931
3: mean -0.001382, max error 0.015639
4: mean 0.001234, max error 0.028072
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A.2. Error computations

5: mean 0.000844, max error 0.017819

shrec2010_0001.localscale.1:
1: mean 0.030772, max error 0.157796
2: mean 0.030146, max error 0.264235
3: mean 0.022919, max error 0.096145
4: mean -0.002447, max error 0.091133
5: mean -0.014621, max error 0.036541

shrec2010_0001.localscale.2:
1: mean 0.028290, max error 0.155058
2: mean 0.038001, max error 0.271383
3: mean 0.037767, max error 0.185036
4: mean -0.012095, max error 0.069622
5: mean -0.023803, max error 0.082776

shrec2010_0001.noise.1:
1: mean 0.020647, max error 0.144976
2: mean -0.031932, max error 0.069149
3: mean -0.024941, max error 0.006676
4: mean 0.053672, max error 0.158807
5: mean 0.056814, max error 0.178996

shrec2010_0001.noise.2:
1: mean -0.004636, max error 0.108967
2: mean -0.034027, max error 0.062236
3: mean -0.012449, max error 0.096400
4: mean -0.030644, max error 0.160857
5: mean -0.076979, max error 0.016322

shrec2010_0001.scale.1:
1: mean 0.181619, max error 0.569552
2: mean -0.003931, max error 0.016258
3: mean -0.000904, max error 0.015688
4: mean 0.001645, max error 0.021032
5: mean 0.002154, max error 0.019061

shrec2010_0001.scale.2:
1: mean 0.068539, max error 0.247571
2: mean -0.003964, max error 0.016288
3: mean -0.000908, max error 0.015667
4: mean 0.002320, max error 0.043452
5: mean 0.002144, max error 0.019074

shrec2010_0001.topology.1:
1: mean 0.030877, max error 0.157851
2: mean -0.022931, max error 0.118553
3: mean -0.008179, max error 0.198272
4: mean 0.010914, max error 0.161556
5: mean 0.027027, max error 0.297007

shrec2010_0001.topology.2:
1: mean 0.030892, max error 0.157851
2: mean -0.061486, max error 0.010259
3: mean -0.039021, max error 0.089416
4: mean 0.018065, max error 0.116740

55



A. Detailed Results

5: mean 0.046524, max error 0.256570

shrec2010_0001.shotnoise.1:
1: mean 0.030841, max error 0.157851
2: mean -0.002941, max error 0.017609
3: mean 0.000041, max error 0.018642
4: mean 0.000327, max error 0.043370
5: mean 0.000913, max error 0.018118

shrec2010_0001.shotnoise.2:
1: mean 0.030833, max error 0.157851
2: mean -0.001835, max error 0.018692
3: mean 0.001178, max error 0.022301
4: mean 0.000137, max error 0.020188
5: mean -0.001249, max error 0.016793

time needed: 285.138423

---------------------07-Sep-2014----------------------------
1 geodesic, 2 diffusion t=0.1, 3 diffusion t=1, 4 commute-time, 5 biharmonic

max error, avg error for distances from point 10000

shrec2010_0001.holes.2:
2: mean -0.015809, max error 0.226532
3: mean -0.019862, max error 0.393604
4: mean 0.000475, max error 0.153215
5: mean 0.006196, max error 0.463801

shrec2010_0001.holes.3:
2: mean -0.053096, max error 0.174638
3: mean -0.069995, max error 0.299244
4: mean -0.046189, max error 0.114623
5: mean -0.062616, max error 0.340264

time needed: 339.136533

---------------------07-Sep-2014----------------------------
1 geodesic, 2 diffusion t=0.1, 3 diffusion t=1, 4 commute-time, 5 biharmonic

max error, avg error for distances from point 910

shrec2010_0001.holes.2:
2: mean -0.020886, max error 0.235264
3: mean -0.031136, max error 0.649599
4: mean -0.012485, max error 0.264872
5: mean 0.000593, max error 0.660772

shrec2010_0001.holes.3:
2: mean -0.083803, max error 0.247058
3: mean -0.090159, max error 0.632709
4: mean -0.073147, max error -2.016727
5: mean -0.085645, max error 0.626859

time needed: 347.140476
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