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Preface

�is Master thesis summarizes the work during the �nal project of my Master degree program
�eoretical andMathematical Physics, a joint program of the twoMunich universities, the Technical
University Munich and the Ludwig-Maximilians-University Munich. �e work was conducted in
the Shape Analysis division of the chair for Computer Vision and Pattern Recognition held by
Prof. Dr. Daniel Cremers.

In the process of developing a suitable thesis topic, I wasmakingmyself familiar with thework of the
Shape Analysis community, which focuses on algorithmically characterizing the geometry of single
shapes and comparing the geometry of two or more shapes that are o�en physical deformations
of each other. From a mathematical point of view, the class of deformations considered in this
community is mostly that of near isometries. In order to follow the massive amount of recent
literature in the �eld, I pursued a top-down approach as outlined in Chapter 1.2 to arrive at an
obviously di�cult integrability condition, the Gauß-Mainardi-Codazzi equations (Eq. (1.1)). It was
about this time that I came across Keenan Crane’s work in Conformal Geometry Processing, which
is summarized in his PhD thesis of the same title ([4]). To my surprise at that time, this framework
o�ers a theoretically pleasing and practically feasible formulation of conformal deformations and
in particular an integrability condition, which in practice eventually boils down to solving an
eigenvalue problem.
Whereas this framework has so far been used in Geometry Processing, the approach taken in
this thesis is to my knowledge the �rst attempt to bring these ideas to the related Shape Analysis
community, in the sense that I intend to restrict the class of conformal deformations and to single
out the case of physical deformations, that is, (near) isometries.
As this framework is based on a surface description by means of quaternions, the present thesis
came to its name, Quaternionic Shape Analysis.

We begin our investigation by laying the foundation of Quaternionic Shape Analysis in Chapter 2,
which o�ers a technical introduction to quaternions, quaternionic di�erential forms and quater-
nionic Hilbert spaces. �e emphasis is on practicality, as we want to be equipped with a calculus,
which we will apply in the remainder of the thesis.
Chapter 3 presents a representation of conformal shape space. As a prerequisite for this de�nition
we introducemean curvature half-density in Chapter 3.1 as a central quantity of the framework
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that can be considered as coordinates in conformal shape space. �e natural transformation in
conformal shape space is spin transformation and is outlined in Chapter 3.2. In order to arrive at
another surface in shape space via spin transformation an additional integrability condition has to
be satis�ed, which is also outlined in Chapter 3.2 and reformulated as a generalized eigenvalue
problem of the central operator of the framework, the quaternionic Dirac operator, in Chapter 3.3.
As our goal is to build algorithmic applications, we provide a comprehensive discretization of the
central quantities of the theory in Chapter 4.
Based on this framework, we develop ideas motivated by the successful application of the Laplace-
Beltrami operator in Shape Analysis in Chapter 5 andChapter 6 . Both chapters rely on the language
and concepts introduced in the previous chapters. In Chapter 5 we discuss how the eigenvalue
problem of the Dirac operator changes under spin transformation. In Chapter 6 we investigate
spectral geometric ideas for the squared Dirac operator.
In Chapter 7, we directly address the problem of specifying isometric deformations in this framework
of more general conformal deformations via an optimization based approach.
Finally, we close our investigation with a summary and concluding remarks in Chapter 8.
To provide the theoretical preliminaries for our discussion, we introduce some notions of classical
Di�erential Geometry in the Appendix, a language that is used in particular in Chapter 6.3.
To ease the reading process, a nomenclature table is provided a�er the appendix.

�is thesis would not exist without the help of others and I would like to thank those who provided
me with scienti�c support and made my time at the chair interesting. In particular, I want to thank
Dr. Emanuele Rodolà, Matthias Vestner and Mathieu Andreux for fruitful discussions and for
getting me excited about the �eld of Shape Analysis. I am grateful to Prof. Dr. Daniel Cremers for
giving me the opportunity to write my thesis at his chair and for constantly keeping up a visionary
�air in the various research areas being tackled in the group. �eir e�ort made my thesis time
particularly valuable.

�omas Frerix
Munich, November 2014
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Chapter 1

Introduction

1.1 Classi�cation of Shape Analysis

Within the last decade, the �eld of 3D Shape Analysis has undergone an explosive development.
�e evolution of the �eld has been catalyzed by two ambitious projects in engineering: 3D scanning
and 3D printing. Whereas the former development enables economic and continuously better 3D
models of the world around us, the latter development reverses this process, namely it generates
physical objects from 3D data. In between lies the �eld of Shape Analysis: the algorithmic process-
ing, evaluation and utilization of 3D data. Classical tasks in the �eld of Shape Analysis are the
characterization of shape similarities and the computation of correspondences between shapes.

In order to arrive at the algorithmic aspect of Shape Analysis, a continuous mathematical descrip-
tion of three-dimensional objects has to be discretized and subsequently formulated in feasible
algorithms. �e point of view we choose in this thesis is that of Di�erential Geometry1. �e overall
goal of this approach is to properly discretize Continuous Di�erential Geometry (CDG) to arrive
at a framework of Discrete Di�erential Geometry (DDG), for which a suitable algorithmic formu-
lation is sought.

Along this pipeline, the number of additional aspects that have to be taken into account increases
and therefore is adequately represented by a pyramid as shown in Fig. 1.1.
In the process of discretizing a continuous theory, the discrete objects should exhibit the key
features of the continuous ones, in particular should converge to the continuous theory in a suitable
sense. However, it is o�en not possible to recover all properties of, for example, an operator of the
continuous theory. Consequently, a challenging research problem emerges on the level of DDG:
�nding the most suitable discretization for a given context. A prominent instance of this procedure
is the Laplace-Beltrami operator ([27]).
Analogously, the algorithmic formulation of a discrete theory is far from canonical. In fact, the
modeling process o�en leads to an optimization problem, for which it is as much an art as a skill to

1Another point of view is that of Graph�eory, which neglects the aspect of a continuous geometric theory and
thus starting with a subsampled mesh o�ers and alternative paradigm at the level of a discrete theory.
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1 Introduction

�nd a feasible formulation. More precisely, problems arising in Shape Analysis are o�en quadratic
or even combinatorial in their nature (cf. [21], [17]) and it is a challenge to �nd a scalable and
robust algorithmic formulation.

Figure 1.1: Classi�cation of the �eld of Shape Analysis. As a number of additional aspects increases
from Continuous Di�erential Geometry (CDG) over Discrete Di�erential Geometry (DDG) to an
algorithmic formulation, this process can be represented by a pyramid.

�is thesis touches several aspects of the paradigm pyramid Fig. 1.1. It serves as a lucid example
of the problem hierarchy towards the bottom of the pyramid in highlighting the accumulation
of posed problems. �e choice for the theoretical framework of this thesis is rooted in classical
Di�erential Geometry and is therefore underlined by a theoretical justi�cation from the pyramid
top.
Consequently, the point of view taken in this thesis may be classi�ed as a top-down approach.
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1 Introduction

1.2 A top-down approach to Shape Analysis

At the heart of any application involving 3D shapes lies the geometric characterization of a surface.
As a consequence, prior to being able to manipulate shapes, the question of a comprehensive and
at best unique surface description has to be tackled. Within classical Di�erential Geometry, the
Fundamental �eorem of Surface �eory due to Bonnet answers this question. In prose, it can be
stated as follows:

�eorem 1.1 ([8]). �e �rst and second fundamental form determine a surface up to rigid Euclidean
motion (rotation and translation).

Important for understanding the geometry of surfaces2 is the distinction between the abstract
surface (M , g) and its (in general non-unique) immersion into R3. Geometrical quantities of the
surface can be categorized as being intrinsic, that is, being fully determined by the metric g, and
being extrinsic, that is, depending on the particular immersion. With the language of �eorem 1.1
this can be stated as follows: �e �rst fundamental form completely determines the intrinsic
geometry of a surface, whereas the second fundamental form also carries information about its
immersion. Together, they uniquely de�ne the outer appearance of a surface in ambient space,
which we will call the shape of a surface.
As a consequence, the inverse problem arises naturally: can one prescribe two arbitrary quadratic
forms as �rst and second fundamental form to obtain an immersed surface f ∶ M → R3 unique up
to rigid motion?�e answer is negative, which becomes evident by considering a moving frame
surface description in the basis { fx1 , fx2 ,N} with local coordinates (x1, x2), outward normal �eld
N and partial derivatives fx1 , fx2 : As the immersion is a smooth function, Schwarz’ theorem states
that second order derivatives exchange, ( fx1)x2 = ( fx2)x1 . �is leads to compatibility restrictions
for the two forms, called integrability conditions, which carry the names of Gauß, Mainardi and
Codazzi ([8]):

lx2 −mx1 = lΓ112 +m(Γ212 − Γ111) − nΓ211
mx2 − nx1 = lΓ122 +m(Γ222 − Γ112) − nΓ112 , (1.1)

where l ,m, n are the coe�cients of the local matrix representation of the second fundamental
form and Γki j are the Christo�el symbols, which depend only on the �rst fundamental form and
are functions of the local coordinates. �erefore, only forms satisfying Eq. (1.1) can be prescribed
as �rst and second fundamental form.
As a coupled system of partial di�erential equations with variable coe�cients Γki j, these equations
are in general di�cult to solve.
�e theory of classical Di�erential Geometry has two features that hint at why the integrability
conditions are expressed by such di�cult equations: it is a theory in local coordinates and it im-
poses no restriction on the class of possible immersions. In particular immersions related by a

2We give an introduction to the classical Di�erential Geometry of surfaces in the Appendix.
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1 Introduction

di�eomorphism are covered by the theory.

Remark 1.2. �ese observations lead to conclude that any theory of Shape Analysis that aims to
capture the intrinsic and extrinsic geometry of a surface, has to provide a mathematical formula-
tion, within which the integrability conditions become manageable to solve. Phrased di�erently,
such a formalism has to admit a feasible representation of a suitable shape space.

�is thesis uses the formalism of a quaternionic surface description, which admits a formalization
of shape space under the restriction of conformally equivalent surfaces. In particular, the formalism
naturally incorporates intrinsic and extrinsic geometry. At an abstract level, it allows a formulation
in the language of quaternion-valued di�erential forms and therefore admits a coordinate free
surface description.

�e theoretical foundations have been investigated in the late 90s and have been summarized in
[13]. First applications have been recently realized in [4] for geometry processing tasks. �ese two
works, in particular the latter one, are the main sources of inspiration for this thesis.

In contrast to the geometry processing applications developed in [4], we explore the Quaternionic
Shape Analysis framework for the special case of physical deformations of physical objects. Whereas
conformal deformations are the desired transformations for geometry processing tasks, as they
preserve texture ([6]), physical surfaces are limited in local scaling and shearing. �e associated
class of deformations is that of intrinsic isometries. In fact, the class of conformal deformations is
far too general and not discriminative enough for the analysis of isometric shapes. As a classical
example, every simply connected surface is conformally equivalent to the sphere.
Fig. 1.2 shows possible deformation classes with allowed local transformations. For discrete surfaces,
this corresponds to deformations of each triangle of the mesh. �e table is ordered from le� to
right by inclusion.

rigid isometry

rotation

conformal

rotation
scaling

di�eomorphism

rotation

shearing
scaling

Figure 1.2: Transformation classes with possible local deformations. In the discrete case, these
correspond to operations on the triangles of the mesh.
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1 Introduction

On the other hand, as outlined above, a surface is not uniquely described by the intrinsic geometry,
but the extrinsic geometry has to be taken into account. In fact, as physical objects generally consist
of large rigid parts, there are extrinsic quantities, such as mean curvature, that remain locally
invariant under physical deformations. �is e�ect is demonstrated in Fig. 1.3 and Fig. 1.4, which
exhibit the TOSCA ([3]) dataset’s cat in two (nearly) isometric poses, where the mean curvature
of the shapes is displayed as a scalar function over the surface3. �e mean curvature of large parts
of the cat’s body remains relatively constant on the overall scale of mean curvature change. Note
that extreme values of mean curvature coincide with highly convex (positive mean curvature) and
highly concave (negative mean curvature) regions. A signi�cant change in mean curvature can be
detected at articulated body parts, namely the joints of the movement. To visually highlight this
e�ect, the change of mean curvature when going from the null-pose in Fig. 1.3 to the articulated
motion in Fig. 1.4 is demonstrated in Fig. 1.5 on the null-pose.
Consequently, and in contrast to classical intrinsic descriptor methods4, it is appealing to incorpo-
rate extrinsic geometrical features in the analysis of physical deformations.

In summary, the contribution of this thesis may be formulated as follows:

An exploration of Quaternionic Shape Analysis, incorporating intrinsic and extrinsic geometry, for
the analysis of physical deformations.

3To correct for locally extremal values of mean curvature that distort the global scale, the 95th percentile of the
data is displayed.

4most notably those based on Laplace-Beltrami di�usion geometry
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Figure 1.3:Mean curvature of the TOSCA dataset’s cat in null-pose on a linear scale from −0.9
(blue) over 0.0 (grey) to 0.9 (red) to highlight extreme values.

Figure 1.4:Mean curvature of the TOSCA dataset’s cat in an articulated pose on a linear scale
from −0.9 (blue) over 0.0 (gray) to 0.9 (red) to highlight extreme values.

Figure 1.5:Di�erence inmean curvature when going from the null-pose of Fig. 1.3 to the articulated
pose in Fig. 1.4 on a linear scale from −0.9 (blue) over 0.0 (gray) to 0.9 (red) to highlight extreme
values. �e di�erence is largest at the joints of the movement, whereas mean curvature remains
almost invariant at the rigid parts.
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Chapter 2

Quaternionic surface description

As outlined in the previous chapter, we are seeking a concise formulation of conformal deforma-
tions. As illustrated in Fig. 1.2, the possible local deformations are rotation and scaling. It turns out
that quaternions are a natural language to describe exactly those two operations and provide the
backbone for formalizing the class of conformal deformations.

2.1 Quaternions

�e quaternion skew-�eldH is a four-dimensional real vector space with basis {1, i, j, k} satisfying
the algebraic relations

i2 = j2 = k2 = ijk = −1. (2.1)

A quaternion q = (a, b, c, d) ∈ H can be formally divided into a real and an imaginary part as

Re(q) = a

Im(q) = bi + cj + dk. (2.2)

Using the identi�cation Re(H) ≅ R, Im(H) ≅ R3, a quaternion can be written as

q = q(s) + q(v), (2.3)

where q(s) ∈ Re(H) is the scalar part (≅ real part) and q(v) ∈ Im(H) is the vector part (≅ imaginary
part). �e algebraic relations (2.1) uniquely determine an associative, non-commutative product,
the Hamilton product, which in vector calculus language can be expressed as

qp = q(s)p(s) − ⟨q(v), p(v)⟩
R3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
real part

+ q(s)p(v) + p(s)q(v) + q(v) × p(v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

imaginary part

. (2.4)

As in the remainder of this thesis, we use a notation that will always be clear from context: when
identifying H ≅ R4, Re(H) ≅ R, Im(H) ≅ R3, we will not change the typographic symbol. Cross
and scalar products for purely imaginary quaternions are meant as for the vectors in R3, whereas
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2 Quaternionic surface description

the result of such a vector operation may be identi�ed with a real or imaginary quaternion andmay
be added to another quaternion. Furthermore, every quaternion product that is not designated by
a speci�c operator is the general Hamilton product Eq. (2.4) of two quaternions.

Expression Eq. (2.4) contains two fundamental geometric products in Euclidean space, the scalar
product and the cross product. In particular, for p, q ∈ Im(H) we recover

qp = q × p − ⟨q, p⟩R3 . (2.5)

Conjugation is de�ned as
q = q(s) − q(v), (2.6)

where
qp = pq, (2.7)

and the norm of a quaternion is given by

∣q∣2 = qq. (2.8)

It follows that the inverse of a quaternion q is

q−1 = q
∣q∣2
. (2.9)

A special role play unit quaternions with ∣q∣ = 1, as their similarity transformation on x ∈ Im(H)
corresponds to a rotation in R3, which is illustrated in Fig. 2.1. If q = cos(θ/2) − sin(θ/2)u for
some rotation axis u ∈ Im(H) and θ ∈ [0, 2π), then the map x ↦ qxq realizes a rotation around
u by an angle θ. If, more generally, ∣q∣ ≠ 1, then the similarity transformation results in rotation
induced by q/∣q∣ and scaling by ∣q∣2.

Since for q = q(s) + q(v), the vector part can be locally decomposed in the frame basis { fx1 , fx2 ,N}
of a conformal immersion f ∶ M → R3 with di�erential d f , surface normal �eld N and local
coordinates (x1, x2), any quaternion-valued function ψ ∶ M → H can be decomposed as

ψ = a + d f (Y) + bN , (2.10)

for the surface normal �eld N , some vector �eld Y onM and real valued functions a, b ∶ M → R.

As the Gauss map N appears in this decomposition, it also encodes extrinsic geometry. More pre-
cisely, whereas Eq. (2.3) is a decomposition based on the quaternion structure only, decomposition
(2.10) is f -dependent.
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2 Quaternionic surface description

θ

u

x

q̄xq

Figure 2.1: Illustration of a rotation induced by a quaternion similarity transformation of vector
x ∈ Im(H) around an axis u ∈ R3 by an angle θ ∈ [0, 2π).

As an example, consider a topological surfaceM that admits two di�erent immersions

f1 ∶ M → S1 ⊂ R3

f2 ∶ M → S2 ⊂ R3 ,

that is, they di�er in their extrinsic geometry, but posses the same metric properties. Take a
quaternion-valued function ψ ∶ M → H, p ↦ NS1 , which has vanishing real part and whose vector
part equals that of the Gauss map of the surface S1. �e function ψ then admits the decompositions

ψ = NS1

ψ = d f2(Y) + bNS2 ,

which is the same quaternionic function, but as the immersions di�er, so does the decomposition.

2.2 Di�erential forms

A concise and coordinate free language5 to express ideas of Di�erential Geometry is that of Exterior
Calculus. �e main objects are (di�erential) forms6, which are quaternion-valued in this thesis.
�e important operators are the wedge product ∧, the Hodge star operator ⋆ and the exterior
derivative d.
We will develop an intuitive approach starting from real di�erential forms in the Euclidean case,
over real di�erential forms in the surface case, up to the quaternionic surface case. �is language

5An example where this is helpful for a concise computation is in the proof of �eorem 5.1.
6All forms appearing in this thesis are di�erential forms even if not written explicitly.
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2 Quaternionic surface description

of quaternion-valued di�erential forms over surfaces will be the basis to express the ideas pursued
in Chapter 5 and Chapter 6. Even though not all technical details outlined in this chapter will be
used explicitly later on, they should serve as basis to deal with general calculations of quaternionic
di�erential forms.

2.2.1 Real valued forms on Euclidean space

A 1-form ω over the Euclidean plane R2 is a real linear function ω ∶ R2 → R, i.e. for w1,w2 ∈
R2, a, b, ∈ R,

ω(aw1 + bw2) = aω(w1) + bω(w2).

ω can be thought of to be in the dual space of R2. We can obtain an intuitive understanding of
such a 1-form as follows. Take two vectors v ,w ∈ R2. �en a 1-form ω associated with w can be
interpreted as

ω(v) = ⟨w , v⟩R2 , (2.11)

namely the orthogonal projection from v ontow as illustrated in Fig. 2.2. In fact, the correspondence
– or duality – between w and ω should not be surprising, as it is a manifestation of the self-duality
property of Rn: there is a one-to-one correspondence between linear functionals and the vector
space elements themselves.

w

v

ω(v)

Figure 2.2: Illustration of 1-forms on R2. �e real number ω(v) is the projected length from v
onto w.

Just as with vectors, the space of 1-forms can be constructed from a basis. Denote the basis of R2

by { ∂
∂x1 ,

∂
∂x2 }, such that

7

v = v1 ∂
∂x1

+ v2 ∂
∂x2
.

7With this notation, we already have tangent planes of a surface in mind.
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2 Quaternionic surface description

We denote the basis of the dual space toR2 as {dx1, dx2}, which is constructed by the dual relation

dx i ( ∂
∂x j ) = δ i

j =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j
0 otherwise

�e choice to use lower and upper indices underlines the dual character.

To introduce the wedge product and the Hodge star operator, it is illustrative to consider 2-forms
in R3, which is a natural step from the example above.

ω

η

u

v

u × v

ξ

u′

v′

Figure 2.3: Illustration of 2-forms on R3. �e real number ω ∧ η(u, v) is the projected area of
u × v onto the plane spanned by (ω, η).

Take two vectors u, v ∈ R3 that form a parallelogram and two 1-forms ω, η over R3 that can be
thought of as vectors8 spanning a plane as depicted in Fig. 2.3. If we project u and v onto ω and η,
respectively, then we obtain vectors u′, v′ in the plane spanned by ω and η as

u′ = (ω(u), η(u))

v′ = (ω(v), η(v)) .

�e signed projected area is given by the cross product9

u′ × v′ = ω(u)η(v) − ω(v)η(u).

8We use the same notation for the dual objects ω as a 1-form and as a vector.
9�e third vector component is set to zero.
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2 Quaternionic surface description

�is procedure is an illustration of the wedge product between 1-forms, which we can now de�ne
as exactly this expression

ω ∧ η(u, v) ∶= ω(u)η(v) − ω(v)η(u). (2.12)

ω ∧ η is the generic example of a 2-form, as most 2-forms in this thesis are constructed from two
1-forms via the wedge product. Note that the 2-form ω ∧ η takes two vectors as an argument10.
Even though the wedge product was derived from a special illustrative case, this de�nition is a
general one.
�e wedge product in Eq. (2.12) behaves antisymmetric,

ω ∧ η = −η ∧ ω.

From this property it directly follows that the wedge product of a 1-form with itself has to be zero,
since

ω ∧ ω = −ω ∧ ω .

So far we have been discussing 1- and 2-forms, but omitted 0-forms. �e reason is that there is
no new concept for 0-forms, they are just smooth functions onM. �e wedge product between a
0-form ϕ and a 1-form ω is the pointwise product of the function with the 1-form,

ϕ ∧ ω = ϕω . (2.13)

Analogously, this holds for the wedge product of a 0-form ϕ and a 2-form ω ∧ η,

ϕ(ω ∧ η) = ϕω ∧ η = ω ∧ ϕη . (2.14)

To conclude, for real 1-forms η,ω, ξ, the wedge product has the following properties.

• Antisymmetry: ω ∧ η = −η ∧ ω

• Associativity: ω ∧ (η ∧ ξ) = (ω ∧ η) ∧ ξ

• Distributivity: ω ∧ (η + ξ) = ω ∧ η + ω ∧ ξ

�e illustration in Fig. 2.3 is at the heart of Hodge duality. One can compare the alignment of the
parallelogram spanned by (u, v) with the plane (ω, η) either by calculating its projected area or
by determining how well the normal u × v aligns with the normal ξ of the plane (ω, η). In the
language of di�erential forms,

ξ(u × v) = ω ∧ η(u, v) , (2.15)
10�is generalizes to k-forms, which take k vectors as an argument.
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2 Quaternionic surface description

where ξ is a 1-form evaluated on the vector u × v.
Stated equivalently, in three-dimensional space, the same geometric objects can be related by either
considering two dimensions or the one remaining dimension.

More generally, in n-space, we can use k dimensions to describe a geometric object or the remain-
ing (n − k)-dimensions. We formally introduce the Hodge star operator, which switches between
those two points of view, together with di�erential forms on surfaces.

2.2.2 Real valued forms on surfaces

Let (M , g) be a two-dimensional surface immersed into R3 via an immersion f ∶ M → R3. We
will henceforth use the vector �eld notation, that is, for X ∈ TM, we write the evaluation of a
1-form ω as ω(X), which implies a pointwise evaluation on vectors as ωp(Xp), ∀p ∈ M.

De�nition 2.1. A k-form ω on M, k ∈ {1, 2}, is a real linear function ω ∶ ⋀k
l=1 TM → R.

In this de�nition, ⋀k
l=1 TM denotes the exterior algebra over the tangent bundle TM. Phrased

di�erently, a k-form is in the dual space to ⋀k
l=1 TM, which we denote by Ωk(M) ∶= (⋀k

l=1 TM)∗.
We will not discuss details of the notation or the concept of an exterior algebra, as it leaves the
scope of this thesis and will not be used henceforth. However, we want to emphasize the one
important implication of this notation for the low dimensional cases under consideration. For
the case k = 1, the space ⋀1 TM is just TM itself and for the case k = 2, ⋀2 TM does not imply
more than a sign change under permutation, i.e. for (X ,Y) ∈ TM ∧ TM, (Y , X) = −(X ,Y). �is
sign change can be recognized as a property of the cross product in Eq. (2.15). �us the notation
⋀k

l=1 TM encodes the antisymmetry of di�erential forms that we have already discovered and
which is not mentioned explicitly in Def. 2.1.

Since the tangent space of the surface M is two-dimensional, it is a canonical step from the
Euclidean plane R2. �e input arguments of the forms are now tangent vectors.
In local coordinates (x1, x2) around a point p ∈ M, we denote the basis of the tangent plane at p
by { ∂

∂x1 ,
∂
∂x2 }. �e corresponding dual basis is {dx

1, dx2}.

Resuming the Hodge duality discussion, we de�ne the Hodge star operator acting on a k-form
ω ∈ Ωk(M) as the operator ([9])

⋆ ∶ Ωk(M) → Ω2−k(M) k ∈ {0, 1, 2} , (2.16)

that satis�es
η ∧ ⋆ω = ⟨η,ω⟩ σ ∀η ∈ Ωk(M) , (2.17)
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2 Quaternionic surface description

where ⟨⋅, ⋅⟩ is the inner product on Ωk(M) and σ is the volume form, which can be expressed in
local coordinates as σ = dx1 ∧ dx2. �us the Hodge star operator ⋆ transforms a k-form into a
(2 − k)-form. To specify the inner product on Ωk(M), let us take a concrete basis expansion in
local coordinates. An element ω ∈ Ωk(M) can be expressed as

ω =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ω0 if k = 0
ω1dx1 + ω2dx2 if k = 1
ω3(dx1 ∧ dx2) if k = 2 .

�en an inner product between ω, η ∈ Ωk(M) is given by ⟨ω, η⟩ = ∑ j ω jη j.

With this de�nition at hand, we can describe the action of the Hodge star operator on the basis
elements. Let us start with the basis elements of 1-forms in local coordinates.
For an arbitrary 1-form ω,

ω ∧ ⋆dx1 != ⟨ω, dx1⟩ dx1 ∧ dx2

= ⟨ω1dx1 + ω2dx2, dx1⟩ dx1 ∧ dx2

= ω1dx1 ∧ dx2. (2.18)

Further,

ω ∧ ⋆dx1 = (ω1dx1 + ω2dx2) ∧ ⋆dx1

= ω1dx1 ∧ ⋆dx1 + ω2dx2 ∧ ⋆dx1.

Comparing these two expressions, it follows that ⋆dx1 = dx2. An analogous calculation yields
⋆dx2 = −dx1.
�e action of the Hodge star operator on the 2-form basis dx1 ∧dx2 and on the 0-forms identically
equal to 1, denoted as 1, follow directly from the de�nition Eq. (2.17):

⋆1 = dx1 ∧ dx2

⋆(dx1 ∧ dx2) = 1

Altogether, we arrive at the following conclusion, which summarizes the important facts for calcu-
lations involving the Hodge star operator in practice.
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2 Quaternionic surface description

Conclusion on the Hodge star operator in the surface case

�eHodge star operator acts on the basis elements of local coordinates as

⋆1 = dx1 ∧ dx2

⋆(dx1 ∧ dx2) = 1

⋆dx1 = dx2

⋆dx2 = −dx1 (2.19)

We deduce that the Hodge star acts on the 1-form basis as a counterclockwise 90○ rotation.
As a consequence, the action of the Hodge star operator on the forms appearing in the surface
case is:

0-forms Let ϕ be an R-valued 0-form onM, σ the volume form, then

⋆ ϕ = σϕ. (2.20)

1-forms Let ω be an R-valued 1-form on M, J the complex structure introduced in the
Appendix, namely a counterclockwise 90○ rotation, then

(⋆ω)(X) = ω(J X) ∀X ∈ TM . (2.21)

2-forms Let η be an R-valued 2-form onM, σ the volume form, then

(⋆η)σ = η . (2.22)

It follows that every 2-form η is a rescaled version of the volume form by the 0-form
⋆η ∶= η(X ,J X), for any vector �eld X ∈ TM with ∣d f (X)∣ = 1. Note that if we �x such a X ∈
TM, then η(X ,J X) is a function onM, that is, η(X ,J X) ∶ M → R, p ↦ η(Xp , (J X)p).

Furthermore, for an R-valued 0-forms ϕ,ψ, and k-forms ω, η (k ∈ {0, 1, 2}) on a surfaceM
immersed into R3 the following identities hold for the Hodge star operator11:

⋆(ϕω + ψη) = ϕ(⋆ω) + ψ(⋆η)

⋆ ⋆ ω = (−1)k(2−k)ω

⟨⋆ω, ⋆η⟩ = ⟨ω, η⟩ . (2.23)

11A discussion of the structural properties of the Hodge star operator is given in [9].
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2 Quaternionic surface description

�e exterior derivative d ∶ Ωk(M) → Ωk+1(M) is the unique R-linear mapping from k-forms to
(k + 1)-forms that satis�es ([10])

1. dϕ is the di�erential of ϕ for any smooth function ϕ ∈ Ω0(M)

2. d(dω) = 0 ∀ω ∈ Ωk(M)

3. d(ω ∧ η) = dω ∧ η + (−1)degω(ω ∧ dη) ∀ω, η ∶ ω ∧ η ∈ Ωk(M)

�e third property is called the Leibniz rule and includes as a special case the product rule for the
di�erentiation of functions. A k-form ω is called closed if dω = 0. It is called exact if ω = dη for
some η ∈ Ωk−1(M). As d(dω) = 0, every exact from is closed.
By linearity and the Leibniz rule, the exterior derivative is conveniently applied to the basis elements
as the following example of a 1-form ω = ω1dx1 + ω2dx2 demonstrates.
Due to linearity,

dω = d(ω1dx1) + d(ω2dx2) + d(ω3dx3) . (2.24)

By the Leibniz rule, each term of Eq. (2.24) can be written as

d(ωidx i) = dωi ∧ dx i + ωi ∧ ddx i =
2
∑
j=1

∂ωi

∂x j dx
j ∧ dx i ,

as ddx i = 0.

�e language of di�erential forms allows a concise formulation of surface integration. A powerful
theorem that is used in the thesis for the discretization via the Finite Element paradigm is Stoke’s
theorem,

∫Ω dω = ∫∂Ω ω (2.25)

for a domain Ω ⊂ M and a di�erential form ω onM.

2.2.3 Quaternion-valued forms on surfaces

In the quaternionic case, we unfortunately do not have the intuitive examples as for real valued
forms at hand. However, the abstract operations of Exterior Calculus form a powerful language,
which we will use in the remainder of the thesis. In the following, we will outline how the non-
commutativity of quaternions a�ects these properties, which will lead to a set of rules that we need
for calculations carried out later on in this thesis.
Whereas generic real valued di�erential forms are denoted by ω, η, generic quaternion-valued dif-
ferential formswill be denoted by α, β to always be aware that we are dealingwith non-commutative
objects.
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2 Quaternionic surface description

Note that as surfaces are intrinsically 2-dimensional, the quaternionic forms appearing in this
framework are

• 0-forms: smoothH-valued functions onM

• 1-forms: real-linear maps that take a vector �eld onM to anH-valued function

• 2-forms: maps that take two vector �elds onM to anH-valued function

As in the commutative case, quaternionic di�erential 1-forms are real linear, which means that for
any real valued function φ and vector �elds X ,Y ,

α(φX + Y) = φα(X) + α(Y). (2.26)

For 1-forms α, β, the quaternionic wedge product is de�ned as

α ∧ β(X ,Y) ∶= α(X)β(Y) − α(Y)β(X), (2.27)

where all products appearing are quaternionic Hamilton products, as de�ned in Eq. (2.4).
With a 0-form h, the following identities will be useful in calculations ([13]):

α ∧ β = −β ∧ α,

α ∧ hβ = αh ∧ β,

hα ∧ β = h(α ∧ β). (2.28)

In addition, if φ is a real valued function, then

α ∧ φβ = φ(α ∧ β), (2.29)

which would not be true if φ was a general quaternion-valued function.
As relations (2.28) show, it is in general also not true that α ∧ β = −β ∧ α.
�e usual Leibniz rule on the other hand remains valid,

d(α ∧ β) = dα ∧ β + (−1)deg(α)(α ∧ dβ), (2.30)

where the degree of a k-form is k. �e properties for the Hodge star operator derived in the last
section remain valid as well.

Convention for 2-forms If not indicated otherwise, a 2-form α ∧ β will always be evaluated at a
single vector �eld de�ned by

(α ∧ β)(X) ∶= α ∧ β(X ,J X) (2.31)
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2 Quaternionic surface description

Phrased di�erently, a 2-form will be identi�ed with the associated quadratic form.
A central expression is that of a volume12, which is measured by the volume form σ ,

σ = 1
2
d f ∧ Nd f . (2.32)

With the convention (2.31) in mind, the wedge product Eq. (2.27) can be written as

α ∧ β = α(⋆β) − (⋆α)β. (2.33)

In accordance with [4] and [13], we will denote the volume form of a conformal immersion as
∣d f ∣2, which, using ⋆d f = Nd f for a conformal immersion f , can be expressed as

∣d f ∣2 = 1
2
d f ∧ ⋆d f . (2.34)

To denote the Hodge star operator on 2-forms, we will o�en write the quotient of a 2-form η and
the conformal volume form ∣d f ∣2, which we de�ne as

η
∣d f ∣2

∶= ⋆η. (2.35)

�e reasoning behind this notation stems from Eq. (2.22).
As an example for the formalism introduced in this section, we derive an alternative expression
for the volume form in concise notation. We use the convention (2.31) together with Eq. (2.33) as
well as the relations listed as Eqs. (2.23) :

∣d f ∣2 = 1
2
(d f ∧ ⋆d f )

= 1
2
(d f (⋆ ⋆ d f ) − (⋆d f )(⋆d f ))

= 1
2
(−d f d f − (⋆d f ) × (⋆d f )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+⟨⋆d f , ⋆d f ⟩)

= 1
2
(−d f d f + ⟨d f , d f ⟩)

= 1
2
(−d f d f − (d f × d f

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=0

−⟨d f , d f ⟩))

= −d f d f , (2.36)

where every appearing 1-form is evaluated at some �xed vector �eld X ∈ TM.

12�e two-dimensional volume in this case is surface area.
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2 Quaternionic surface description

2.3 Quaternionic inner product spaces

In order to have the apparatus of linear algebra available for the analysis of quaternionic matrices,
following [11], we will introduce the concept of a quaternionic inner product space. As can be
expected, di�culties arise due to the non-commutativity of quaternions. We choose to de�ne
H-vector spaces and quaternionic inner product spaces with scalar multiplication from the right.
Apart from this choice, the usual properties of spaces over regular �elds hold. To be precise, we
list the formal de�nitions of the spaces we are working with.

De�nition 2.2. An additive abelian group V is a rightH-vector space if there is a map V ×H→ V,
under which the image of each pair (λ, q) ∈ V ×H is denoted by λq, such that for all q, q1, q2 ∈ H
and λ, λ1, λ2 ∈ V it holds that

(λ1 + λ2)q = λ1q + λ2q

λ(q1 + q2) = λq1 + λq2
λ(q1q2) = (λq1)q2

λ1 = λ .

De�nition 2.3. A rightH-vector space V is a quaternionic inner product space if there is a map
⟨⋅, ⋅⟩ ∶ V × V → H such that for all q, q1, q2 ∈ H and λ, λ1, λ2 ∈ V it holds that

⟨λ, λ1 + λ2⟩ = ⟨λ, λ1⟩ + ⟨λ, λ2⟩

⟨λ1, λ2q⟩ = ⟨λ1, λ2⟩ q

⟨λ1, λ2⟩ = ⟨λ2, λ1⟩

⟨λ, λ⟩ ≥ 0 and ⟨λ, λ⟩ = 0⇔ λ = 0 .

�e example of a �nite dimensional quaternionic inner product space that we will use throughout
this thesis isHn. It is equipped with the quaternionic inner product

⟨λ, µ⟩Hn =
n
∑
k=1

λkµk , (2.37)

where the term-wise operation is the non-commutative Hamilton product as de�ned in Eq. (2.4).

�e above theory extends to in�nite dimensional quaternionic inner product spaces [25]. �e
example appearing in this thesis is the Hilbert space L2(M ,H), the space of square integrable
quaternionic functions onM, with the quaternionic inner product

⟨ϕ,ψ⟩L2(M ,H) = ∫M ϕψ∣d f ∣2. (2.38)
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2 Quaternionic surface description

2.4 �e spectral theorem for quaternionic normal matrices

In order to conduct a spectral geometry of di�erential operators on quaternion-valued functions,
as in Chapter 5 and Chapter 6, we would like to have an expansion of such functions in terms of a
suitable basis related to the operator itself. As for matrices over C, normal quaternion matrices are
diagonalizable. Formally, this can be stated as

�eorem 2.4. ([11]) Assume that V is a n-dimensional quaternionic inner product space. �en an
endomorphism T ∶ V → V is normal if and only if there are µ1, . . . , µn ∈ V and γ1, . . . , γn ∈ C+, the
closed complex upper half plane, such that:

1. {µ1, . . . , µn} is anH-independent generating set for V

2. ⟨µk , µl⟩ = δkl

3. Tµk = γkµk

4. Tλ = ∑n
k=1 γkµk ⟨µk , λ⟩ ∀λ ∈ V

More is true for hermitian quaternion matrices:

�eorem 2.5 ([11]). If Q ∈ Hn×n is hermitian, that is, Q† = Q, then every right eigenvalue of Q is
real.

�is theory also extends to the case of normal operators on L2(M ,H) ([25]), which we will use in
discussions of the continuous theory.

It is worth pointing out a peculiarity of a quaternionic eigenvalue problem.

�eorem 2.6 ([11]). Let (q, ξ) ∈ H ×Hn be a right eigensolution for Q ∈ Hn×n, then (w−1qw , ξw)
is also a right eigensolution for Q for any non-zero w ∈ H.

�e proof is a one-line calculation:

Q(ξw) = (Qξ)w = (ξq)w = (ξw)(w−1qw). (2.39)

According to this theorem, if Q is a hermitian quaternion matrix, then q ∈ R commutes with any
non-zero w ∈ H, from which follows

Corollary 2.7. Let (q, ξ) ∈ H×Hn be a right eigensolution for Q ∈ Hn×n with Q† = Q, then (q, ξw)
is also a right eigensolution for Q for any non-zero w ∈ H.

Remark 2.8. As a geometric consequence, every eigensolution of a hermitian quaternion matrix
is unique up to global rotation and scaling.
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Chapter 3

Shape space, spin transformation
and integrability

As outlined in Chapter 1.2, we are seeking a suitable representation of the shape space of conformal
immersions. We introduce the coordinates in conformal shape space,mean curvature half-densities,
in Chapter 3.1. As deformations within conformal shape space, we consider spin transformations,
which we present in Chapter 3.2. Based on these concepts, we give the de�nition of conformal
shape space in Chapter 3.4.

As outlined in the Appendix, any surface admits a conformal immersion f ∶ M → R3. Unfortu-
nately, immersions f ∶ M → R3 are not well suited for this description as they do not form a vector
space: the sum of two conformal immersions is not necessarily conformal. However, a conformal
immersion is (almost)13 uniquely determined by the metric and itsmean curvature half-density,
which does admit a vector space structure ([14]). A conformal shape space representation based
on mean curvature half-densities is investigated in [4], which we will follow closely.

3.1 Half-densities

LetM be a topological surface with complex structure J and f an immersion such that

d f (J X) = N × d f (X) ∀X ∈ TM ,

that is, f is a conformal immersion14. A half-density is a (in general non-linear15) map

φ∣d f ∣ ∶ TM → R, X ↦ φ∣d f (X)∣ ,

13Exceptional cases are rather exotic and can be neglected for applications.�ey are characterized in [14] and termed
Bonnet pairs therein.

14�e action of J corresponds to a 90○ counterclockwise rotation in tangent space.
15�erefore half-densities are not 1-forms.
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3 Shape space, spin transformation and integrability

for some real valued function φ in L2(M ,H). �is means that at a point p ∈ M, the vector Xp is
mapped to its length in the ambient space R3 scaled by φ(p).

�ese maps form a real vector space

H ∶= {φ∣d f ∣ ∶ TM → R, X ↦ φ∣d f (X)∣ ∣φ ∈ L2(M ,H)} (3.1)

by de�ning
(φ1 + γφ2)∣d f ∣ ∶= φ1∣d f ∣ + γφ2∣d f ∣ , (3.2)

with γ ∈ R.

Moreover, the space of half-densities is a Hilbert space with the inner product

⟨φ1∣d f ∣, φ2∣d f ∣⟩H ∶= ∫M φ2φ2∣d f ∣2 = ⟨φ1, φ2⟩L2(M ,H) . (3.3)

In particular, there is a notion of orthogonality and thus of direction onH.

Altogether, this means that for a �xed immersion f ,H inherits the vector space structure from
L2(M ,H).

As a special case, taking φ = H, the mean curvature of the immersion of the surfaceM, we obtain
the mean curvature half-density µ ∶= H∣d f ∣ ∈ H. Because of the inner product space structure
of H, it is possible to conduct a calculus of mean curvature half-densities, which leads to the
de�nition in conformal shape space in Chapter 3.4. Mean curvature half-densities can be regarded
as coordinates in this shape space.

Besides the structural advantage there are two more aspects, which make mean curvature half-
density attractive for Shape Analysis and superior to mean curvature by itself.

First, since H ∼ 1/∣d f ∣, µ is scale-invariant, meaning that a shape representation does not depend
on the global scale of the immersion, which is a desired property from a computational point of
view.

Secondly, because of this scaling behavior, mean curvature itself is not a good descriptor for
global shape appearance as an increase (decrease) in mean curvature can be caused by decreasing
(increasing) the local scale or by positive (negative) bending of the shape. Consider the comparison
of a sphere and an ellipsoid for mean curvature and mean curvature half-density in Fig. 3.1 and
Fig. 3.2. Both �gures show deformations of the unit sphere. In Fig. 3.1a and Fig. 3.2a, the radius is
reduced to half of its length, in Fig. 3.1b and Fig. 3.2b the x-axis is doubled in length, whereas y-
and z-axis remain at unit length. �e bended sides of the ellipsoid in Fig. 3.1b and the sphere in
Fig. 3.1a exhibit locally the same mean curvature, whereas the sphere looks globallymore similar
to the center of the ellipsoid.

In Fig. 3.2 however, the local value of mean curvature half-density relates the global appearance of
the sphere to the center of the ellipsoid.
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3 Shape space, spin transformation and integrability

(a) Sphere with radius R = 0.5 relative units (b)Ellipsoid with (Rx , Ry , Rz) = (2, 1, 1) relative units

Figure 3.1: Comparison of mean curvatures as a descriptor of global shape appearance for the
sphere and an ellipsoid on a linear scale from 0.6 (blue) to 2.0 (red). �e sphere looks globally
similar to the center of the ellipsoid, but mean curvature locally coincides with the tip of the
ellipsoid.

(a) Sphere with radius R = 0.5 relative units (b)Ellipsoid with (Rx , Ry , Rz) = (2, 1, 1) relative units

Figure 3.2:Comparison ofmean curvature half-densities as a descriptor of global shape appearance
for the sphere and an ellipsoid on a linear scale from 0.05 (blue) to 0.1 (red). Local values in mean
curvature half-densities bring the sphere in correspondence with the center of the ellipsoid, which
is in accordance with global shape appearance.
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3 Shape space, spin transformation and integrability

3.2 �e notion of spin equivalence and integrability

Consider two immersions f and f̃ , whose tangent spaces are related by a quaternion similarity
transformation, namely that there exists a λ ∶ M → H ∖ {0} such that

d f̃ = λd f λ. (3.4)

In light of [14], we call this transformation a spin transformation and we call immersions f and
f̃ spin equivalent. Spin equivalence is indeed an equivalence relation. As outlined in Chapter 2,
a conformal deformation can be locally expressed as a rotation with scaling in tangent space.
Precisely these two operations are encoded in Eq. (3.4): rotation by the unit quaternion λ/∣λ∣ and
scaling by ∣λ∣2. In fact, in the case ofM being closed and simply connected, any two conformal
immersions are spin-equivalent.
However, not for every λ ∶ M → H ∖ {0} there is a spin transformation that leads to an integrable
immersion. In the language of di�erential forms, d f̃ has to be an exact 1-form. On a simply
connected domain every closed form is exact16 ([14]). To �nd an integrability condition, we therefore
have to �nd conditions under which d(d f̃ ) = 0.

�eorem 3.1 ([14]). Given a conformal immersion f ∶ M → R3 of a closed and simply connected
surface M, an immersion f̃ ∶ M → R3 can be obtained via spin transformation d f̃ = λd f λ for
λ ∶ M → H ∖ {0}, if there exists a function ρ ∶ M → R such that

− d f ∧ dλ = ρλ∣d f ∣2 . (3.5)

Proof. Using the Leibniz rule Eq. (2.30),

d f̃ = d(λd f λ) = dλ ∧ d f λ − λd f ∧ dλ = −2Im(λd f ∧ dλ),

which implies that if λd f ∧ dλ is a 2-form that takes values in the purely real quaternions, then
d f̃ = 0, which means that d f̃ is closed and asM is simply connected, d f̃ is integrable.
As stated in Eq. (2.22), any 2-form is a rescaled version of the volume form by a quaternion-valued
function, which in this case has to be purely real, λd f ∧ dλ = ρ̂∣d f ∣2. Multiplying by λ and setting
ρ = −ρ̂/∣λ∣2, we obtain that there has to exist a function ρ ∶ M → R such that

−d f ∧ dλ = ρλ∣d f ∣2 .

16As d2 = 0, the reverse is always true: every exact form is closed.

24
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For a given λ, such a function ρ is unique, if it exists ([14]). Note that the theorem is not true for
non-simply connected surfaces. A way to successfully apply spin transformations to higher genus
surfaces is outlined in [4].

If f , f̃ are related by a spin transformation via λ that ful�lls the integrability condition (3.5) for
some ρ, we will at times write that f and f̃ are (λ, ρ)-spin equivalent or just λ-spin equivalent.

It is useful to exploit some properties of spin transformation:

�eorem 3.2 ([14]). Let f , f̃ ∶ M → R3 be (λ, ρ)-spin equivalent. �en,

1. Ñ = λ−1Nλ is the oriented normal to f̃

2. ∣d f̃ ∣2 = ∣λ∣4∣d f ∣2

3. H̃ = H+ρ
∣λ∣2

Remark 3.3. �e second property (conformal factor) demonstrates that for ∣λ∣ ≡ 1 we obtain an
isometric spin transformation. Due to the third property, ρ has the interpretation of a change in
mean curvature half-density, which we will henceforth denote as the curvature potential. �e mean
curvatures of spin equivalent surfaces are related by

H̃∣d f̃ ∣ = H∣d f ∣ + ρ∣d f ∣ . (3.6)

Spin transformation is the central tool to navigate in conformal shape space, which is introduced
in Chapter 3.4. For our purpose of characterizing isometric deformations, the second property in
�eorem 3.2 is the core insight.

3.3 Quaternionic Dirac operator

�e integrability condition Eq. (3.5) can be reformulated by introducing the quaternionic Dirac
operator17 de�ned as

D f ∶= −
d f ∧ dλ
∣d f ∣2

. (3.7)

�en according to �eorem 3.1, on a simply connected surface M, a spin transformation with
λ ∶ M → H ∖ {0} is integrable if and only if there exists some ρ ∶ M → R such that

(D f − ρ)λ = 0. (3.8)

On a closed surface M, the Dirac operator can be viewed as a self-adjoint, weakly elliptic oper-
ator D f ∶ L2(M ,H) → L2(M ,H) ([4]). �is implies that the operator induces an orthonormal
eigenbasis of L2(M ,H) and has a discrete spectrum of real eigenvalues.

17In the following, we will at times drop the term quaternionic.
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3 Shape space, spin transformation and integrability

In [4], emphasis is drawn to the relation of the Dirac operator to classical operators in vector
calculus and di�erential geometry. Consider a quaternion-valued function ψ in the decomposition
Eq. (2.10),

ψ = a + d f (Y) + bN .

�e action of the Dirac operator can be summarized in the following scheme having matrix-vector
multiplication rules in mind:

D f ψ =
⎛
⎜⎜⎜
⎝

0 −curl 0
J grad −S grad
0 −div 2H

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

a
Y
b

⎞
⎟⎟⎟
⎠

(3.9)

Here, S is the shape operator, H is the mean curvature of the immersion f , J is the complex
structure onM (inducing a 90○ counterclockwise rotation) and grad, div and curl are the common
vector analysis operators.
�is equation makes a strong point for the theory of a quaternionic surface description: with an
operator that is an endomorphism on the space of quaternion-valued functions, one can express
numerous18 geometrically interesting operators in classical vector calculus. �is means that in
contrast to the classical theory, the type of mathematical object does not change under the action
of a di�erential operator: a quaternionic function is mapped to a quaternionic function.
�e name of this operator stems from the fact that in local coordinates, it is equivalent to the
spin-Dirac operator from relativistic quantum mechanics ([4]).

3.4 Conformal shape space

In order to gain intuition about the structure of conformal shape space, we closely follow the
exposition given in [4]. Let us de�ne the conformal shape spaceM f as the space of all mean
curvature half-densities that can be achieved via some spin transformation f̃ of f :

M f ∶= {ρ∣d f ∣ ∣ ρ∣d f ∣ = H̃∣d f̃ ∣ −H∣d f ∣, f̃ ∶ M → R3} ⊂ H . (3.10)

For ρ∣d f ∣ ∈ M f , the integrability condition Eq. (3.8) implies that (ρ + γ)∣d f ∣ ∈ M f for all real
eigenvalues γ ofD f . As already mentioned in Chapter 3.3,D f has a discrete collection of eigen-
values denoted by . . . , γ−1, γ0, γ1, . . . , where the indices emphasize that there are positive as well
as negative eigenvalues. We can then �nd (λ, ρ + γk)-spin equivalent surfaces in direction ∣d f ∣.
For the case ofM being closed and simply connected,M is topologically equivalent to the sphere
S2. �erefore, by transitivity of spin equivalence,M f must be connected, as there is a path in
M f connecting any two spin equivalent surfaces via the sphere. As a consequence,M f can be

18A comprehensive list including derivations is given in [4].
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3 Shape space, spin transformation and integrability

sketched as a spiral as depicted in Fig. 3.3.

0
µ1 µ3µ2µ−1µ−2µ−3

M f

∣d f ∣

Figure 3.3: Sketch of conformal shape spaceM f . One can reach surfaces in direction of ∣d f ∣ via
spin transformation represented by mean curvature half-densities µi . All surfaces must be globally
connected as every closed and simply connected surface is conformally equivalent to the sphere.
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Chapter 4

Discretization of
Quaternionic Shape Analysis

4.1 Representation of quaternionic calculus in R4

In order to construct algorithmic applications of quaternionic calculus, a real representation is
necessary. At the center of this construction is the identi�cation H ≅ R4, which allows a real
representation of the quaternion q = a + bi + cj + dk as a skew-symmetric matrix Q ∈ R4×4 via

Q =

⎛
⎜⎜⎜⎜⎜
⎝

a −b −c −d
b a −d c
c d a −b
d −c b a

⎞
⎟⎟⎟⎟⎟
⎠

, (4.1)

where the basis elements are represented by the Pauli matrices

i =

⎛
⎜⎜⎜⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

j =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟⎟⎟
⎠

k =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

.

For the remainder of this section we want to clearly distinguish the levels of continuous operators,
quaternionic matrices and their real representation. To this end, we introduce the notational con-
vention of di�erent math fonts. A continuous operatorA ∈ L2(M ,H), has a quaternionic matrix
representation A ∈ Hm×n, which itself has a real representation A ∈ R4m×4n. Every quaternion in
A is represented by a 4 × 4 block matrix of the form Eq. (4.1) in A.
Quaternionic vectors ξ ∈ Hn are printed in regular font, whereas their real representations ξ ∈ R4n

are printed in bold face. With this notational convention it is at all times clear what level of dis-
cretization is considered.
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4 Discretization of Quaternionic Shape Analysis

As the real representation encodes the algebraic structure of the quaternions, it can be used to
express all operations in quaternionic calculus, in particular the Hamilton product is expressed as
a matrix vector product

qp ≙ Qp.

�e transpose of the real skew-symmetric matrix M ∈ R4n×4n then corresponds to the hermitian
adjoint of the quaternionic matrixM ∈ Hm×n ,

M† ≙ MT .

A quaternionic hermitian matrixM ∈ Hn×n has an eigensolution (γ, ξ) ∈ R ×Hn if and only if its
symmetric real representation M ∈ R4n×4n has an eigensolution (γ, ξ) ∈ (R ×R4n).
A real symmetric matrix M ∈ R4n×4n induces an orthonormal eigenbasis of R4n, a hermitian
matrix M ∈ Hn however induces an orthonormal eigenbasis of Hn by �eorem 2.4. �ose two
concepts are united by �eorem 2.6, which states that for any non-zero w ∈ Hn, (γ, ξw) is also
an eigensolution to the quaternionic matrix M, if (γ, ξ) is one. As a result, every quaternionic
eigenvector corresponds to 4-dimensional real eigenspace representation. If we require normal-
ization of the eigenvectors there are still three degrees of freedom le�. �e interpretation of this
mathematical fact in our context is that any solution to a quaternionic eigenvalue problem can
only be unique up to global rotation.

We represent discrete surfaces by a triangular mesh (V , F), where V is the set of vertex positions
with cardinality ∣V ∣ and F is the face set with cardinality ∣F∣ encoding which vertices form a triangle.
Discrete quantities in this thesis are either vertex- or face-valued.
An e�ect to keep in mind when dealing with quaternions on discrete surfaces is the increased
memory use. A quaternionic matrix A ∈ H∣V ∣×∣V ∣ requires 16 times more memory than a real
matrix A ∈ R∣V ∣×∣V ∣.

4.2 Discrete Dirac operator

In order to discretize the Dirac operator, we choose a Finite Element approach as in [4].
In general, discretizing an operatorA amounts to weighted integration of its action on piecewise
linear functions ϕ over the mesh19. We choose uniform integration weights, i.e. integrals are
normalized by the total integration area. If A is the matrix representation of the operatorA, then
applying A to ϕ (considered as a vector) should be equal to the average action of the continuous
operator:

Aϕ = 1
ν(Ω) ∫ΩAϕ dν ,

19We are considering linear Finite Elements. In general, a Finite Element approach can be based on higher order
functions.
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4 Discretization of Quaternionic Shape Analysis

where Ω is the integration domain and ν the surface measure.

As a starting point for discretizing the Dirac operator we choose the rewritten continuous expres-
sion

D f λ = d(d f λ)
∣d f ∣2

.

Let f and λ be piecewise linear functions that are interpolated between themesh vertices. Face-wise
integration ofD f λ over a triangle tl with vertices (i , j, k) and edges ek ∶= ei j = f j − fi (cf. Fig. 4.1)
yields by Stokes’ theorem Eq. (2.25)

1
Al

∫t l D f λ∣d f ∣2 = 1
Al

∫∂t l d f λ = 1
Al

∑
e i j∈∂t l

( f j − fi)
λi + λ j

2

= 1
Al

[(ei j + eki)
λi

2
+ (e jk + ei j)

λ j

2
+ (e jk + eki)

λk
2
]

= − 1
2Al

(eiλi + e jλ j + ekλk) ,

which gives the discretized matrix representation D ∈ H∣F∣×∣V ∣ of the Dirac operator as

Di j = −
1
2Ai

e j . (4.2)

ek = ei j
i j

k

Figure 4.1: Sketch for the notation of a triangle of the discretized surface. �e edge ei j can be
described as connecting vertices i and j or as being across of vertex k, when it is denoted as ek .

4.3 Discrete curvature potential

�roughout this thesis, we will represent the discrete version of the curvature potential ρ by a
vertex-valued function20. For the Finite Element discretization, let ρ and λ be piecewise linear

20In contrast, in parts of [4], a face-wise representation is used.
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4 Discretization of Quaternionic Shape Analysis

functions interpolated between the vertices. �en,

1
Al

∫t l ρλ∣d f ∣2 = 1
3 ∑v i∈t l

λiρi .

Consequently, the matrix representation R ∈ H∣F∣×∣V ∣ is

Ri j =
1
3

ρ j1{v j∈t i} . (4.3)

4.4 Adjoint matrices

�e hermitian adjoint of a continuous linear operator A ∶ H → H on a Hilbert space H is the
continuous, linear operatorA∗ ∶ H→ H, which is uniquely de�ned by the expression

⟨Ax , y⟩ = ⟨x ,A∗y⟩ ∀x , y ∈ H.

In our setting, the Hilbert space is L2(M ,H) with the corresponding surface measure. In the
discrete case, this Hilbert space isH∣V ∣ orH∣F∣. When choosing the inner product on theses spaces,
we have to make sure that the surface area is accounted for, even though the appearing functions
are vertex-valued only. �erefore, the inner product between two vertex-valued vectors a, b ∈ R∣V ∣

cannot be the standard inner product21, but has to be reweighted by suitable surface areas.
In general, on Rn, any positive de�nite symmetric matrix M de�nes an inner product

⟨⋅, ⋅⟩ ∶ Rn ×Rn → R, (x , y) ↦ xTMy .

In our context, we would like that M represents the surface weight, meaning that 1TM1 equals the
total surface area.

OnH∣V ∣, this can be realized by choosing the real diagonal matrix

(MV)ii =
1
3 ∑k∈Fi

Ak ,

where Ak is the area of face k ∈ F. �is corresponds to the Voronoi areas on the diagonal.
For an inner product onH∣F∣, we de�ne the real diagonal matrix

(MF)kk = Ak ,

the matrix with face areas on the diagonal.

21�is would correspond to the Dirac measure on the surface with atoms at the vertices.
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4 Discretization of Quaternionic Shape Analysis

Equipped with this inner product, the hermitian mesh adjoint of an operator E ∈ H∣F∣×∣V ∣ is given
by

E∗ = M−1
V E†MF ,

where E† is the hermitian matrix adjoint, namely transposed and quaternion conjugated.
In this thesis we adopt this as a notational convention: mesh adjoints of a quaternionic hermitian
matrix A are speci�ed by a A∗, matrix adjoints are denoted by A†.

4.5 Discrete Dirac equation

With the quantities derived in the previous sections, we are now able to discretize the time-
independent Dirac equation

(D f − ρ)λ = γλ.

With A ∶= (D − R) ∈ H∣F∣×∣V ∣, the most straightforward idea would be to formulate the discretized
rectangular eigenvalue problem Aλ = γBλ, where B ∈ H∣F∣×∣V ∣ with Bi j = 1

3 1{v j∈t i} as an averaging
operator. As square eigenvalue problems are easier to deal with it would be possible to average
faces back to vertices. In [4] it is noted though that this approach heavily modi�es solutions. We
will outline the author’s proposed solution to this issue in the following.

In the continuous case, any eigensolution (γ, λ) to the equation Aλ = γλ is also a solution to
the equationA2λ = γ2λ, though the reverse is not true, as we lose the sign of γ. Introducing the
operatorA in addition on the right-hand side discriminates between the sign of the eigenvalues.
�is leads to the discrete square eigenvalue problem

A∗Aλ = γB∗Aλ .

We have now traded a rectangular eigenvalue problem with a generalized, but square eigenvalue
problem. In practice, this can be reduced to a standard eigenvalue problem since we are looking
for the smallest eigenvalue and can neglect mixing eigenspaces due to the sign ambiguity. We
therefore seek to solve the standard eigenvalue problem

A∗Aλ = γλ . (4.4)

It is convenient to build the matrix E ∶= A∗A by directly looping over the faces. In particular, for
each pair of vertices (i , j) there are two faces k1, k2 that include both vertices (cf. Fig. 4.2), i.e.

Ei j = ∑
k∈{k1 ,k2}

−
e(k)i e(k)j

4Ak
+ 1
6
(ρie(k)j − ρ je(k)i ) + Ak

9
ρiρ j . (4.5)
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4 Discretization of Quaternionic Shape Analysis

k1 k2

e(k2)ie(k1)i

j

i
e(k2)je(k1)j

α(k1)i j α(k2)i j

Figure 4.2: Sketch of two triangles to an edge connecting vertices i and j.

4.6 Discrete spin transformation: recovering vertex coordinates

To recover the vertex positions, the spin transformation equation d f̃ = λd f λ has to be solved for
new coordinates f̃ . We follow the approach outlined in [4].
According to the quaternion similarity transformation, the new edges ẽi j ∶= f̃ j − f̃i should be
obtained by scaling and rotating the original edges ei j ∶= f j − fi according to λ. �e similarity
transformation is discretized by integrating λd f λ over each edge in the original mesh under the
assumption that λ is a piecewise linear function interpolated between the vertices:

ẽi j =
1
3

λiei jλi +
1
6

λiei jλ j +
1
6

λ jei jλi +
1
3

λ jei jλ j . (4.6)

Subsequently, we solve the linear system d f̃ = ẽ for the vertex coordinates f̃ in a least-squares
approach,

f̃ = argmin
f̃ ∈R3

∫M ∣∇ f̃ − ẽ∣2∣d f̃ ∣2 . (4.7)

To this end, we solve the associated Euler-Lagrange equation, which is the Poisson problem

∆ f̃ = ∇ẽ . (4.8)

For the discretization of the Laplace-Beltrami operator ∆ and the derivative operator ∇, we use
the cotangent weight scheme obtained with a Finite Element approach.
Note that even though in continuous theory d f̃ is an exact 1-form, we still have to solve a least-
squares problem in this step, as the exact integrability is lost due to the discretization in Eq. (4.6).
However, as mentioned in [4], the residual r ∶= ∣d f̃ − ẽ∣2 vanishes under mesh re�nement and
even on a coarse level this method yields good results.

4.7 Mean curvature and mean curvature half-density

We calculate the mean curvature normal at a vertex with coordinates fi as introduced in [7]:
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4 Discretization of Quaternionic Shape Analysis

HiNi = −
1
4Ai

∑
j∈Ni

(cot(α(k1)i j ) + cot(α(k2)i j ))( f j − fi), (4.9)

where Hi is the mean curvature, Ni is the outer unit normal, Ai is the Voronoi area and the angles
α(k)i j are as depicted in Fig. 4.3. �e summation is taken over the one-ring neighborhoodNi . It
follows that the mean curvature at a vertex i is calculated as the projection onto the outer unit
normal

Hi = ⟨Ni ,−
1
4Ai

∑
j∈Ni

(cot(α(k1)i j ) + cot(α(k2)i j ))( f j − fi)⟩ . (4.10)

If the Laplace-Beltrami operator ∆ is discretized via the cotangent scheme, this relation may be
formulated as

Hi = ⟨Ni , (∆ f )i⟩ . (4.11)

Mean curvature half-density is equivalent to mean curvature rescaled by a length scale on the
surface, as discussed in Chapter 3.1. For a discrete mesh, the common length scale on a triangle
with area A is

√
A. As a consequence, we calculate mean curvature half-density by

(H∣d f ∣)i = ⟨Ni ,−
1

4
√
Ai
∑
j∈Ni

(cot(α(k1)i j ) + cot(α(k2)i j ))( f j − fi)⟩ . (4.12)

j

i

α(k2)i jα(k1)i j k1 k2

Figure 4.3: Illustration of the quantities involved in the computation of themean curvature normal.
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Chapter 5

�e Dirac operator eigenvalue problem
under spin transformation

5.1 Motivation: Laplace-Beltrami operator as an isometry-invariant

In Chapter 1.2, we argued that the most suitable class for physical deformations is that of isometries.
A general approach for establishing a correspondence between two isometric surfaces is to �nd a
suitable invariant under isometric deformation and to relate points that have the same properties
with respect to this invariant. �is shape matching problem is one of the classical problems in
Shape Analysis.
More precisely, consider two isometric surfaces M1 and M2 with a bijective map T ∶ M1 → M2.
�e simplest invariants are functions ψi ∶ Mi → R that satisfy ψ1(p1) = ψ2(T(p1)) ∀p1 ∈ M1. A
concrete example is the Gaussian curvature function κi ∶ Mi → R. Note however that Gaussian
curvature is not discriminative enough to relate points between the two surfaces, as there could
easily be several points on both surfaces with equal Gaussian curvature.

More complex invariants are based on operatorsOi ∈ L2(Mi ,R) and a functional transformation
T ∶ L2(M1,R) → L2(M2,R), φ ↦ φ ○ T−1, where T ∶ M1 → M2 is the bijective map in the above
sense, such that

O1(φ1) = O2(T (φ1)) . (5.1)

�emost successful isometry-invariant operator has been the Laplace-Beltrami operatorOi = ∆(i)g ,
which depends only on themetric g ([22]). �e equality

∆(1)g φ1 = ∆(2)g (T (φ1)) (5.2)

holds for all scalar functions φ1 ∈ L2(M1,R) if and only if T is the functional representation of an
isometry, that is, the associated mapping T induces an isometric deformation. Build on top of this
idea is the concept of functional maps, which was �rst introduced in [18], and has led to fruitful
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5 The Dirac operator eigenvalue problem under spin transformation

research in the �eld of Shape Analysis.

5.2 Spin transformation of the Dirac operator eigenvalue problem

Motivated by the success story of the Laplace-Beltrami operator as an isometry-invariant, we want
to analyze how the eigenvalue system of the Dirac operator changes under spin transformation.
�e goal is then to infer properties of the spin transformation from the Dirac operators based on
two spin equivalent shapes.

For a given conformal immersion f ∶ M → R3 with λ-spin equivalent immersion f̃ we will see
how the Dirac operatorD f̃ derived from f̃ acts on eigenfunctions of the Dirac operatorD f , which
is derived from the original immersion f . To this end, we apply the computation methods for
quaternionic di�erential forms, which are introduced in Chapter 2.2.3. For eigenfunctions ϕ ofD f ,
the operatorD f̃ is applied to the function λϕ instead of solely ϕ, as this leads to a result, which
has natural mathematical interpretation. �is result is summarized in the following theorem.

�eorem 5.1. Let f ∶ M → Im(H) be a conformal immersion and let f̃ ∶ M → Im(H) be an
immersion obtained via the spin transformation d f̃ = λd f λ for λ ∶ M → H ∖ {0}, which solves
(D f − ρ)λ = 0 for some ρ ∶ M → Re(H). Let ϕ ∶ M → H be an eigenvector ofD f to the eigenvalue
γ ∈ Re(H).
�en,

D f̃ (λϕ) =
λD f (∣λ∣2)ϕ

∣λ∣4
+ (γ − ρ)

∣λ∣2
λϕ. (5.3)

Proof. We use the wedge product rules for quaternionic di�erential forms, Eqs. (2.28), the prop-
erties of spin transformations listed in�eorem 3.2, as well as the Leibniz rule for quaternionic
di�erential forms, Eq. (2.30), in the form

d(∣λ∣2) = d(λλ) = (dλ)λ + λdλ. (5.4)

�e integrability condition yields a substitution of the action ofD f on λ asD f (λ) = λρ. Further-
more, we use that every 0-form commutes with the Hodge star operator.
Altogether this leads to the following derivation:
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5 The Dirac operator eigenvalue problem under spin transformation

D f̃ (λϕ) = −λd f λ ∧ d(λϕ)
∣d f̃ ∣2

= −λd f ∧ λd(λϕ)
∣d f̃ ∣2

= −λd f ∧ λ(d(λ)ϕ + λdϕ)
∣d f̃ ∣2

= −λ[d f ∧ λdλ
∣d f̃ ∣2

ϕ + d f ∧ ∣λ∣2dϕ
∣d f̃ ∣2

]

= − λ
∣λ∣4

[(d f ∧ dλ)
∣d f ∣2

(−λϕ) + d f ∧ d(∣λ∣2)
∣d f ∣2

ϕ + d f ∧ dϕ
∣d f ∣2

∣λ∣2]

= λ
∣λ∣4

[−D f (λ)λϕ +D f (∣λ∣2)ϕ +D f (ϕ)∣λ∣2]

= λ
∣λ∣4

(−ρλλϕ +D f (∣λ∣2)ϕ + γϕ∣λ∣2)

=
λD f (∣λ∣2)ϕ

∣λ∣4
+ (γ − ρ)

∣λ∣2
λϕ .

It is worth drawing attention to special cases of �eorem 5.1 that carry geometric meaning. If
λ is a norm-constant quaternion-valued function, ∣λ(p)∣ = c ∈ R ∀p ∈ M, then D f (∣λ∣2) = 0,
which implies that λϕ is a generalized eigenvector ofD f̃ . In particular, this is the case for isometric
deformations with c = 1. If λ is a constant quaternion, then ρ = 0 and one obtains the case of rigid
scaling, implying that λϕ is an eigenvector ofD f̃ to the eigenvalue γ ∈ R. �is case corresponds to
a global rotation and scaling.

Consider the result derived for an isometric deformation,

D f̃ (λϕk) = (γk − ρ)λϕk ∀k ∈ N , (5.5)

which gives us in�nitely many equations, as {ϕk}k∈N forms a basis of L2(M ,H).
Whereas this result can in theory be used to establish a correspondence between a shape and an
isometric deformation thereof by solving for the spin transformation λ, in practice this leads to a
chicken-and-egg-problem, as one has to know a correspondence between the two shapes to align
the matrices derived from the operator (D f̃ − ρ) with the vectors ϕ derived from the original
immersion f . Furthermore, already to establish the curvature potential ρ, the correspondence
between the two shapes has to be known.
Even under the assumption that a correspondence is given, which implies that the curvature
potential ρ is known, Eq. (5.5) does not o�er new information. �e corresponding λ can be found
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5 The Dirac operator eigenvalue problem under spin transformation

by directly considering the spin transformation Eq. (3.4) together with the integrability condition
Eq. (3.8), since a spin transformation pairing (λ, ρ) is unique, if it exists ([14]).
As a consequence, �eorem 5.1 does not imply a new method for inferring a transformation in the
isometric case.
However, it remains an open problem whether the �rst term in Eq. (5.3) can be used to quantify
the deviation from isometry.
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Chapter 6

Spectral geometry of the
squared Dirac operator

As outlined in Chapter 5.1, the Laplace-Beltrami operator is invariant under isometric deformation.
Furthermore, as an essentially self-adjoint operator on L2(M ,R) of a surface M, it induces an
eigenbasis of L2(M ,R) ([22]). As a consequence, two isometric surfaces can be put in correspon-
dence via spectral properties of their Laplace-Beltrami operators, most notably the heat kernel
([23],[24],[1]). In fact, the Laplace-Beltrami eigenbasis carries the complete intrinsic geometric
information ([22]). �is informative property carries over to the discrete case ([28]).
As the Laplace-Beltrami operator is central to the di�usion equation, methods of recovering
geometric information from its eigenbasis are commonly summarized under the term di�usion
geometry. For the Dirac operator, we use the more general term spectral geometry.

Dirac operators generally have the property that their square can be related to the Laplace-Beltrami
operator and it is therefore appealing for our purposes to analyze this relation in detail.
It turns out that the Laplace-Beltrami operator can be recovered in the quaternionic framework, a
result which is outlined in [4] and stated for the general case in �eorem 6.1 and for an interesting
special case in Corollary 6.3.
Consequently, the Quaternionic Shape Analysis framework can provide a superset of methods
beyond Laplace-Beltrami di�usion geometry.
In particular, Laplace-Beltrami di�usion geometry can potentially be complemented by quantities
related to the extrinsic geometry.

�eorem 6.1 ([4]). Let f ∶ M → R3 be a conformal immersion that induces a Riemannian metric
g f and let ψ ∶ M → H be a smooth quaternionic function. �en

D2f ψ = ∆g f ψ + dN ∧ dψ
∣d f ∣2

. (6.1)
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6 Spectral geometry of the squared Dirac operator

Proof. By de�nition of the Dirac operator,

∣d f ∣2D f ψ = −d f ∧ dψ. (6.2)

Using Eq. (2.36) together with identity (2.33) for the wedge product, we arrive at

−d f d fD f ψ = −d f ⋆ dψ + (⋆d f )dψ.

As the immersion f is conformal, we have ⋆d f = Nd f = −d f N and dividing by −d f then yields

d fD f ψ = ⋆dψ + Ndψ.

Applying the exterior derivative on both sides and using the Leibniz rule, we obtain

− d f ∧ d(D f ψ) = d ⋆ dψ + dN ∧ dψ. (6.3)

�e le�-hand side of Eq. (6.3) now resembles the right-hand side of Eq. (6.2) and we can re-
substitute to obtain

∣d f ∣2D2f ψ = d ⋆ dψ + dN ∧ dψ .

As 1/∣d f ∣2 is the Hodge star operator on 2-forms, �nally

D2f ψ = ⋆d ⋆ dψ + dN ∧ dψ
∣d f ∣2

and the Laplace-Beltrami operator appears in its exterior calculus disguise, ∆g f = ⋆d ⋆ d.

In particular, for a real valued function ψ ∶ M → R, we recover the Laplace-Beltrami operator
acting on L2(M ,R).
For this insight, we have to show that the second term in Eq. (6.1) has no scalar contribution, when
the squared Dirac operator is applied to real valued functions.

Lemma 6.2. For ψ ∶ M → R, dN∧dψ
∣d f ∣2 is tangent-valued.

Proof. Let X ∈ TM be a unit vector �eld. �en

dN ∧ dψ(X ,J X) = dN(X)dψ(J X) − dN(J X)dψ(X).

Since for the Gauss map, we have ∣N(p)∣ = 1,∀p ∈ M, it follows that ⟨dN(X),N⟩ = 0 ∀X ∈ TM,
i.e. dN is tangent-valued. As ψ is real valued, the di�erential dψ is real valued, and it follows that
dN ∧ dψ(X ,J X) is tangent-valued.

We obtain the following corollary from�eorem 6.1 and Lemma 6.2.
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6 Spectral geometry of the squared Dirac operator

Corollary 6.3. Let f ∶ M → R3 be a conformal immersion that induces a Riemannian metric g f
and let ψ ∶ M → R be a smooth real valued function, then

Re(D2f ψ) = ∆g f ψ . (6.4)

6.1 Recovering Laplace-Beltrami di�usion geometry
for discrete surfaces

Given the discretization of the Dirac operator as introduced in Chapter 4.2, Corollary 6.3 in-
duces a discretization of the Laplace-Beltrami operator. It is natural to inquire which particular
discretization this is. �is question is non-trivial as can be seen for example in [27], which o�ers a
comparison of several discretizations of the Laplace-Beltrami operator.
We prove that the discretization we obtain through Eq. (6.4) is the commonly used cotangent
Laplacian (cf. [20]). A modern overview of the cotangent formula is given in [26]. Note that the
cotangent discretization of the Laplace-Beltrami operator is within the Finite Element paradigm,
which is also used for the discretization of the Dirac operator as introduced in Chapter 4.2.
Our result, as summarized in �eorem 6.4, can therefore be interpreted as a consistency result
for the Finite Element method, which allows us to computemethods based on Laplace-Beltrami
di�usion geometry directly from within the quaternionic framework.

�eorem 6.4. De�ne D ∈ H∣F∣×∣V ∣ by Di j = − 1
2A i

e(i)j , where Ai is the area of face i and e(i)j is the
oriented edge quaternion across vertex j in face i (cf. Fig. 6.1). Further denote its adjoint D∗ ∈ H∣V ∣×∣F∣

by D∗ = M−1
V D†MF , where MV ∈ H∣V ∣×∣V ∣ is de�ned by (MV)i j = ∑m∈Fi

1
3Amδi j and MF ∈ H∣F∣×∣F∣

by (MF)i j = Aiδi j. �en for any φ ∈ Re(H∣V ∣),

Re((D∗D)φ)i =
∣V ∣
∑
j=1

1
AVoronoii

wi jφ j (6.5)

with weights

wi j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2(cot(α(k1)i j ) + (cot(α(k2)i j )) if i ≠ j, j ∈ Ni

−∑l≠i wi l if i = j
0 otherwise

Here, k1, k2 are the two faces adjacent to the oriented edge connecting vertices i and j with angles
α(k1)i j , α

(k2)
i j and AVoronoii = ∑m∈Fi

1
3Am is the Voronoi area around vertex i.

Proof. For quaternionic calculations, we make use of the relation Eq. (2.4), which relates the
quaternionic Hamilton product to vector calculus operations. We readily calculate the adjoint
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6 Spectral geometry of the squared Dirac operator

matrix elements as

D∗
i j =

∣V ∣
∑
k=1

(M−1
V )ik(D†MF)k j =

∣V ∣
∑
k=1

3
Aringi

δik(
1
2A j

e( j)k A j) = 3
2Aringi

e( j)i , (6.6)

where Aringi ∶= ∑m∈Fi
1
3Am. In consequence, the squared Dirac operator matrix elements become

(D∗D)i j =
∣F∣
∑
k=1

D∗
ikDk j = −

∣F∣
∑
k=1

3
4Aringi

1
Ak

e(k)i e(k)j . (6.7)

We begin by specifying the o�-diagonal elements. For every pair of vertices (i , j) with i ≠ j there
are exactly two faces adjacent to the edge connecting i and j. We call these faces k1, k2. �en,

(D∗D)i j = −
3

4Aringi
( 1
Ak1

e(k1)i e(k1)j + 1
Ak2

e(k2)i e(k2)j ) . (6.8)

Note that in this context the edge vectors e(k)j are interpreted as (imaginary) quaternions. For
purely imaginary quaternions, we read o� Eq. (2.5) that

e(k)i e(k)j =
⎧⎪⎪⎨⎪⎪⎩

2AkN
( f )
k − 2Ak cot(α(k)i j ) if k = k1

−2AkN
( f )
k − 2Ak cot(α(k)i j ) if k = k2 ,

(6.9)

where N( f )k is the face normal of triangle k. �e sign change in the imaginary part is due to the
orientation of the edge vectors, as depicted in Fig. 6.1.

k1 k2

e(k2)ie(k1)i

j

i
e(k2)je(k1)j

α(k1)i j α(k2)i j

Figure 6.1: Sketch of two triangles to an edge connecting vertices i and j.

�en we obtain
Re((D∗D)i j) =

3
2Aringi

(cot(α(k1)i j ) + cot(α(k2)ji )). (6.10)

As AVoronoii = 1
3A
ring
i , we arrive at the claimed result for the o�-diagonal elements.
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αk
iβk

i

i

k
h

e(k)i

Figure 6.2: 1-ring neighborhood of vertex i with face k, associated angles αk
i and βk

i and triangle
height h.

For the diagonal elements we use an elementary geometric argument on the 1-ring neighborhood
as depicted in Fig. 6.2. We start by rewriting the sum over neighboring vertices to obtain a sum
over adjacent faces, as every angle around the 1-ring appears exactly once in the sum:

∑
j∈Ni

1
2
(cot(α(k1)i j ) + cot(α(k2)ji )) = ∑

k∈Fi

1
2
(cot(αk

i ) + cot(βk
i )) .

Suppose the ratio of the edge length of e(k)i on the side of αk
i is x ∈ (0, 1). �en with e ∶= ∣e(k)i ∣,

1
2
(cot(αk

i ) + cot(βk
i )) =

1
2
( e(1 − x) + ex

h
) = e

2h
.

As the triangle height h is related to its area A by h = 2A/e, it follows that

1
2
(cot(αk

i ) + cot(βk
i )) =

e2

4Ak
. (6.11)

From Eq. (6.7) together with Eq. (6.11) we deduce that

(D∗D)ii = − ∑
k∈Fi

1
AVoronoii

∣e(k)i ∣2

4Ak

= − ∑
k∈Fi

1
2AVoronoii

(cot(αk
i ) + cot(βk

i ))

= − 1
2AVoronoii

∑
j∈Ni

(cot(α(k1)i j ) + cot(α(k2)ji )),

and we arrive at the claimed statement for the diagonal elements.
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6 Spectral geometry of the squared Dirac operator

6.2 Imaginary contribution for real valued functions

In the previous section, we discussed the discrete analog to Eq. (6.4), which corresponds to the
real part of Eq. (6.1), when the Dirac operator is applied to real valued functions. We want to
complement this discussion by analyzing the imaginary contribution to Eq. (6.1) for real valued
functions. Whereas the Laplace-Beltrami operator is an isometric invariant, the imaginary part
could potentially provide information about the extrinsic geometry of the shape.

Consequently, spectral properties of the Laplace-Beltrami operator and additional extrinsic features
can be calculated within the same framework.

As an example, along the idea of Quaternionic Shape Analysis as a uni�ed tool for Shape Analysis,
the imaginary contribution could be used to distinguish the intrinsic symmetry of shapes, a
problem that appears in characterizing the intrinsic geometry locally via descriptors derived from
the Laplace-Beltrami operator ([24],[1]). Signatures corresponding to intrinsically symmetric
points could be complement by di�erent extrinsic quantities.

On the contrary, a method to compute global intrinsic symmetries only based on the Laplace-
Beltrami eigensystem is devised in [19].

In this section, we give a structural result showing how the imaginary contribution behaves under
spin transformation. Exploiting this relation for Shape Analysis purposes remains an open problem
for a future research e�ort.

Let us investigate how this imaginary contribution behaves under spin transformation. To this
end, let a ∶ M → R be a real valued function on the surfaceM. Recall from Lemma 6.2 that the
imaginary contribution is purely tangent-valued.

According to �eorem 3.2 the Gauss map transforms as Ñ = λ−1Nλ, which, using the Leibniz rule
Eq. (2.30), yields

dÑ ∧ da
∣d f̃ ∣2

= d(λ−1Nλ) ∧ da
∣λ∣4∣d f ∣2

= d(λ−1)Nλ ∧ da
∣λ∣4∣d f ∣2

+ λ−1(dN)λ ∧ da
∣λ∣4∣d f ∣2

+ λ−1Ndλ ∧ da
∣λ∣4∣d f ∣2

.

For the special case of an isometric deformation, we have λ−1 = λ. Furthermore, as exterior
di�erentiation and quaternionic conjugation are linear operations, dλ = dλ. Using Lemma 6.2
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6 Spectral geometry of the squared Dirac operator

and that for a purely imaginary quaternion q ∈ Im(H), q = −q, it follows that

dÑ ∧ da
∣d f̃ ∣2

= λdN ∧ da
∣d f ∣2

λ + d(λ)Nλ ∧ da
∣d f ∣2

− λNdλ ∧ da
∣d f ∣2

= λdN ∧ da
∣d f ∣2

λ + d(λ)Nλ ∧ da
∣d f ∣2

− (dλ)λN ∧ da
∣d f ∣2

= λdN ∧ da
∣d f ∣2

λ + d(λ)Nλ ∧ da
∣d f ∣2

+ (dλ)Nλ ∧ da
∣d f ∣2

= λdN ∧ da
∣d f ∣2

λ + 2dλ ∧ da
∣d f ∣2

Nλ .

�e �rst term describes a similarity transformation in the tangent plane of the tangent-valued
0-form dN∧da

∣d f ∣2 , whereas the second term is a di�erential contribution in λ.
Further restricting to rigid deformations, where λ is a constant quaternionic function, we obtain

dÑ ∧ da
∣d f̃ ∣2

= λdN ∧ da
∣d f ∣2

λ ,

which is a global, rigid similarity transformation.

6.3 Eigensolutions overH

In Chapters 6.1 and 6.2, we have dealt with real valued functions and it is natural to ask how this
framework extends to functions ψ ∶ M → H. Being a normal operator on L2(M ,H),D2f induces
a quaternionic eigenbasis of L2(M ,H), as outlined in Chapter 2.3. Consequently, it is tempting
to infer geometric information from the eigensystem of D2f over H. In analogy to the notion
of di�usion geometry for the Laplace-Beltrami operator, we use the more general term spectral
geometry for methods that aim to recover geometric information from the eigensystem of the
Dirac operator.
However, it turns out that there is no canonical way of extracting geometric information from this
eigensystem as we will show in the following. More precisely, for a quaternionic function in the
decomposition Eq. (2.10),

ψ = a + Ŷ + bN , (6.12)

there is no such geometrically meaningful decomposition ofD2f ψ. In particular we lose real part
equivalence to the Laplace-Beltrami operator.

In the following, we analyze the contribution of the decomposition Eq. (6.12) to the second term
in Eq. (6.1),

dN ∧ dψ
∣d f ∣2

.
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6 Spectral geometry of the squared Dirac operator

To this end, we use concepts and notation from classical Di�erential Geometry, which are intro-
duced in the Appendix.

To begin with, the contribution from the scalar part of ψ is covered by Lemma 6.2. It is purely
tangent-valued.
A closer analysis of the tangent part of ψ is given by the following lemma, which aims to isolate
scalar, tangent and normal components in local coordinates.

Lemma 6.5. Let X1, X2 be the principal curvature directions with associated principal curvatures
κ1, κ2. �en,

dN ∧ dŶ(X1, X2) = κ2g(X2,∇X1Y) − κ1g(X1,∇X2Y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

scalar

+ κ1κ2(g(X1,Y)X̂1 − g(X2,Y)X̂2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tangent

+ (κ1X̂1 × d f (∇X2Y) − κ2X̂2 × d f (∇X1Y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

normal

. (6.13)

In particular, dN∧dŶ∣d f ∣2 has scalar, tangent and normal contribution.

Proof. We have the freedom to choose local coordinates onM. As it is always helpful to choose an
orthonormal coordinate system with geometric meaning, let X1, X2 be the principal curvature
directions with associated principal curvatures κ1, κ2. By de�nition of the wedge product,

dN ∧ dŶ(X1, X2) = dN(X1)dŶ(X2) − dN(X2)dŶ(X1)

= κ1d f (X1)dŶ(X2) − κ2d f (X2)dŶ(X1).

We can further specify each term as

d f (X1)dŶ(X2) = X̂1∇̂X̂2 Ŷ

= X̂1(d f (∇X2Y) + II(X2,Y)N)

= X̂1(d f (∇X2Y) + g(SX2,Y)N)

= X̂1d f (∇X2Y) + κ2g(X2,Y)X̂1N .

As all push-forwards are tangent-valued, using the de�nition of the Hamilton product (Eq. (2.4))
and the relations ⟨X̂i ,N⟩ = 0, X̂i × N = −X̂ j for i , j ∈ {1, 2}, i ≠ j, we arrive at

d f (X1)dŶ(X2) = − ⟨X̂1, d f (∇X2Y)⟩ + X̂1 × d f (∇X2Y) − κ2g(X2,Y)X̂2 .
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Altogether,

dN ∧ dŶ(X1, X2) = κ2g(X2,∇X1Y) − κ1g(X1,∇X2Y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

scalar

+ κ1κ2(g(X1,Y)X̂1 − g(X2,Y)X̂2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tangent

+ (κ1X̂1 × d f (∇X2Y) − κ2X̂2 × d f (∇X1Y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

normal

.

�e normal part of ψ yields a decomposition as stated in the following lemma.

Lemma 6.6. Let N be the Gauss map of an oriented immersed surface f ∶ M → R3, b ∶ M → R and
κ the Gaussian curvature, then

dN ∧ d(bN)
∣d f ∣2

= dN ∧ db
∣d f ∣2

N + 2bκN , (6.14)

where (dN ∧ db)N is tangent-valued and 2bκN is normal valued.

Proof. Let X1, X2 be the principal curvature directions. �en

dN ∧ d(bN)(X1, X2) = dN ∧ [(db)N + b dN](X1, X2)

= dN ∧ (db)N(X1, X2) + (dN ∧ dN)b(X1, X2)

= [dN ∧ db(X1, X2)]N + 2bκN ,

where in the last line we used that dN(Xi)dN(X j) = dN(Xi) × dN(X j) for i , j ∈ {1, 2}, i ≠ j,
from which we can deduce that

dN ∧ dN(X1, X2) = dN(X1)dN(X2) − dN(X2)dN(X1)

= 2dN(X1)dN(X2)

= 2κ1κ2d f (X1)d f (X2)

= 2κ(d f (X1) × d f (X2))

= 2κN .

By Lemma 6.2, dN ∧ db(X1, X2) is tangent-valued and for every tangent vector t, the Hamilton
product tN = − ⟨t,N⟩ + t × N = t × N is tangent-valued. It follows that dN∧dbN

∣d f ∣2 is tangent-
valued.
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Finally, to draw a conclusion for the overall decomposition of D2f , it is necessary to discuss the
expression

∆g f Im(ψ) .

�e term ∆g f ψ for a quaternion-valued functionψ is meant as the vector Laplace-Beltrami operator,
that is, the Laplace-Beltrami operator acting on every component of ψ as on a real valued function.
It follows from this notational observation that ∆g f ψ ∈ Im(H).

To summarize this discussion, the results for the squared Dirac operator acting on real valued
functions do not generalize to the action on quaternion-valued functions, as in conclusion, the
decomposition

D2f ψ = c + d f (Z) + eN , (6.15)

for real valued functions c, e ∶ M → R, a vector �eld Z ∈ TM and the normal map N , does not
encode extractable geometric meaning.

In particular, the relation to the Laplace-Beltrami operator is lost in the sense that

Re(D2f ϕ) ≠ ∆g fRe(ϕ) ,

since there is an additional contribution as stated in Lemma 6.5.

�is result has its analog for the discretized squared Dirac operator as derived in the proof of
Lemma 6.5. It can be formally decomposed as

(D∗Dϕ)i =
∣V ∣
∑
j=1

(D∗D)i jϕ j

=
∣V ∣
∑
j=1

(Re((D∗D)i j) + Im((D∗D)i j))(ϕ(s)j + ϕ(v)j )

=
∣V ∣
∑
j=1
Re((D∗D)i j)ϕ(s)j − ⟨Im((D∗D)i j), ϕ(v)j )⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
real part

+
∣V ∣
∑
j=1
Re((D∗D)i j)ϕ(v)j + Im((D∗D)i j) × ϕ(v)j + Im((D∗D)i j)ϕ(s)j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
imaginary part

. (6.16)

More precisely, we can derive the imaginary part of the discretized squared Dirac operator from
Eq. (6.8) together with Eq. (6.9), which for neighboring vertices i ≠ j with adjacent faces k1, k2 is
given by

Im((D∗D)i j) = −
1

2AVoronoi
(Nk1 − Nk2) . (6.17)
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�is term corresponds to a tangent-valued vector on the surface. As D∗D is a hermitian matrix
the imaginary part of the diagonal is zero.
Consequently, for a given input vector ϕ ∈ H∣V ∣, besides the Laplace-Beltrami contribution, the
tangent part of ϕ(v) contributes to Re(D∗Dϕ). �is observation is in accordance with the contin-
uous case made explicit in Lemma 6.5.

To conclude, it does not seem possible to construct a meaningful spectral geometry for the squared
Dirac operator overH.

6.4 Numerical demonstration

In the following, we demonstrate the relation of the Laplace-Beltrami operator and the squared
Dirac operator numerically. As a deviation measure, we take the relative error

Re(D2f ϕ) − ∆g fRe(ϕ)
∆g fRe(ϕ)

. (6.18)

To this end, we apply the operators to smooth functions22 that are of the same order of magni-
tude 100. For real valued ϕ, relation Eq. (6.4) is correct up to a numerical zero in the deviation
measure Eq. (6.18) (order of magnitude 10−12).�e deviation when ϕ is a full quaternionic function
is demonstrated in Fig 6.3. �is �gure illustrates two e�ects. First, the relative error is up to one
order of magnitude larger than the input function, namely of magnitude 101. Secondly, the error
does not correlate with any geometric features of the shape.

22slowly varying in the computational setup, e.g. Laplace-Beltrami eigenfunctions
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6 Spectral geometry of the squared Dirac operator

Figure 6.3: Relative error
Re(D2f ϕ)−∆g f Re(ϕ)

∆g f Re(ϕ)
for a smooth function ϕ ∶ M → H with order of

magnitude 100. To avoid scale distortion due to numerical errors, the 95th percentile of the
absolute data values is displayed.
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Chapter 7

As isometric as possible
spin transformation

In this section we want to discuss the following problem: given a desired curvature potential ρ,
determine an as isometric as possible λ-spin transformation while remaining as close as possible
to ρ. In mathematical notation, we are looking for a (λ(i), ρ(i))-spin transformation23, such that
∣λ(i)∣(p) ≈ 1 ∀p ∈ M and dist(ρ, ρ(i)) is small for a suitable distance measure.
A possible application is a sequence of spin transformations along an isometric path in conformal
shape space, which would be the �rst step to guide spin transformations along a path of physical
deformations. Whereas isometries are not restrictive enough for physical deformations, it is also
possible to control the extrinsic geometry via the curvature potential. �e goal of this approach
then is to control the overall deformation of the shape of a physical object guided by prescribing
the curvature potential.
An approach for controlling intrinsic and extrinsic geometry for physical deformations that comes
closest to this idea is carried out in [16] via a moving frame formulation. �e authors are looking
for an isometric deformation, which minimizes changes in the second fundamental form, i.e.
minimizes distortion.

7.1 Isometric spin transformation and the notion of ρ-validity

Suppose we have an initial λ-spin transformation that satis�es the integrability condition Eq. (4.5)
for a γ = 0 eigenvalue24. An equivalent representation is obtained in the form

Eλ = 0 ⇐⇒ (EM)(M−1λ) = 0 , (7.1)

for a suitable invertible matrix M ∈ GL(∣V ∣,H), where E(i) ∶= EM should represent a transfor-
mation of some curvature potential ρ(i) and λ(i) ∶= M−1λ should be close to an isometric spin
transformation.

23�e superscript (i) stands for isometric.
24�is assumption can be dropped while the argument remains valid by using the matrix Ẽ ∶= (E − γ1).
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7 As isometric as possible spin transformation

�e easiest way to ensure such an isometric spin transformation based on an initial λ-spin trans-
formation is to rescale each quaternion by its inverse norm, i.e.

λ(i) = M−1λ,

forM ∈ H∣V ∣×∣V ∣ diagonal withMii = ∣λi ∣.
It turns out that this approach is too simple-minded. To work this out, we introduce the notion of
ρ-validity.

De�nition 7.1. A transformation matrix E that can be derived from a curvature potential ρ by
Eq. (4.5),

Ei j = ∑
k∈{k1 ,k2}

−
e(k)i e(k)j

4Ak
+ 1
6
(ρie(k)j − ρ je(k)i ) + Ak

9
ρiρ j , (7.2)

is called ρ-valid.

Suppose E ∈ H∣V ∣×∣V ∣ is the given initial transformation matrix that admits a solution Eλ = 0. A
necessary condition for E(i) to be ρ-valid is that it has to be hermitian, as we can see by Eq. (7.2),
which leads to an element-wise comparison

(EM)†i j = (EM)i j

⇔
∣V ∣
∑
k=1

M†
ikE

†
k j =

∣V ∣
∑
k=1

EikMk j

⇔ [Re(E ji) − Im(E ji)]Mii = [Re(Ei j) + Im(Ei j)]M j j

For a quaternionic hermitian matrix, Re(E ji) = Re(Ei j), Im(E ji) = −Im(Ei j) and for equality to
hold, it follows thatMii = M j j ∀i , j ∈ {1, . . . , ∣V ∣}. �is corresponds to the case thatM represents
a global scaling. As a consequence, E cannot be transformed into a ρ-valid transformation matrix
by non-global scaling.
We therefore need to closer analyze what it means for a matrix E to be ρ-valid.

7.2 Hermitian relaxation of ρ-validity

We start by formulating this problem with a weaker condition than ρ-validity, namely hermiticity.
Every ρ-valid matrix is hermitian, but not every hermitian matrix is ρ-valid, as Eq. (7.2) imposes
additional structural constraints. A su�cient condition for EM to be hermitian is that

• M is hermitian

• EM = ME
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7 As isometric as possible spin transformation

In summary, the hermitian relaxation of �nding an isometric as possible spin transformation can
be formulated as

minimize
M∈GL(∣V ∣,H)

∣∣∣M−1λ∣el − 1∣∣2

subject to M hermitian

ME − EM = 0 ,

(7.3)

where we denote by 1 ∈ H∣V ∣ the vector with the real entries 1 and the element-wise norm25 by ∣ ⋅ ∣el,
that is, for λ ∈ Hn,

∣λ∣el ∶= (∣λ1∣, ∣λ2∣, . . . , ∣λn∣) ∈ Hn .

As the inverse of a hermitian matrix is hermitian, by introducing A ∶= M−1, the constraints can be
equivalently formulated for a matrix A to obtain

minimize
A∈GL(∣V ∣,H)

∣∣∣Aλ∣el − 1∣∣2

subject to A hermitian

E−1A− AE−1 = 0 .

(7.4)

�e feasible set of this optimization problem is non-empty, as the quaternionic identity matrix
satis�es the constraints.

To formulate the real representation of problem (7.4), we overload our notation and de�ne the
element-wise norm for ϕ ∈ R4∣V ∣ as

∣ϕ∣el ∶= (∣∣(ϕ11, ϕ12, ϕ13, ϕ14)∣∣2, . . . , ∣∣(ϕn1, ϕn2, ϕn3, ϕn4)∣∣2) ∈ R∣V ∣,

and use the symbol 1 ∈ R∣V ∣ for the vector with all entries equal to 1.
As outlined in Chapter 4.1, a quaternionicmatrix A is hermitian, if and only if its real representation
A is symmetric. �erefore, the equivalent real optimization problem reads

minimize
A∈GL(4∣V ∣,R)

∣∣∣Aλ∣el − 1∣∣2

subject to A symmetric

E−1A− AE−1 = 0.

(7.5)

Unfortunately, this optimization problem requires working with a di�cult objective function.
Optimization problems in the context of isometric spin transformations naturally involve a formu-
lation on∏∣V ∣ S3, the ∣V ∣-fold product of the unit sphere in R4.

25which obviously is not a norm in the usual sense, as it does not map into the non-negative reals
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7 As isometric as possible spin transformation

7.3 Recovering the curvature potential from a
ρ-valid transformation matrix

A�er modifying the transformation matrix according to Eq. (7.1) as E(i) ∶= EM, it is necessary to
solve the inverse problem of recovering the curvature potential ρ(i) from E(i).
�is leads to solving a non-linear system of equations. Rearranging Eq. (7.2) leads to ∣V ∣2 non-linear
quaternion equations of the form26

∑
k∈{k1 ,k2}

−
e(k)i e(k)j

4Ak
+ 1
6
(ρie(k)j − ρ je(k)i ) + Ak

9
ρiρ j − Ei j = 0.

Its discrete representation yields (4∣V ∣)2 non-linear real equations to determine ∣V ∣ real values of
(ρi)∣V ∣i=1. �is problem can be numerically solved using the fsolveMatlab routine.

7.4 Algorithmic pipeline

�emethod to achieve an as isometric as possible spin transformation while controlling the mean
curvature via the curvature potential can be outlined as follows:

1. Start with an initial (λ, ρ)-spin transformation.

2. Determine the matricesM that lead to ρ(i)-valid transformation matrices EM, while trans-
forming λ into a nearly isometric deformation via λ(i) = M−1λ.

3. Solve the inverse problem for the corresponding curvature potential ρ(i) as described in
Chapter 7.3.

4. Select a speci�cM among all possible ones, which yields a desired trade-o� between ρ(i)

and λ(i).

In summary, we have outlined a possibility to interact with the spin transformation process in order
to obtain an as isometric as possible spin transformation. Even though the hermitian relaxation
already leads to a di�cult optimization problem, it remains an additional challenge to advance
beyond the hermitian relaxation of ρ-validity and specify necessary and su�cient conditions for
ρ-validity via Eq. (7.2).

26�e superscript (i) is dropped to reduce the notational complexity.
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Chapter 8

Summary, conclusion and outlook

Quaternionic Shape Analysis provides a theoretically profound and practically feasible framework
for conformal deformations of shapes and incorporates the intrinsic and extrinsic geometry. We
have proposed ideas to tackle the problem of considering a special subclass of conformal deforma-
tions, namely that of isometries. Whereas common approaches use only this intrinsic geometry
to describe physical deformations, we have motivated that in fact the extrinsic geometry is useful
when dealing with physical deformations and necessary to uniquely determine a shape from a
theoretical point of view. �is motivation strongly suggests that examining the class of isometries
within Quaternionic Shape Analysis is a valuable viewpoint.

We demonstrated that prevalent di�usion geometric ideas can be recovered within Quaternionic
Shape Analysis, such that it o�ers a superset of methods. More precisely, the action of the Laplace-
Beltrami operator can be expressed by using the squared Dirac operator. Our�eorem 6.4 shows
that this relation induces the common cotangent weight Laplacian as a discretization for the
Laplace-Beltrami operator. �is directly implies that the discretization outlined for the Dirac
operator in Chapter 4.2 can be used to compute all methods using Laplace-Beltrami di�usion
geometry. It can be viewed as a consistency result for the discretization via the Finite Element
method.
We investigated how the idea of Laplace-Beltrami di�usion geometry generalizes to a spectral
geometry of the squared Dirac operator overH. Our results show that there is no canonical way to
extend the framework of real valued functions to full quaternions, in particular we proved that the
relation to the Laplace-Beltrami operator is lost.
Besides these spectral geometric notions, central quantities and operators of Di�erential Geometry
can be related to the Dirac operator. Along the idea of establishing a uni�ed framework, it is
therefore an interesting problem to investigate the properties of their discretization as directly
derived from the discrete Dirac operator as it has been carried out for the Laplace-Beltrami operator
in this thesis.

�e central idea behind Laplace-Beltrami di�usion geometry is to use invariance of the eigenvalue
problem under isometric deformation. As the Dirac operator analogously induces an eigenbasis on

55



8 Summary, conclusion and outlook

a quaternionic L2 Hilbert space, this procedure led us to investigate how the eigenvalue problem of
the Dirac operator changes under the natural transformation within Quaternionic Shape Analysis,
namely spin transformation. Our �eorem 5.1 describes this change and reveals a surprisingly
simple result, which has a geometric interpretation. As a �rst application, we attempted to recover
information about spin transformation between two shapes only from their Dirac operators. How-
ever, a more detailed investigation disclosed that this approach would not yield a superior method
to working directly with spin transformation and the integrability condition. Nevertheless, the
statement of �eorem 5.1 is at the heart of relating shapes via spectral geometric ideas and might
well play a role in future research e�orts.

As a direct formulation of specifying the class of isometries within the class of conformal de-
formations, we outlined a pipeline for as isometric as possible spin transformations, which are
guided by an extrinsic geometric measure, the curvature potential. To formulate this point of view,
we introduced the notion of ρ-validity, a structural condition on the matrices, which govern a
spin transformation. Such matrices are necessarily hermitian, which led us to �rst investigate the
weaker hermiticity relaxation of ρ-validity. However, already formulating this hermitian relaxation
leads to a di�cult optimization problem. In general, optimization problems related to isometric
spin transformations involve the product of unit spheres in R4. Obtaining a feasible formulation
of this class of optimization problems is necessary to solve inverse problems within isometric
Quaternionic Shape Analysis. Besides the optimization formulation, the structural problem of
�nding necessary and su�cient conditions for ρ-validity is at the core of any feedback mechanism
from λ to ρ and will continue to receive attention in future research.
�e investigation of both of these problems will help to better understand isometric deformations
within the framework.

We used the Finite Element paradigm for discretization in this thesis and were able to successfully
recover the cotangent Laplacian via the squared Dirac operator. A fruitful research direction would
be to investigate the discretization with the alternative approach of Discrete Exterior Calculus,
which has recently received considerable attention (cf. [5], [12]).

Naturally in our approach, isometric spin transformations are covered by setting ∣λ∣ ≡ 1 in a more
general computation. To devise a robust algorithmic method, it is an important open problem how
these results behave under a perturbation from isometry, as in any discrete model one can only
hope for near isometries.

Recently, methods of Shape Analysis and Geometry Processing were combined in [2] to construct
shape analogies. �e approach is based on the intrinsic geometry as encoded by the Laplace-
Beltrami operator and the extrinsic geometry enters as an initial shape of the optimization algo-
rithm. In future research, it would be an interesting application of the framework to investigate
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8 Summary, conclusion and outlook

how this problem can be formulated within Quaternionic Shape Analysis, which could potentially
provide a stronger connection to the extrinsic geometry and thus to the overall shape.

In conclusion, the Quaternionic Shape Analysis framework has the potential to provide a holistic
paradigmwithinwhich common task of ShapeAnalysis can be formulated and important quantities
can be extracted. �is statement includes the intrinsic and the extrinsic surface geometry. Purely
intrinsic methods can be recovered and complemented by extrinsic methods. �is scope justi�es
the computational overhead, in particular an increased memory use for the storage of quaternions.
�e ideas and open questions developed in this thesis provide a promising starting point for future
research towards a uni�ed framework for Shape Analysis.
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Appendix

Di�erential Geometry of surfaces

In this appendix we introduce some notions of the Di�erential Geometry of surfaces, which are
used throughout the thesis. A more detailed discussion can be be found in [8] and [15].

We consider 2-dimensional surfaces immersed into R3, where an immersion is a di�erentiable
function f ∶ M → R3, from a topological surface27 M to Euclidean space R3, whose derivative is
everywhere injective. Phrased di�erently, at every point p ∈ M, the Jacobian of the mapping f in
local coordinates has rank two, i.e. there are two linearly independent column vectors. Geometri-
cally speaking, one can place a plane at every point of the surface that is spanned by the column
vectors of the Jacobian. �is plane is called tangent plane toM at p, which is denoted by TpM. �e
collection of these tangent planes is the tangent bundle TM ∶= ⋃p∈M{p} × {TpM}.
�e di�erential of an immersion is a linear map d f ∶ TM → TR3 = R3 between the tangent
space of the abstract surface and its immersion into R3. In order to distinguish vector �elds on
M and in the ambient space R3, we will use a hat, i.e. for X ∈ TM, X̂ ∶= d f (X). For this reason
the di�erential is also called the push-forward of tangent vectors onM to the ambient space. In
this thesis, we deal with conformal immersions, that is, the angle between vector �elds on M is
preserved by the push-forward to R3 as illustrated in Fig. 1.

Y

f
X

d f (Y)

d f (X)

Figure 1: Illustration of a conformal immersion. �e angle between vector �elds X ,Y is preserved
by push-forward.

27A topological space that locally looks like (is homeomorphic to) the Euclidean plane.
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Appendix Differential Geometry of surfaces

It is important to note that we don’t restrict ourself to special surfaces.

For a given topological surfaceM, a conformal immersion always exists.

�is seems like an unreasonably strong statement at �rst sight, but here is the construction of such
a conformal immersion:
Consider a complex structure J on M, that is, a map J ∶ TM → TM such that J 2 = −id.
Intuitively, J represents a counterclockwise 90○ rotation in tangent space.
An immersion f is conformal if ∣d f (X)∣ = ∣d f (J X)∣ and ⟨d f (X), d f (J X)⟩ = 0 for all vector
�elds X onM. Alternatively this can be characterized as

d f (J X) = N × d f (X) ∀X ∈ TM , (A.1)

where N ∶ M → S2 ⊂ R3 is the oriented unit normal �eld, also called Gauss map. For every point
p ∈ M, Np is the unit vector orthogonal to the tangent plane TpM pointing outward.
Eq. (A.1) uniquely determines J : For a given X ∈ TM de�ne J X as the vector �eld satisfying
(A.1), then

d f (J 2X) = N × d f (J X) = N × (N × d f (X)) = d f (−X), (A.2)

As the di�erential of an immersion is by de�nition injective, J X is uniquely de�ned. �us, J is a
complex structure that makes f a conformal immersion. However, this does not imply that all
immersions are conformally equivalent.
With local coordinates (x1, x2), we can formulate a moving frame description of an immersed
surface, by describing vector �elds on the immersed surface in a basis { fx1 , fx2 ,N}, where the
partial derivatives { fx1 , fx2} form a basis of the tangent plane and N is the normal direction. �is
means that the decomposition of a vector in tangent and normal component varies over the surface.
Most immersions appearing in this thesis are of a special type, namely embeddings, i.e. f is in
addition an homeomorphism28 onto f (M).
Let us consider an example in R2 for the property we should have in mind when dealing with
embeddings. Consider the sketches in Fig. 2. �e immersion of a real intervalM = [0, 1) on the
right side is not an embedding as the pre-image of the intersection point consists of two points in
M and therefore the immersion is not injective. �e take-home message: embeddings do not have
intersections.

28a bijective, continuous function between topological spaces with continuous inverse function
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Appendix Differential Geometry of surfaces

Figure 2: Comparison of an immersion (both) with an embedding (le�) for the topological space
M = [0, 1) into R2. An embedding is intersection-free.

�e surfacesM appearing in this thesis are compact, simply connected and orientable. �e Rie-
mannian metric or �rst fundamental form onM is de�ned as

g(X ,Y) ∶= ⟨d f (X), d f (Y)⟩ ,

for all vector �elds X ,Y ∈ TM with the standard inner product ⟨⋅, ⋅⟩ on R3. It is a quadratic form
and as such can be expressed via a matrix in local coordinates (x1, x2). Suppose a surface patch can
be described by a local parametrization f (x1, x2) around some point p ∈ M. �e partial derivatives
( fx1 , fx2) in coordinate directions form a basis of TpM. For two vectors w1,w2 ∈ TpM,

g(w1,w2) = w1
⎛
⎝
E F
F G

⎞
⎠
w2,

where the matrix coe�cients are given by

E = ⟨ fx1 , fx1⟩p
F = ⟨ fx1 , fx2⟩p
G = ⟨ fx2 , fx2⟩p

Note the dependence on p ∈ M. �e coe�cients are not constant, but they are smooth functions
over the surface that depend on the parametrization.

�e �rst fundamental form allows formeasurements that are taken on the surface. It describes the
intrinsic geometry of the surface by �xing distances on the surface. Two surfaces with the same
Riemannianmetric are called isometric. In fact, the outer appearance – or shape – of an object is not
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Appendix Differential Geometry of surfaces

determined by the intrinsic geometry alone, but the extrinsic geometry has to be taken into account.

�e extrinsic geometry is described by the behavior of the Gauss map. �e di�erential character
of the Gauss map is captured by the shape operator29 and, as a related concept, by the second
fundamental form.
�e shape operator is de�ned pointwise for p ∈ M as

Sp ∶ TpM → TpM ,w ↦ −∇̂wNp , (A.3)

which is the negative directional derivative30 of the normal map at point p in the direction of w.
By de�nition, the shape operator relates to the di�erential of the Gauss map via

d f (SX) = −dN(X) ∀X ∈ TM ,

where the di�erential of the Gauss map dNp ∶ TpM → TpM is a pointwise de�ned, self-adjoint,
linear map. We use the associated quadratic form to de�ne the second fundamental form as

II(X ,Y) ∶= − ⟨dN(X), d f (Y)⟩ = g(SX ,Y) X ,Y ∈ TM . (A.4)

For two tangent vectors w1,w2 ∈ TM, the matrix representation in local coordinates is expressed
as

II(w1,w2) = w1
⎛
⎝
l m
m n

⎞
⎠
w2. (A.5)

�e second order di�erential quantities of the immersion are captured by the Christo�el symbols.
Whereas the �rst derivatives ( fx1 , fx2) in a local parametrization (x1, x2) are tangent-valued,
the second derivatives ( fx1x1 , fx1x2 , fx2x1 , fx2x2) also have a normal contribution. �e Christo�el
symbols Γki j i , j, k ∈ {1, 2} are the coe�cients of these functions in the basis { fx1 , fx2 ,N}. More
precisely,

fx1x1 = Γ111 fx1 + Γ211 fx2 + lN

fx1x2 = Γ112 fx1 + Γ212 fx2 +mN

fx2x1 = Γ121 fx1 + Γ221 fx2 +mN

fx2x2 = Γ122 fx1 + Γ222 fx2 + nN . (A.6)

�eChristo�el symbols are smooth functions over the surface and depend on the intrinsic geometry
only, that is, can be expressed in terms of the coe�cients of the �rst fundamental form.
It is at this level of second order quantities, where the compatibility conditions of �rst and second
fundamental form originate. As the immersion f is a smooth function, the second partial deriva-

29An alternative common name isWeingarten map.
30�e notational choice of denoting the directional derivative by ∇̂ becomes clear later on in this section.

61



Appendix Differential Geometry of surfaces

tives in local coordinates exchange by Schwarz’ theorem, namely ( fx1)x2 = ( fx2)x1 . Starting with
Eqs. (A.6), this requirement leads to the Gauß-Mainardi-Codazzi equations:

lx2 −mx1 = lΓ112 +m(Γ212 − Γ111) − nΓ211
mx2 − nx1 = lΓ122 +m(Γ222 − Γ112) − nΓ112 . (A.7)

�is coupled system of partial di�erential equations with variable coe�cients Γki j de�nes which
combination of �rst and second fundamental form lead to an integrable surface. Hence they are
also called integrability conditions.

A central notion in a surface description is that of curvature. Consider a curve

α ∶ (−ε, ε) → M , s ↦ α(s)

around a �xed point α(0) = p ∈ M on the surface as illustrated in Fig. 3. We denote the initial
direction as α′(0) =∶ X̂, where X ∈ TM is a unit vector �eld. �e curvature of the curve is given
by the second derivative31

α′′ = α′′t
´¸¶
tangent

+⟨α′′,N⟩N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
normal

(A.8)

Using integration by parts and the fact that the �rst derivative α′ is purely tangential,

⟨d
2α
ds2
,N⟩N = −⟨α′, ∂N

∂s
⟩N = − ⟨α′, ∇̂X̂N⟩N = g(X , SX)N = II(X , X)N .

N

α

X̂
Ĵ X

Figure 3: Illustration of a curve α on the surfaceM with initial direction α′(0) = X̂.

31s ∈ (−ε, ε) can be considered as a time parameter with respect to which we take the derivative here.
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�is observation justi�es the de�nition of normal curvature for all unit vector �elds X ∈ TM as

κN(X) ∶= II(X , X). (A.9)

Normal curvature has an intuitive geometric interpretation, which is demonstrated in Fig. 4. �e
normal curvature in direction X ∈ TM, is equal to the inverse radius of a disk that can be locally
�tted to the surface in direction X.

N

X̂

1
κN(X)

Figure 4: Illustration of normal curvature. Normal curvature κN(X) = 1/R is equal to the inverse
radius of a disk that can locally be �tted to the surface in direction of a vector �eld X ∈ TM.

�e maximum and the minimum curvatures among all possible directions at a point p ∈ M are
the principal curvatures κ1(p), κ2(p). Let X1, X2 be the corresponding (unit norm) directions
of principal curvature. �ese are the eigenvectors of the shape operator with eigenvalues κ1, κ2,
respectively,

SXi = κiXi . (A.10)

As a consequence, the di�erential of the Gauss map evaluated along the principal curvature
directions is

dN(Xi) = κid f (Xi). (A.11)

�e Gaussian curvature κ and mean curvature H of a surface are de�ned as

κ = κ1κ2

H = κ1 + κ2
2

. (A.12)

By Gauß’�eorema Egregium, the Gaussian curvature depends only on the intrinsic geometry.
Mean curvature on the other hand is an extrinsic curvature measure.

Since the point of view taken in this thesis is based on di�erential quantities of the surface, we
need a notion of derivative as seen from the surface called the covariant derivative.
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N

X̂

Ŷ
∇̂X̂ Ŷ

II
(X
,Y

)N

d f (∇
X Y)

Figure 5: Illustration of the covariant derivative, which is the tangential component of the direc-
tional derivative in ambient space.

Let X̂ = d f (X), Ŷ = d f (Y) be vector �elds in R3 associated with X ,Y ∈ TM via push-forward.
We denote the directional derivative of Ŷ in direction X̂ in Euclidean space by32

∇̂X̂ Ŷ .

�is expression has tangential and normal contribution. �e idea of the covariant derivative is to
project the directional derivative onto the tangent bundle of the surfaceM. It can be written as
d f (∇XY), where ∇ is the Levi-Civita connection onM.
Altogether, we have the decomposition

∇̂X̂ Ŷ = d f (∇XY)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tangent

+ II(X ,Y)N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
normal

. (A.13)

32�e directional derivative in Euclidean space is the Levi-Civita connection, which makes this choice of notation
clear.
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Nomenclature

∣q∣ norm of a quaternion q ∈ H

α, β generic quaternionic di�erential forms

A∗ mesh adjoint of a matrix A

⟨⋅, ⋅⟩H inner product on a Hilbert space H ∈ {Rn ,Hn , L2(M ,R), L2(M ,H)}; if the Hilbert space
is clear from context, it is not speci�ed explicitly

Q† hermitian adjoint of a quaternionic matrix, that is, Q transposed and conjugated

∆g f Laplace-Beltrami operator to the metric g associated with the surface immersed by f

d f di�erential of the immersion f

∣d f ∣2 volume form of a conformal immersion f ∶ M → R3

1
∣d f ∣2 Hodge star operator on 2-forms

D f quaternionic Dirac operator to a conformal immersion f ∶ M → R3

F face set of the surface mesh with ∣F∣ faces

f immersion of a surfaceM into R3

fx partial derivative of the immersion f ∶ M → R3 with respect to x

g Riemannian metric

Γki j Christo�el symbols

H quaternion skew-�eld

H inner product space of half-densities

H mean curvature

∧ wedge product between di�erential forms

H∣d f ∣ mean curvature half-density
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I(X ,Y) �rst fundamental form evaluated at vector �elds X ,Y

II(X ,Y) second fundamental form evaluated at vector �elds X ,Y

Im(q) imaginary part of a quaternion q ∈ H

J complex structure on a surface

κ Gaussian curvature

κ1, κ2 principal curvatures along principal curvature directions X1, X2

λ quaternionic function λ ∶ M → H ∖ {0} that induces a spin transformation

M domain of immersion (topological surface)

M f conformal shape space based on the immersion f ∶ M → R3

N outward oriented normal �eld (Gauss map)

∇̂X̂ Ŷ covariant derivative in ambient space of a tangent vector �eld Ŷ in direction X̂

∇XY Levi-Civita connection on a surfaceM with vector �elds X ,Y onM as arguments

Ωk(M) space of di�erential k-forms on a surfaceM

ω, η generic real valued di�erential forms

ϕ,ψ generic functions

q conjugated quaternion to a quaternion q ∈ H

q(s) scalar part of a quaternion q ∈ H

q(v) vector part of a quaternion q ∈ H

Re(q) real part of a quaternion q ∈ H

ρ curvature potential

S shape operator

σ volume form

⋆ Hodge star operator

TM tangent bundle over the surfaceM

u, v ,w generic vectors

V vertex set of the surface mesh with ∣V ∣ vertices
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× cross product in R3

xi local coordinates onM

X ,Y generic vector �elds on a surface

X̂ , Ŷ push-forwards of vector �elds X ,Y on a surface to the ambient space
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