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Abstract

In this article, we introduce nonlinear versions of the popular structure tensor, also known as second moment matrix. These nonlinear structure

tensors replace the Gaussian smoothing of the classical structure tensor by discontinuity-preserving nonlinear diffusions. While nonlinear

diffusion is a well-established tool for scalar and vector-valued data, it has not often been used for tensor images so far. Two types of nonlinear

diffusion processes for tensor data are studied: an isotropic one with a scalar-valued diffusivity, and its anisotropic counterpart with a diffusion

tensor. We prove that these schemes preserve the positive semidefiniteness of a matrix field and are, therefore, appropriate for smoothing structure

tensor fields. The use of diffusivity functions of total variation (TV) type allows us to construct nonlinear structure tensors without specifying

additional parameters compared to the conventional structure tensor. The performance of nonlinear structure tensors is demonstrated in three

fields where the classic structure tensor is frequently used: orientation estimation, optic flow computation, and corner detection. In all these cases,

the nonlinear structure tensors demonstrate their superiority over the classical linear one. Our experiments also show that for corner detection

based on nonlinear structure tensors, anisotropic nonlinear tensors give the most precise localisation.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The matrix field of the structure tensor, introduced by

Förstner and Gülch [18] as well as by Bigün and Granlund [6]

in an equivalent formulation, plays a fundamental role in

today’s image processing and computer vision, as it allows

both orientation estimation and image structure analysis. It has

proven its usefulness in many application fields such as corner

detection [18], texture analysis [7,27,36], diffusion filtering

[49,50], and optic flow estimation [7,24]. It has even been

successfully employed in numerical mathematics for grid

optimisation when solving hyperbolic differential equations

[43]. A detailed description on structure tensor concepts can be

found in the textbook of Granlund and Knutsson [20].
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The structure tensor offers three advantages. Firstly, the

matrix representation of the image gradient allows the

integration of information from a local neighbourhood without

cancellation effects. Such effects would appear if gradients

with opposite orientation were integrated directly. Secondly,

smoothing the resulting matrix field yields robustness under

noise by introducing an integration scale. This scale determines

the local neighbourhood over which an orientation estimation

at a certain pixel is performed. Thirdly, the integration of local

orientation creates additional information, as it becomes

possible to distinguish areas where structures are oriented

uniformly, like in regions with edges, from areas where

structures have different orientations, like in corner regions.

The classical structure tensor applies a linear technique such as

Gaussian convolution for averaging information within a

neighbourhood. Although Gaussian smoothing is a simple and

robust method, it is known to have two important drawbacks: It

blurs and dislocates structures. This is a consequence of the fact

that the local neighbourhood for the integration is fixed in both its

size and its shape. Consequently, it cannot adapt to the data, and

the orientation estimation of a pixel located close to the boundary

of two different regions is disturbed by ambiguous information.

It is well-known that Gaussian convolution is equivalent to

linear diffusion. Therefore, is is natural to address
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the limitations of Gaussian convolution by using nonlinear

diffusion techniques which smooth the data while respecting

discontinuities [35,49]. For the structure tensor this means that

the local neighbourhood, originally defined by the Gaussian

kernel, is now adapted to the data and avoids smoothing across

discontinuities. However, the structure tensor is a matrix field,

and until recent time, techniques for nonlinear diffusion have

only been available for scalar-valued and vector-valued data

sets. Tschumperlé and Deriche have introduced an isotropic1

nonlinear diffusion scheme for matrix-valued data [44], while

the anisotropic counterpart to their technique has been

presented by Weickert and Brox [52]. These new methods

allow to replace the Gaussian smoothing of the original linear

structure tensor by a nonlinear diffusion method.

However, the application of one of these techniques is not

perfectly straightforward. It has to be ensured that the nonlinear

diffusion schemes do not violate the positive semidefiniteness

property of the structure tensor. This will be proven in this

paper. In contrast to an earlier conference publication [10], the

nonlinear structure tensor, as it is proposed here, applies the

original matrix-valued diffusion techniques from [44] and [52],

thus using all available information for steering the diffusion.

Moreover, it employs diffusivity functions based on total

variation (TV) flow [2,15], the diffusion filter corresponding to

TV regularisation [40]. This flow offers a number of favourable

properties, and it does not require additional contrast

parameters such as most other diffusivity functions.

In principle, it makes sense to use nonlinear structure

tensors in any application in which the classic structure tensor

has already proven its usefulness and where discontinuities in

the data play a role or delocalisation effects should be avoided.

For this paper we focus on orientation analysis, optic flow

estimation, and corner detection. Our experiments in these

fields allow a direct comparison between the performance of

the nonlinear structure tensors and the classic linear one.
1.1. Paper organisation

The following section starts with a brief review of the

conventional linear structure tensor, its properties and short-

comings. In Section 3, we then discuss isotropic and

anisotropic nonlinear diffusion filters for matrix-valued data,

and in Section 4 we prove that these nonlinear filters preserve

the positive semidefiniteness if the original data field is positive

semidefinite. Tensor-valued nonlinear diffusion filtering is

used in Section 5 for constructing isotropic and anisotropic

nonlinear structure tensors. The Sections 6–8 deal with

applications of the nonlinear structure tensors to orientation

analysis, optic flow estimation, and corner detection. The paper

is concluded with a summary in Section 9.
1 In our notation, isotropic nonlinear diffusion means nonlinear diffusion

driven by a scalar-valued diffusivity, in contrast to anisotropic nonlinear

diffusion, which is driven by a matrix-valued diffusion tensor.
1.2. Related work

There are several proposals in the literature that intend to

avoid the blurring effects of the conventional structure tensor

across discontinuities. Nagel and Gehrke [33] introduced a

structure tensor for optic flow estimation using local

information in order to adapt the Gaussian kernel to the data.

This work has been further extended in [30,31]. While

nonlinear diffusion filtering and adaptive Gaussian smoothing

are similar for small amounts of smoothing, significant

differences arise when more substantial smoothing is

performed. In this case, nonlinear diffusion based on the

iterative application of very small averaging kernels can realise

highly complex adaptive kernel structures.

An orientation estimation method based on robust statistics

has been proposed by van den Boomgaard and van de Weijer

[47]. Another related method is proposed by Köthe [26]. In

order to detect edges and corners, an adaptive, hour-glass

shaped filter is used for smoothing the structure tensor.

Analysing the differences and understanding the relations

between such adaptive filters, robust estimation and nonlinear

diffusion methods is a topic of current research; see e.g. [32] for

the scalar case and [9] for the tensor case.

Our article comprises and extends earlier work presented at

conferences [52,10]. These extensions contain: (i) the diffusion

of the structure tensor by means of diffusivities based on TV

flow; (ii) a proof that the used schemes preserve the positive

semidefiniteness of the original matrix field also in the

continuous setting; (iii) an extensive comparison of linear,

isotropic, and anisotropic diffusion of the structure tensor; and

(iv) the application of the nonlinear structure tensor to corner

detection.
2. Linear structure tensor

Let U3R
m denote our m-dimensional image domain, and

let us consider some greyscale image h : U/R. Then the

structure tensor is a field of symmetric m!m matrices that

contains in each element information on orientation and

intensity of the surrounding structure of h. The initial matrix

field is computed from the gradient of h by applying the tensor

product J0ZVhVhu: Although this tensor product contains

no more information than the gradient itself, it has the

advantage that it can be smoothed without cancellation effects

in areas where gradients have opposite signs, since

VhVhu Z ðKVhÞðKVhuÞ: Consider, for instance, a thin line.

It has a positive gradient on one side, and a negative gradient

on the other side. Any smoothing operation on the gradient

directly would cause both gradients to mutually cancel out.

Smoothing the matrix field, however, avoids this cancellation

effect.

The smoothing is usually performed by convolution of the

matrix components with a Gaussian kernel Kr with standard

deviation r:

Jr Z Kr � ðVhVhuÞ: (1)
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Since convolution is a linear operation, we refer to the classic

structure tensor as linear structure tensor. It is a symmetric,

positive semidefinite matrix, since it results from averaging of

symmetric positive semidefinite matrices. Gaussian smoothing

not only improves the orientation information with regard to

noise, but also creates a scale-space with the integration scale

r. This scale parameter determines the size of the neighbour-

hood considered for the structure analysis.

The structure tensor can also be defined for vector-valued

data sets, colour images for instance [14]. Let h : U/R
n be a

vector-valued data set and hi its i-th component. Then the

structure tensor is given by

Jr Z Kr �
Xn

iZ1

VhiVhu
i : (2)

Besides the information on orientation and magnitude of

structures, which is already present in the gradient, the

structure tensor contains some further information. This

additional information has been obtained by the smoothing

process and measures the homogeneity of orientations within

the neighbourhood of a pixel.

This information can be extracted from the structure tensor

by means of a principal axis transformation JrZSuLS, where

the eigenvectors of Jr are the rows of S, and the corresponding

eigenvalues li with l1R.Rlm, are the elements of the

diagonal matrix LZdiag(li). The eigenvector to the smallest

eigenvalue then determines the dominant orientation of the

local structure, while the trace trJr (sum of the diagonal

elements) of the structure tensor Jr determines its magnitude.

The coherence in 2D image data is often expressed by the

condition number of Jr (largest eigenvalue divided by smallest

eigenvalue) or by the measure (l1–l2)2, yet also other measures

based on the eigenvalues may be reasonable.

Magnitude and coherence of the structure tensor can be used

for structure analysis. Homogeneous areas in an image cause

the magnitude to be small. In areas around edges, the structure

tensor has a large magnitude as well as a large coherence, while

corners result in a large magnitude but small coherence. For

higher dimensional data, this structure analysis becomes more

complicated, as more cases must be distinguished.

Fig. 1 shows the most important properties of the linear

structure tensor. Fig. 1(a) depicts a synthetic test image distorted

by Gaussian noise with sZ30. In Fig. 1(b), the matrix product
Fig. 1. Left: (a) synthetic image with Gaussian noise. Center: (b)
VhVhu is shown as a coloured orientation plot. Its orientation

information is expressed by the colour whereas the magnitude is

encoded by the intensity of the plot. Fig. 1(c) finally shows the

linear structure tensor for rZ3. The following properties can be

observed:

† Noise removal

Most of the noise present in the initial matrix field has been

removed due to the smoothing.

† Propagation of orientation information

In most applications of the structure tensor, it is desirable

that there is a filling-in effect of orientation information from

structured areas into areas without structure as far as these

areas are small in respect of a certain scale. By means of the

structures in the lower left of Fig. 1 it can be seen that the linear

structure tensor fulfills this requirement appropriately. This

subsequent simplification results in a scale-space property with

the scale parameter r.

† Dislocation of discontinuities and blurring effects

Fig. 1(c) reveals a blurring effect that is typical for Gaussian

smoothing. Edges disappear with increasing r and the

remaining edges dislocate. A smoothing method based on

nonlinear diffusion should be able to preserve these disconti-

nuities. This shall be discussed next.
3. Nonlinear diffusion filtering of tensor data

In this section, we study isotropic and anisotropic nonlinear

diffusion filters that will allow us to construct nonlinear

structure tensors later on.
3.1. Isotropic nonlinear diffusion

The goal of nonlinear diffusion filtering is to reduce

smoothing in the presence of edges [35]. This can be

achieved by a decreasing diffusivity function g which

correlates the amount of smoothing with the image gradient

magnitude (suitable functions will be discussed in Subsection

3). Nonlinear diffusion filtering creates a family of simplified
J0 ZVhVhu. Right: (c) linear structure tensor Jr with rZ3.



T. Brox et al. / Image and Vision Computing 24 (2006) 41–5544
images {u(x,t)jtR0} of some scalar initial image f(x) by

solving the partial differential equation (PDE)

vtu Z div gðjVuj2ÞVu
� �

on Uð0;NÞ; (3)

with f as initial condition,

uðx; 0Þ Z f ðxÞ on U; (4)

and reflecting (homogeneous Neumann) boundary conditions:

vnu Z 0 on vUð0;NÞ; (5)

where v denotes the outer normal on the image boundary vU.

The diffusion time t determines the amount of simplification:

For tZ0 the original image f is recovered, and larger values

for t result in more pronounced smoothing.

An extension of nonlinear diffusion filtering to vector-

valued data f Z ðfiÞ : U/R
n has been proposed in [19]. It

evolves f under the diffusion equations

vtui Z div g
Xn

kZ1

jVukj
2

 !
Vui

 !
ði Z 1;.; nÞ (6)

where u is a vector with n components. Note that all vector

channels are coupled in this scheme: They are smoothed with a

joint diffusivity taking into account the edges of all channels.

This synchronisation avoids that edges evolve at different

locations in different channels: A discontinuity in one channel

inhibits also smoothing in the others.

The coupled vector-valued diffusion scheme is also a good

basis for smoothing a matrix field FZ ðfi;jÞ : U/R
n!n. When

regarding the components of an n!n matrix as components of

an n2-dimensional vector, which is not unnatural since e.g. the

Frobenius norm of a matrix equals the Euclidean norm of the

resulting vector, it is possible to diffuse also a matrix field with

Eq. (6). In fact, this leads to the following PDEs for matrix-

valued diffusion [44]:

vtui;j Z div g
Xn

k;lZ1

jVuk;lj
2

 !
Vui;j

 !
ði; j Z 1;.; nÞ: (7)

In Section 4, we will see that the coupling of the tensor

channels guarantees that the evolving matrix field U(x,t)Z
(uij(x,t)) remains positive semidefinite if its initial value F(x)Z
(fij(x)) is positive semidefinite.

It is easy to verify that the diffusion Eq. (7) can be regarded as a

steepest descend method for minimising the energy functional

EðUÞ Z

ð
U

J
Xm

k;lZ1

jVuk;lj
2

 !
dx (8)

with a penaliser J(s2) whose derivative satisfies J0(s2)Zg(s2)
3.2. Anisotropic nonlinear diffusion

Besides these isotropic diffusion schemes, there exist

also anisotropic counterparts. In the anisotropic case not

only the amount of diffusion is adapted locally to the data

but also the direction of smoothing. It allows for example
to smooth along image edges while inhibiting smoothing

across edges. This can be achieved by replacing the

scalar-valued diffusivity function by a matrix-valued

diffusion tensor.

Vector-valued anisotropic diffusion evolves the original

image f(x)Z(fi(x)) under the PDE [51]

vtui Z div g
Xn

kZ1

VukVuu
k

 !
Vui

 !
ði Z 1;.; nÞ; (9)

subject to the reflecting boundary conditions

vn g
Xn

kZ1

VukVuu
k

 !
Vui

 !
Z 0 ði Z 1;.; nÞ: (10)

Here the scalar-valued function g has been generalised to a

matrix-valued function in the following way: Let AZS diagðliÞ

Su denote the principal axis transformation of some symmetric

matrix A, with the eigenvalues li as the elements of the diagonal

matrix diag(li) and the normalised eigenvectors as the columns of

the orthogonal matrix S. Then we set gðAÞ :ZS diagðgðliÞÞS
u.

The diffusivity g(s2) is the same decreasing function as in the

isotropic case. Simply speaking, in the anisotropic setting the

diffusivity function is applied to the eigenvalues of the matrix

obtained from the outer product of the gradient. This gives a

diffusion tensor g
P

kVukVuu
k

� �
. In the isotropic setting, the

diffusivity function is applied to the scalar-valued squared

gradient magnitude, or the scalar product of the gradient. This

yields a scalar-valued diffusivity g
P

kVuu
k Vuk

� �
. Note that the

transition from the isotropic to the anisotropic setting simply

consists of exchanging the order of Pu and Vuu.

Anisotropic diffusion offers the advantage of smoothing in a

direction-specific way: Along the i-th eigenvector of
P

kVukVuu
k

with corresponding eigenvalue li, the eigenvalue of the diffusion

tensor is given by g(li). In eigendirections with large variation of

local structure, li is large and g(li) is small. This avoids smoothing

across discontinuities. Along discontinuities, li is small such that

g(li) is large and full diffusion is performed. For more information

about anisotropic diffusion in general, we refer to [49,45].

In [52] this vector-valued scheme has been generalised to

matrix-valued data by considering the PDEs

vtui;j Z div g
Xn

k;lZ1

Vuk;lVuu
k;l

 !
Vui;j

 !

ði; j Z 1;.; nÞ:

(11)

In a similar way as in [53], one can prove that this process can

be regarded as a gradient descend method for mimimising the

energy functional

EðUÞ Z

ð
U

trJ
Xn

k;lZ1

Vuk;lVuu
k;l

 !
dx: (12)

Note the structural similarity to the isotropic functional (8)

which may be rewritten as
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EðUÞ Z

ð
U

J tr
Xn

k;lZ1

Vuk;lVuu
k;l

 !
dx: (13)

Thus, for going from the isotropic to the anisotropic functional,

all one has to do is to exchange the order of the penaliser J and

the trace operator.

3.3. Diffusivity functions

The choice of the diffusivity function g has a rather large

impact on the outcome of diffusion. The following family of

diffusivity functions is very interesting:

gðjVuj2Þ Z
1

jVujp
(14)

with p2R and pR0. These diffusivities offer the advantage

that they do not require any image specific contrast parameters.

Moreover, they lead to scale invariant filters [1], for which

even some analytical results have been established [46].

For pZ0, linear homogeneous diffusion is obtained,

which is equivalent to Gaussian smoothing with standard

deviation
ffiffiffiffi
2t

p
, and forms the basis of Gaussian scale-space

theory [23,42].

For pZ1 one obtains the total variation (TV) flow [2,15], the

diffusion filter that corresponds to TV minimisation [40] with a

penaliser JðjVuj2ÞZ2jVuj: TV flow offers a number of

interesting properties such as finite extinction time [3],

shape-preserving qualities [5], and equivalence to TV

regularisation in 1D [11].

Finally, for pO1 the diffusion not only preserves edges but

even enhances them. A diffusivity with pZ2 has been

considered in [25] for the so-called balanced forward-

backward diffusion filtering. While a complete well-posedness

theory exists for p%1, some theoretical questions are a topic of

ongoing research for the edge-enhancing case pO1.

In the present paper we focus on TV flow (pZ1), since it is

theoretically well-founded [3,16], and it offers a good

compromise between the smoothing properties for small values

of p, and the edge preserving qualities for large p. We introduce a

small regularisation with some fixed parameter 3O0 that avoids

singularities and creates a differentiable diffusivity function:

gðjVuj2Þ Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 C jVuj2
p : (15)
4. Preservation of positive semidefiniteness

When applying a diffusion process to matrix-valued data it

is by no means clear that the positive (semi-)definiteness of the

original data is preserved. However, for the diffusion schemes

we use here, we now prove a maximum–minimum principle for

the field of eigenvalues associated with a matrix field.

Let FZ ðfi;jÞ : U/R
n!n denote the initial field of n!n-

matrices, while U(x,t)Z(uij(x,t)) stands for the diffused matrix

field, governed either by the isotropic diffusion equation
vtui;j Z div g
Xn

k;lZ1

Vuu
k;lVuk;l

 !
Vui;j

 !
ði; j Z 1;.; nÞ (16)

or the anisotropic diffusion process

vtui;j Z div g
Xn

k;lZ1

Vuk;lVuu
k;l

 !
Vui;j

 !
ði; j Z 1;.; nÞ:

(17)

Here g(s2) is a diffusivity function that satisfies certain

monotonicity and growth conditions [49] as, for instance,

the functions displayed in (15) does. Furthermore, let lF
k ðxÞ

resp. lU
k ðx; tÞ be the k-th eigenvalue of the initial matrix

field F(x) and the diffused field U(x,t) with kZ1,.,n.

Denoting by lF
minðxÞ and lF

maxðxÞ the smallest and the largest

eigenvalue of the matrix F(x), x2U, we have the following

result.

Theorem 1. (extremum principle for the eigenvalues.)

For tR0, the eigenvalues of the diffused matrix field U(.,t)

are bounded by the eigenvalues of the initial matrix field F:

inf
y2U

lF
minðyÞ%lU

k ðx; tÞ%sup
y2U

lF
maxðyÞ ðcx2U; k Z 1;.; nÞ:

Proof. We consider the anisotropic case, the arguments carry

over to the isotropic case (16) essentially verbatim. The idea of

the proof is to reduce the matrix-valued case to the scalar one

and then to apply known results from the scalar theory. To this

end consider the Rayleigh quotient vuUv, resp., vuFv

associated with U, resp., F, where v2R
n is a fixed but

arbitrary unit column vector. For any such vector v it follows

from (17) by linearity properties of the matrix multiplications

and differential operators involved that

vtðv
uUvÞ Z vt

X
i;j

viui;jvj

 !
Z
X

i;j

vivtui;jvj

Z
X

i;j

vi div g
X

k;l

Vuk;lVuu
k;l

 !
Vui;j

 ! !
vj

Z div g
X

k;l

Vuk;lVuu
k;l

 !
V
X

i;j

viui;jvj

 ! !

Z div g
X

k;l

Vuk;lVuu
k;l

 !
VðvuUvÞ

 !
:

Due to the properties of the regularised TV diffusivity function

g, the associated matrix g
P

k;l Vuk;lVuu
k;l

� �
fits into the

framework for a scalar-valued continuous nonlinear diffusion

scale-space [49]. As a consequence, the scalar valued functions

ðx; tÞ1vuUðx; tÞv are smooth and an extremum principle

holds. Therefore,

inf
y2U

l
F
minðyÞ% inf

y2U

vuFðyÞv%vuUðx; tÞv%sup
y2U

vuFðyÞv

%sup
y2U

lF
maxðyÞ
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for tOZ0 and all unit vectors v2R
n. Here the first and the last

inequality follow from properties of the Rayleigh quotient,

while the second and second to last inequality are a consequence

of the extremum principle. Furthermore, one can choose for

each eigenvalue lU
k ðx; tÞ a unit eigenvector vkZvk(x,t) such that

lU
k ðx; tÞ Z vkuðx; tÞUðx; tÞvkðx; tÞ:

Hence the assertion follows from the sequence of inequalities

above.

Since positive (semi-) definiteness of a symmetric matrix is

equivalent to the positivity of its eigenvalues an immediate

consequence is the following.

Corollary 1. (preservation of positive (semi-)definiteness.)

Under the assumptions for Theorem 1, positive (semi-)

definiteness of the initial matrix field F implies positive (semi-)

definiteness of the diffused matrix field U(.,t) for tOZ0.

This corollary is crucial for many applications such as

diffusion tensor MRI or structure tensor smoothing, since it

guarantees that the positive semidefinitess of the initial field is

not destroyed by diffusion filters of type (16) or (17). A discrete

reasoning why such filters preserve positive semidefiniteness

can be found in [52], where it is argued that only convex

combinations of positive semidefinite matrices are computed in

each iteration exploiting the well-known fact that the set of

symmetric positive semidefinite matrices constitute a closed

convex cone. Both results show that already the channel

coupling of the diffusion processes via a joint diffusivity or a

joint diffusion tensor is sufficient to preserve positive

semidefiniteness. Thus, from a viewpoint of preservation of

positive semidefiniteness, it is not required to consider more

sophisticated constrained flows [12] or functionals with

Cholesky decomposition [48]. Only if further constraints are

imposed due to special applications, these constrained flows

need to be employed.
5. Nonlinear structure tensors

Now that we have understood how nonlinear diffusion

filtering of tensor fields works we are in the position of using

this knowledge for constructing nonlinear structure tensors.

5.1. General idea

Given some image h : U/R with U3R
m we consider the

tensor product

F :Z ðfijÞ :Z VhVhu: (18)

Then the classic stucture tensor applies component-

wise Gaussian convolution to the matrix field

FZ ðfijÞ : U/R
m!m. This is equivalent to regarding F as

initial value for the linear matrix-valued diffusion equation

vtuij Z Duij ði; j Z 1;.;mÞ (19)

where the diffusion time t is related to the standard deviation r

of the Gaussian via tZr2/2. Nonlinear structure tensors replace
this diffusion equation either by the isotropic diffusion scheme

vtui;j Z div g
Xm

k;lZ1

jVuk;lj
2

 !
Vui;j

 !
ði; j Z 1;.;mÞ (20)

or the anisotropic diffusion process

vtui;j Z div g
Xm

k;lZ1

Vuk;lVuu
k;l

 !
Vui;j

 !
ði; j Z 1;.;mÞ;

(21)

both in combination with diffusivity functions such as (14).

The result U(x,t)Z(uij(x,t)) gives the desired isotropic or

anisotropic nonlinear structure tensor field. Since F is a

positive semidefinite matrix field, Corollary 1 guarantees that

U(x,t) is also positive semidefinite for all tOZ0, provided that

the underlying scalar diffusion process satisfies a maximum-

minimum principle.
5.2. Role of the parameters

We have two parameters for a nonlinear structure tensor.

Firstly, there is the diffusion time t that determines the amount

of smoothing, i.e. the size of the neighbourhood. It corresponds

directly to the integration scale r of the linear structure tensor,

since the Gaussian convolution in the linear structure tensor

equals linear diffusion with diffusion time tZr2/2. Thus, t is

not a conceptually new parameter. Secondly, there is the

parameter p that determines the amount of edge preservation.

Note that this latter parameter is implicitly also present in the

classic structure tensor: The classic linear structure tensor is a

special case of the nonlinear structure tensor for pZ0 where

the diffusivity g becomes equal to 1. Since we favour the TV

diffusion case, we usually fix p to 1. In this case, p does not

constitute an additional parameter. Consequently, going from

linear to nonlinear structure tensors does not introduce new

problems of parameter selection.
5.3. Implementation

Compared to scalar-valued nonlinear diffusion filters, their

tensor-valued counterparts do not involve additional difficulties

with respect to implementations. In our experiments we apply

standard space discretisations by means of central finite

differences (see e.g. [51]). With respect to the time discretisa-

tion, an efficient semi-implicit additive operator splitting (AOS)

scheme is used [28,54]. Since it is absolutely stable, it is possible

to choose significantly larger time step sizes than for the widely

used explicit (Euler-forward) discretisations.
5.4. Application areas

All applications of the classic structure tensor are also

potential applications for its nonlinear variants. It should be

clear, however, that the nonlinear structure tensors have only

advantages in the presence of discontinuities or when

dislocalisation problems appear. If this is not the case, nonlinear
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structure tensors cannot be any better than the conventional one.

In the presence of important discontinuities in the data, on the

other hand, the accuracy of the results should improve with the

usage of nonlinear structure tensors. We will now present

experiments in three fields of application where the conven-

tional structure tensor is very popular and where discontinuities

or delocalisation effects can play a major role: orientation

analysis, optic flow estimation, and corner detection. This list is

not complete: For experiments on texture analysis by means of

nonlinear structure tensors, we refer to [8].
6. Application to orientation estimation

In this section, we analyse the use of nonlinear structure

tensors for orientation estimation by applying them to the test

image from Fig. 1. Orientation estimation with the structure

tensor computes a least squares fit of an orientation vector

given the gradient directions from a local neighbourhood. This

best fit in the least squares sense is given by the eigenvector to

the largest eigenvalue of the structure tensor [47]. For a reliable

estimation, it is therefore necessary to integrate information

from a nontrivial neighbourhood in order to gather a sufficient

amount of constraints. This means, one has to smooth the

matrix field, even if the input image is noise free. Integrating

the orientation information from a sufficiently large neighbor-

hood then allows to estimate an orientation vector also in local

areas without gradients. The orientation estimate can be

interpreted as the dominant orientation in this neighborhood.

Fig. 2 depicts the different versions of the structure tensor.

For the linear structure tensor in Fig. 2(a), Gaussian smoothing

has been used (pZ0). Fig. 2(b) shows the nonlinear structure

tensor smoothed with the isotropic scheme from (7) and TV

flow (pZ1). Finally, Fig. 2(c) depicts the nonlinear structure

tensor employing the anisotropic diffusion scheme from (11),

again with pZ1. It can be observed that both nonlinear

structure tensors succeed in avoiding the blurring effects that

are the decisive drawback of the original linear structure tensor.

This can be explained by the nonlinear structure tensors

avoiding an integration of ambiguous orientations due to the

discontinuity preserving nature of nonlinear diffusion. The

isotropic nonlinear structure tensor performs best at orientation
Fig. 2. Left: (a) linear structure tensor, rZ3, corresponding to tZ4.5. Center: (b)

nonlinear structure tensor (Eq. (11)), tZ3600.
discontinuities, while the anisotropic nonlinear structure tensor

is slightly better at smoothing within one homogeneous region.

Fig. 3 depicts the results for different diffusivities from the

family of (14). As the differences between the isotropic and

anisotropic nonlinear structure tensor are small, only the

isotropic version is shown. Fig. 3(a) depicts the result for pZ
0.8, where the diffusion is closer to Gaussian smoothing. In

contrast to that, the diffusion for pZ1.2 is edge enhancing.

Hence, the result in Fig. 3(c) reveals sharper edges. Fig. 3(b)

depicts the result achieved with TV flow, which is a good

compromise between edge preservation and closing of

structures. Fig. 4 illustrates that the diffusion time t can be

regarded as a scale parameter for nonlinear structure tensors:

By increasing t the orientation field becomes simpler and larger

regions of homogeneous orientation are formed. Thus t plays

the same role for nonlinear structure tensors as standard

deviation r of the Gaussian for the linear structure tensor.
7. Application to optic flow estimation

Optic flow estimation by means of the structure tensor has

first been investigated by Bigün et al. [7]. However, already the

well-known method of Lucas and Kanade [29] implicitly used

the structure tensor components. Both methods are very

similar, and we will stick here to the method of Lucas and

Kanade.

The goal in optic flow estimation is to find the displacement

field (u,v) between two images of an image sequence f(x,y,z)

where (x,y) denotes location and z denotes time. Frequently it is

assumed that image structures do not alter their grey values

during their movement. This can be expressed by the optic flow

constraint [22]

fxu C fyv C fz Z 0 (22)

where subscripts denote partial derivatives. As this is only one

equation for two unknown flow components, the optic flow is

not uniquely determined by this constraint (aperture problem).

A second assumption has to be made. Lucas and Kanade

proposed to assume the optic flow vector to be constant within

some neighbourhood. Often one uses a Gaussian-weighted

neighbourhood Kr where r is the standard deviation of the

Gaussian. The optic flow in some point (x0,y0) can then be
isotropic nonlinear structure tensor (Eq. (7)), tZ3200. Right: (c) Anisotropic



Fig. 3. Isotropic nonlinear structure tensor for different p. Left: (a) pZ0.8 and tZ800. Center: (b) pZ1 and tZ3200. Right: (c) pZ1.2 and tZ12000.
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estimated by the minimiser of the local energy function

Eðu; vÞ Z
1

2
Kr � ðfxu C fyv C fzÞ

2: (23)

A minimum (u,v) of E satisfies vuEZ0 and vvEZ0, leading to

the linear system

Kr � ðf 2
x Þ Kr � ðfxfyÞ

Kr � ðfxfyÞ Kr � ðf 2
y Þ

 !
u

v


 �
Z

KKr � ðfxfzÞ

KKr � ðfyfzÞ

 !
: (24)

Obviously, the entries of this linear system are five of the six

different components of the spatio-temporal linear structure

tensor

Jr Z Kr � Vf Vf u
� �

Z Kr �

f 2
x fxfy fxfz

fxfy f 2
y fyfz

fxfz fyfz f 2
z

0
BB@

1
CCA: (25)
Fig. 4. Temporal evolution of the isotropic nonlinear structure tensor (pZ1). From l

tZ4000: (f) tZ8000.
With the nonlinear structure tensor available, we can introduce

a nonlinear version of the Lucas-Kanade method by replacing

the components of the linear structure tensor in (24) by those

of the nonlinear one. This means that the fixed neighbourhood

of the original method is replaced by an adaptive neighbour-

hood which respects discontinuities in the data.
7.1. Evaluation in optic flow estimation

In order to see the effect of the adaptive neighbourhood on

the quality of the results, we tested all three versions of the

structure tensor: the conventional linear structure tensor, the

nonlinear structure tensor based on isotropic nonlinear

diffusion, and the one based on anisotropic diffusion.

For optic flow estimation, a frequently used quantitative

quality measure is the so-called average angular error (AAE)

introduced in [4]. Given the estimated flow field (ue,ve)
eft to right, top to bottom: (a) tZ250: (b) tZ500: (c) tZ1000: (d) tZ2000: (e)



Table 1
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and ground truth (uc,vc), the AAE is defined as

Comparison between the results

Yosemite sequence

Technique T AAE Standard dev.

Linear structure tensor 21 8.788 12.768

Isotropic nonlinear structure tensor 400 7.678 11.028

Anisotropic nonlinear structure tensor 200 7.688 11.848

Marble sequence
AAE Z
1

N

XN

iZ1

arccos
uciuei Cvcivei C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
ci Cv2

ci C1
� �

u2
ei Cv2

ei C1
� �q

0
B@

1
CA
(26)
Technique T AAE Standard dev.

Linear structure tensor 222 5.828 4.488

Isotropic nonlinear structure tensor 250 5.198 2.988

Anisotropic nonlinear structure tensor 163 5.108 3.228

AAE, average angular error.
where N is the total number of pixels. In contrast to its

indication, this quality measure does not only measure the

angular error between the estimated flow vector and the correct

vector, but also differences in the magnitude of both vectors,

since it measures the angular error of the spatio-temporal

vector (u,v,1).

For our experiments we used two different sequences from

the literature with the correct flow field available: the famous

Yosemite sequence2 and the Marble sequence3. They both

contain discontinuities, so they are well-suited to test the

improvements that can be achieved with the nonlinear structure

tensors.
7.2. Yosemite sequence

A quantitative comparison between the results obtained

with the Lucas-Kanade method and the three different versions

of the structure tensor is provided in Table 1. The second row

indicates the setting of the only free parameter, the diffusion

time t. The parameter has been chosen separately for each

experiment such that the method provides the optimum average

angular error. Further on, in the nonlinear cases, TV flow has

been chosen for smoothing, i.e. pZ1.

It can be observed that the nonlinear structure tensors can

clearly outperform the conventional linear one. The difference

between the isotropic and anisotropic scheme, however, is only

marginal in this application.

Comparing the visual impression, the improvement

achieved with the nonlinear structure tensor is even larger.

This is because the nonlinear structure tensor is beneficial

especially in the areas around discontinuities. Such areas are

relatively small compared to the whole image, so most of the

improvements are hidden by a global measure such as the

AAE. Figs. 5 and 6 show the results obtained with the different

versions of the structure tensor together with the correct flow

field. Again colour expresses the orientation of the flow vectors

while the intensity shows their magnitude. In our case, this kind

of representation is preferable to the common representation

method using vector plots, because no subsampling is

necessary and so the quality of the results at discontinuities

becomes better visible. Note that the black parts in Fig. 6(c) are

excluded from the calculation of the AAE, because there is no

ground truth available for these areas.
2 Created by Lynn Quam at SRI, available from ftp://csd.uwo.ca/pub/vision.
3 Created by Otte and Nagel [34], available from http://i21www.ira.uka.de/

image_sequences.
7.3. Application to corner detection

When looking for some important, distinguished locations of

an image, one often considers points where two or more edges

meet. Such locations have been named corners, junctions, or

interest points, and a range of possible approaches exists to

detect them in an image; see e.g. the reviews in [38,41]. The

methods based on the structure tensor are well established in this

field, so it is interesting to see how the nonlinear structure

tensors will perform (Fig. 7).

At zero integration scale, the structure tensor J0 as

introduced in (1) or (2) contains information on intrinsically

1D features of the image, i.e. edges. For grey-scale images,

only one eigenvalue of the structure tensor J0 may attain

nonzero values (equal to the squared gradient magnitude),

while its corresponding eigenvector represents the gradient

direction.

Two-dimensional features of an image (corners) can be

detected by integrating the local 1D information of J0 within

some neighbourhood. The classical method is to smooth J0

linearly using convolution with a Gaussian, which yields the

linear structure tensor. Alternatively, one can consider a

nonlinear structure tensor which is obtained by the integration

within a data-adaptive neighbourhood by means of nonlinear

diffusion. If two differently oriented edges appear in the

neighbourhood, the smoothed structure tensor J will possess

two nonzero eigenvalues l1,l2[0. Several possibilities have

been proposed to convert the information from J into a measure

of ‘cornerness’, e.g. by Förstner [17], Harris and Stephens [21],

Rohr [37], or Köthe [26]. In our experiments we employ the

last approach, and detect corners at local maxima of the smaller

eigenvalue of the smoothed structure tensor.

Like in optic flow estimation, we will employ and compare

three different smoothing strategies leading to three different

versions of the structure tensor:

† Linear smoothing according to (1) with a scale parameter r

leads to the linear structure tensor Jr.

† Isotropic nonlinear diffusion according to (7) with TV

diffusivity gTV (Eq. (15)) gives the isotropic nonlinear

structure tensor JTV
t at time t.

† Anisotropic nonlinear diffusion with a diffusion tensor

http://ftp://csd.uwo.ca/pub/vision
http://i21www.ira.uka.de/image_sequences
http://i21www.ira.uka.de/image_sequences


Fig. 5. Yosemite sequence (316!252!15). From left to right, top to bottom: (a) frame 8: (b) ground truth optic flow field as vector plot: (c) ground truth, where the

orientations are represented by colours: (d) Lucas-Kanade with linear structure tensor: (e) Lucas-Kanade with isotropic nonlinear structure tensor: (f) Lucas-Kanade

with anisotropic nonlinear structure tensor.
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D Z S diag gTVðl1Þ;
1

3


 �
Su (27)
where l1 is the larger eigenvalue of the structure tensor Jr

calculated from the evolving data U, and S contains the

eigenvectors as columns. This process is a combination of a

linear smoothing along edges (i.e. in the direction where fast

smoothing and exchange of information is desired) with a

constant diffusivity 1/3, and TV diffusion with 3-regularised

diffusivity along the gradient (i.e. smoothing is slower across
discontinuities). The resulting structure tensor will be

denoted JA
r;t.

Corner detection using the linear structure tensor Jr is the

basic choice. It is robust under noise, but the localisation of the

detected features is less precise. Because of the linear

smoothing, the detected location of a corner tends to shift as

the scale r increases: see Fig. 8 top and [13].

With isotropic TV flow and JTV
t , the local amount of

smoothing is an inverse function of the gradient

magnitude. Therefore, the feature blurring and displace-

ment is slowed down when compared to the linear

method, and corners remain well localised even for



Fig. 6. Marble sequence (512!512!32). From left to right, top to bottom: (a) frame 16: (b) ground truth (vector plot): (c) ground truth (colour plot): (d) Lucas-

Kanade with linear structure tensor: (e) Lucas-Kanade with isotropic nonlinear structure tensor: (f) Lucas-Kanade with anisotropic nonlinear structure tensor.
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higher diffusion times when any possible noise or small-

scale features would have been removed; see the

example in the middle of Fig. 8.

As the anisotropic method producing JA
r;t prefers smoothing

along edges, the exchange of information at places where two
edges meet is much faster. A small diffusion time suffices to

produce significant corner features which are well localised;

see Fig. 8 bottom.

The localisation precision of each method is evaluated on

the test image of Fig. 9 left where the ideal locations of



Fig. 7. Left: (a) detail of a test image with ideal corner position (50,50). Right: (b) larger eigenvalue of the structure tensor J0.

Fig. 8. Cornerness measured by the smaller eigenvalue of a smoothed structure tensor J, and the detected corner. Top: linear smoothing. Middle: isotropic nonlinear

diffusion with TV diffusivity. Bottom: anisotropic nonlinear diffusion.
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corners are known. The parameters of each method were

tuned so that they detect the corners reliably and accurately:

we evaluate the average distance between the strongest 16

detected points and the 16 ground truth corners. The best
result with the linear structure tensor Jr gives an average

error of 1.92 pixels. The isotropic nonlinear method JTV
t

produces a mean error of 1.51 pixels, while the anisotropic

structure tensor JA
r;t is the most precise corner detector: Its



Fig. 9. Left: (a) a test image. Right: (b) results of three corner detectors (detail). Blue diamond: linear smoothing, rZ1.5, mean error 1.92. Yellow ‘x’: isotropic

smoothing with TV flow, tZ1400, mean error 1.51. Red ‘C’: anisotropic smoothing, tZ5, rZ2, mean error 0.97. The ideal corner locations are shown by black dots

(For interpretation of the reference to colour in this legend, the reader is referred to the web version of this article).

Fig. 10. Corners detected in the ‘lab’ test image. Top left: (a) linear smoothing of the structure tensor. Top right: (b) isotropic TV flow. Bottom left: (c) anisotropic

smoothing. Bottom right: (d) a detail for comparison. For all methods, the smoothing parameters are identical to those for the ‘squares’ test image in Fig. 9, and the

200 strongest corners are shown.
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mean error is only 0.97 pixels. The parameter setting is given

in Fig. 9.

The three methods (without any change of parameters) were

then employed at a frequently used ‘lab’ test image; the results

are presented in Fig. 10. We observe that all the three methods

detect corners which seem to correspond well to real corners

and interest points present in the image. Also in this case, the

nonlinear methods outperform their linear counterpart in the

precision of corner localisation, and the anisotropic nonlinear

corner detector gives the best results. An example is shown at

the bottom right of Fig. 10.
8. Conclusions

A number of image processing and computer vision tasks

make use of a structure tensor based on Gaussian smoothing,

or—equivalently—linear diffusion. Unfortunately, linear

diffusion is well-known to destroy important structures

such as discontinuities, while other structures may be

dislocated.

To address these problems, we introduced nonlinear

structure tensors that are based on isotropic or anisotropic

diffusion filters for matrix-valued data. These data-adaptive

smoothing processes avoid averaging of ambiguous structures

across discontinuities. Our nonlinear structure tensors contain

the conventional linear structure tensor as a special case, and

we proved that the matrix-valued nonlinear diffusion filters

do not destroy positive semidefiniteness. By using nonlinear

diffusion filters with TV diffusivities, nonlinear structure

tensors do not involve more parameters than the linear

structure tensor. Applying the structure tensor to orientation

estimation, optic flow computation, and corner detection

allowed a direct comparison between the performance of the

linear structure tensor and its nonlinear extensions. The

higher accuracy of the results confirmed the superiority of the

nonlinear structure tensors. For corner detection, it turned out

that specific structure tensors based on anisotropic nonlinear

diffusion offer advantages over the ones using isotropic

nonlinear diffusion.

We would like to emphasise that these three application

fields serve as proof-of-concept only. We are convinced that

nonlinear structure tensors are of more general usefulness in all

kinds of problems where preservation of discontinuities or

avoidance of dislocation effects are desirable, e.g. texture

segmentation [8,39]. In our future research, we intend to

perform comparisons and analyse connections between

diffusion-based nonlinear structure tensors and other data-

adaptive variants of structure tensors. First results in this

direction are reported in [9].
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