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Abstract

Deep learning has achieved a remarkable performance
breakthrough in several fields, most notably in speech
recognition, natural language processing, and computer vi-
sion. In particular, convolutional neural network (CNN) ar-
chitectures currently produce state-of-the-art performance
on a variety of image analysis tasks such as object detec-
tion and recognition. Most of deep learning research has
so far focused on dealing with 1D, 2D, or 3D Euclidean-
structured data such as acoustic signals, images, or videos.
Recently, there has been an increasing interest in geomet-
ric deep learning, attempting to generalize deep learning
methods to non-Euclidean structured data such as graphs
and manifolds, with a variety of applications from the do-
mains of network analysis, computational social science,
or computer graphics. In this paper, we propose a uni-
fied framework allowing to generalize CNN architectures to
non-Euclidean domains (graphs and manifolds) and learn
local, stationary, and compositional task-specific features.
We show that various non-Euclidean CNN methods previ-
ously proposed in the literature can be considered as par-
ticular instances of our framework. We test the proposed
method on standard tasks from the realms of image-, graph-
and 3D shape analysis and show that it consistently outper-
forms previous approaches.

1. Introduction
In recent years, increasingly more fields have to deal

with geometric non-Euclidean structured data such as man-
ifolds or graphs. Social networks are perhaps the most
prominent example of such data; additional examples in-
clude transportation networks, sensor networks, functional
networks representing anatomical and functional structure
of the brain, and regulatory networks modeling gene expres-
sions. In computer graphics, 3D objects are traditionally
modeled as Riemannian manifolds. The success of deep
learning methods in many fields has recently provoked a
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keen interest in geometric deep learning [10] attempting to
generalize such methods to non-Euclidean structured data.

1.1. Related works

Deep learning on graphs. The earliest attempts to gener-
alize neural networks to graphs we are aware of are due to
Scarselli et al. [16, 31]. This work remained practically un-
noticed and has been rediscovered only recently [24, 37].
The interest in non-Euclidean deep learning has recently
surged in the computer vision and machine learning com-
munities after the seminal work of Bruna et al. [11, 18], in
which the authors formulated CNN-like [23] deep neural ar-
chitectures on graphs in the spectral domain, employing the
analogy between the classical Fourier transforms and pro-
jections onto the eigenbasis of the graph Laplacian operator
[33]. In a follow-up work, Defferrard et al. [13] proposed
an efficient filtering scheme that does not require explicit
computation of the Laplacian eigenvectors by using recur-
rent Chebyshev polynomials. Kipf and Welling [21] further
simplified this approach using simple filters operating on
1-hop neighborhoods of the graph. Similar methods were
proposed in [3] and [15]. Finally, in the network analysis
community, several works constructed graph embeddings
[28, 38, 12, 17, 44] methods inspired by the Word2Vec tech-
nique [27].

A key criticism of spectral approaches such as [11, 18,
13] is the fact that the spectral definition of convolution
is dependent on the Fourier basis (Laplacian eigenbasis),
which in turn is domain-dependent. It implies that a spec-
tral CNN model learned on one graph cannot be trivially
transferred to another graph with a different Fourier basis,
as it would be expressed in a ‘different language’.

Deep learning on manifolds. In the computer graphics
community, we can notice a parallel effort of generalizing
deep learning architectures to 3D shapes modeled as mani-
folds (surfaces). Masci et al. [26] proposed the first intrinsic
version of convolutional neural networks on manifolds ap-
plying filters to local patches represented in geodesic polar
coordinates. Boscaini et al. [7] used anisotropic heat ker-
nels [1] as an alternative way of extracting intrinsic patches



on manifolds. In [6], the same authors proposed a CNN-
type architecture in the spatio-frequency domain using the
windowed Fourier transform formalism [34]. Sinha et al.
[35] used geometry images representation to obtain a Eu-
clidean parametrization of 3D shapes on which standard
CNNs can be applied.

The key advantage of spatial techniques is that they gen-
eralize across different domains, which is a crucial property
in computer graphics applications (where a CNN model can
be trained on one shape and applied to another one). How-
ever, while spatial constructions such as anisotropic heat
kernels have a clear geometric interpretation on manifolds,
their interpretation on general graphs is somewhat elusive.

1.2. Main contribution

In this paper, we present mixture model networks
(MoNet), a general framework allowing to design convo-
lutional deep architectures on non-Euclidean domains such
as graphs and manifolds. Our approach follows the general
philosophy of spatial-domain methods such as [26, 7, 3],
formulating convolution-like operations as template match-
ing with local intrinsic ‘patches’ on graphs or manifolds.
The key novelty is in the way in which the patch is ex-
tracted: while previous approaches used fixed patches, e.g.
in geodesic or diffusion coordinates, we use a parametric
construction. In particular, we show that patch operators
can be constructed as a function of local graph or man-
ifold pseudo-coordinates, and study a family of functions
represented as a mixture of Gaussian kernels. Such a con-
struction allows to formulate previously proposed Geodesic
CNN (GCNN) [26] and Anisotropic CNN (ACNN) [7] on
manifolds or GCN [21] and DCNN [3] on graphs as partic-
ular instances of our approach.

Among applications on which we exemplify our ap-
proach are classical problems from the realms of image-,
graph- and 3D- shape analysis. In the first class of prob-
lems, the task is to classify images, treated as adjacency
graphs of superpixels. In the second class of problems, we
perform vertex-wise classification on a graph representing
a citation network of scientific papers. Finally, we consider
the problem of finding dense intrinsic correspondence be-
tween 3D shapes, treated as manifolds. In all the above
problems, we show that our approach consistently outper-
forms previously proposed non-Euclidean deep learning
methods. Due to space limitations, additional results and
figures are presented in the Supplementary Materials.

2. Deep learning on graphs

Let G = ({1, . . . , n}, E ,W) be an undirected weighted
graph, represented by the adjacency matrix W = (wij),
where wij = wji, wij = 0 if (i, j) /∈ E and wij > 0
if (i, j) ∈ E . The (unnormalized) graph Laplacian is an

n×n symmetric positive-semidefinite matrix ∆ = D−W,
where D = diag

(∑
j 6=i wij

)
is the degree matrix.

The Laplacian has an eigendecomposition ∆ = ΦΛΦ>,
where Φ = (φ1, . . .φn) are the orthonormal eigenvectors
and Λ = diag(λ1, . . . , λn) is the diagonal matrix of cor-
responding eigenvalues. The eigenvectors play the role of
Fourier atoms in classical harmonic analysis and the eigen-
values can be interpreted as frequencies. Given a signal
f = (f1, . . . , fn)> on the vertices of graph G, its graph
Fourier transform is given by f̂ = Φ>f . Given two signals
f ,g on the graph, their spectral convolution can be defined
as the element-wise product of the Fourier transforms,

f ? g = Φ(Φ>f) ◦ (Φ>g) = Φ diag(ĝ1, . . . , ĝn)f̂ , (1)

which corresponds to the property referred to as the Convo-
lution Theorem in the Euclidean case.

Spectral CNN. Bruna et al. [11] used the spectral definition
of convolution (1) to generalize CNNs on graphs, with a
spectral convolutional layer of the form

fout
l = ξ

(
p∑

l′=1

ΦkĜl,l′Φ
>
k f in
l′

)
. (2)

Here the n × p and n × q matrices Fin = (f in
1 , . . . , f

in
p )

and Fout = (fout
1 , . . . , fout

q ) represent respectively the p-
and q-dimensional input and output signals on the vertices
of the graph, Φ = (φ1, . . . ,φk) is an n × k matrix of
the first eigenvectors, Ĝl,l′ = diag(ĝl,l′,1, . . . , ĝl,l′,k) is a
k × k diagonal matrix of spectral multipliers representing
a learnable filter in the frequency domain, and ξ is a non-
linearity (e.g. ReLU) applied on the vertex-wise function
values. The analogy of pooling in this framework is a graph
coarsening procedure, which, given a graph with n vertices,
produces a graph with n′ < n vertices and transfers signals
from the vertices of the fine graph to those of the coarse one.

While conceptually important, this framework has sev-
eral major drawbacks. First, the spectral filter coefficients
are basis dependent, and consequently, a spectral CNN
model learned on one graph cannot be applied to another
graph. Second, the computation of the forward and inverse
graph Fourier transform incurs expensive O(n2) multipli-
cation by the matrices Φ,Φ>, as there is no FFT-like algo-
rithms on general graphs. Third, there is no guarantee that
the filters represented in the spectral domain are localized in
the spatial domain; assuming k = O(n) eigenvectors of the
Laplacian are used, a spectral convolutional layer requires
pqk = O(n) parameters to train.

Smooth Spectral CNN. In a follow-up work, Henaff et al.
[18] argued that smooth spectral filter coefficients result in
spatially-localized filters and used parametric filters of the



form

ĝi =
r∑
j=1

αjβj(λi), (3)

where β1(λ), . . . , βr(λ) are some fixed interpolation ker-
nels, and α = (α1, . . . , αr) are the interpolation co-
efficients. In matrix notation, the filter is expressed as
diag(Ĝ) = Bα, where B = (bij) = (βj(λi)) is a k×r ma-
trix. Such a parametrization results in filters with a number
of parameters constant in the input size n.

Chebyshev Spectral CNN (ChebNet). In order to allevi-
ate the cost of explicitly computing the graph Fourier trans-
form, Defferrard et al. [13] used an explicit expansion in the
Chebyshev polynomial basis to represent the spectral filters

gα(∆) =
r−1∑
j=0

αjTj(∆̃) =
r−1∑
j=0

αjΦTj(Λ̃)Φ>, (4)

where ∆̃ = 2λ−1
n ∆− I is the rescaled Laplacian such that

its eigenvalues Λ̃ = 2λ−1
n Λ − I are in the interval [−1, 1],

α is the r-dimensional vector of polynomial coefficients
parametrizing the filter, and

Tj(λ) = 2λTj−1(λ)− Tj−2(λ), (5)

denotes the Chebyshev polynomial of degree j defined in a
recursive manner with T1(λ) = λ and T0(λ) = 1.

Such an approach has several important advantages.
First, it does not require an explicit computation of the
Laplacian eigenvectors. Due to the recursive definition of
the Chebyshev polynomials, the computation of the filter
gα(∆)f entails applying the Laplacian r times, resulting
in O(rn) operations. Second, since the Laplacian is a lo-
cal operator affecting only 1-hop neighbors of a vertex and
accordingly its (r − 1)st power affects the r-hop neighbor-
hood, the resulting filters are localized.

Graph convolutional network (GCN). Kipf and Welling
[21] considered the construction of [13] with r = 2,
which, under the additional assumption of λn ≈ 2, and
α = α0 = −α1 yields single-parametric filters of the form
gα(f) = α(I + D−1/2WD−1/2)f . Such a filter is numeri-
cally unstable since the maximum eigenvalue of the matrix
I + D−1/2WD−1/2 is 2; a renormalization

gα(f) = αD̃−1/2W̃D̃−1/2f , (6)

with W̃ = W + I and D̃ = diag(
∑
j 6=i w̃ij) is introduced

by the authors in order to cure such problem and allow mul-
tiple convolutional levels to be casted one after the other.

Diffusion CNN (DCNN). A different spatial-domain
method was proposed by Atwood and Towsley [3], who
considered a diffusion (random walk) process on the graph.
The transition probability of a random walk on a graph

is given by P = D−1W. Different features are pro-
duced by applying diffusion of different length (the powers
P0, . . . ,Pr−1),

fout
l,j = ξ(wljP

jf in
l ),

where the n × p and n × pr matrices Fin = (f in
1 , . . . , f

in
p )

and Fout = (fout
1,1 , . . . , f

out
p,r ) represent the p- and pr-

dimensional input and output signals on the vertices of the
graph and W = (wlj) is the p× r matrix of weights.

3. Deep learning on manifolds
Let X be a d-dimensional differentiable manifold, possi-

bly with boundary ∂X . Around point x ∈ X , the manifold
is homeomorphic to a d-dimensional Euclidean space re-
ferred to as the tangent space and denoted by TxX . An
inner product 〈·, ·〉TxX : TxX × TxX → R depending
smoothly on x is called the Riemannian metric. In the fol-
lowing, we denote by f : X → R smooth real functions
(scalar fields) on the manifold. In shape analysis, 3D shapes
are modeled as 2-dimensional manifolds (surfaces), repre-
senting the boundaries of 3D volumes.

Geodesic CNN (GCNN). Masci et al. [26] introduced a
generalization of CNNs on 2-dimensional manifolds, based
on the definition of a local charting procedure in geodesic
polar coordinates [22]. Such a construction, named the
patch operator

(D(x)f)(ρ, θ) =

∫
X
wρ,θ(x, y)f(y)dy

maps the values of the function f at a neighborhood of the
point x ∈ X into the local polar coordinates ρ, θ. Here dy
denotes the area element induced by the Riemannian metric,
and wρ,θ(x, y) is a weighting function localized around ρ, θ
(see examples in Figure 1). D(x)f can be regarded as a
patch on the manifold; the geodesic convolution

(f?g)(x) = max
∆θ∈[0,2π)

∫ 2π

0

∫ ρmax

0

g(ρ, θ+∆θ)(D(x)f)(ρ, θ)dρdθ,

can be thought of as matching a template g(ρ, θ) with the
extracted patch at each point, where the maximum is taken
over all possible rotations of the template in order to re-
solve the origin ambiguity in the angular coordinate. The
geodesic convolution is used to define an analogy of a tra-
ditional convolutional layer in GCNN, where the templates
g are learned.

Anisotropic CNN (ACNN). Boscaini et al. [7] considered
the anisotropic diffusion equation on the manifold

ft(x, t) = −divX (A(x)∇X f(x, t)) , (7)

where ∇X and divX denote the intrinsic gradient and di-
vergence, respectively, f(x, t) is the temperature at point



Table 1. Several CNN-type geometric deep learning methods on graphs and manifolds can be obtained as a particular setting of the
proposed framework with an appropriate choice of the pseudo-coordinates and weight functions in the definition of the patch operator. x
denotes the reference point (center of the patch) and y a point within the patch. x denotes the Euclidean coordinates on a regular grid.
ᾱ, σ̄ρ, σ̄θ and ūj , θ̄j , j = 1, . . . , J denote fixed parameters of the weight functions.

Method Pseudo-coordinates u(x, y) Weight function wj(u), j = 1, . . . , J

CNN [23] Local Euclidean x(x, y) = x(y)− x(x) δ(u− ūj)

GCNN [26] Local polar geodesic ρ(x, y), θ(x, y) exp(− 1
2 (u− ūj)

>
(
σ̄2
ρ

σ̄2
θ

)−1

(u− ūj))

ACNN [7] Local polar geodesic ρ(x, y), θ(x, y) exp(− 1
2u>Rθ̄j ( ᾱ 1 ) R>

θ̄j
u)

GCN [21] Vertex degree deg(x), deg(y)
(

1− |1− 1√
u1
|
)(

1− |1− 1√
u2
|
)

DCNN [3] Transition probability in r hops p0(x, y), . . . , pr−1(x, y) id(uj)

x and time t, and the conductivity tensor A(x) (operating
on the gradient vectors in the tangent space TxX ) allows to
model heat flow that is position- and direction-dependent.
In particular, they used the 2× 2 tensor

Aαθ(x) = Rθ(x)

(
α

1

)
R>θ (x) , (8)

where matrix Rθ is a rotation by θ in the tangent plane w.r.t.
the maximal curvature direction, and the parameter α > 0
controls the degree of anisotropy (isotropic diffusion is ob-
tained for α = 1). Using as initial condition f(x, 0) a point
source of heat at x, the solution to the heat equation (7) is
given by the anisotropic heat kernel hαθt(x, y), represent-
ing the amount of heat that is transferred from point x to
point y at time t. By varying the parameters α, θ and t (con-
trolling respectively the elongation, orientation, and scale
of the kernel) one obtains a collection of kernels that can be
used as weighting functions in the construction of the patch
operator (see examples in Figure 1). This gives rise to an
alternative charting to the geodesic patches of GCNN, more
robust to geometric noise, and more efficient to compute.

Both GCNN and ACNN operate in the spatial domain
and thus do not suffer from the inherent inability of spec-
tral methods to generalize across different domains. These
methods were shown to outperform all the known hand-
crafted approaches for finding intrinsic correspondence be-
tween deformable shapes [26, 7], a notoriously hard prob-
lem in computer graphics.

4. Our approach

The main contribution of this paper is a generic spatial-
domain framework for deep learning on non-Euclidean do-
mains such as graphs and manifolds. We use x to de-
note, depending on context, a point on a manifold or a
vertex of a graph, and consider points y ∈ N (x) in the
neighborhood of x. With each such y, we associate a
d-dimensional vector of pseudo-coordinates u(x, y). In
these coordinates, we define a weighting function (kernel)
wΘ(u) = (w1(u), . . . , wJ(u)), which is parametrized by

some learnable parameters Θ. The patch operator can there-
fore be written in the following general form

Dj(x)f =
∑

y∈N (x)

wj(u(x, y))f(y), j = 1, . . . , J, (9)

where the summation should be interpreted as an integral
in the case we deal with a continuous manifold, and J rep-
resents the dimensionality of the extracted patch. A spa-
tial generalization of the convolution on non-Euclidean do-
mains is then given by a template-matching procedure of
the form

(f ? g)(x) =

J∑
j=1

gj Dj(x)f. (10)

The two key choices in our construction are the pseudo-
coordinates u and the weight functions w(u). Table 3
shows that other deep learning methods (including the clas-
sical CNN on Euclidean domains, DCN and DCNN on
graphs, and GCNN and ACNN on manifolds) can be ob-
tained as particular settings of our framework with appro-
priate definition of u and w(u). For example, GCNN and
ACNN boil down to using Gaussian kernels on local po-
lar geodesic coordinates ρ, θ on a manifold, and GCN can
be interpreted as applying a triangular kernel on pseudo-
coordinates given by the degree of the graph vertices.

In this paper, rather than using fixed handcrafted weight
functions we consider parametric kernels with learnable pa-
rameters. In particular, a convenient choice is

wj(u) = exp(− 1
2 (u− µj)

>Σ−1
j (u− µj)), (11)

where Σj and µj are learnable d× d and d× 1 covariance
matrix and mean vector of a Gaussian kernel, respectively.
Formulae (9–10) can thus be interpreted as a gaussian mix-
ture model (GMM). We further restrict the covariances to
have diagonal form, resulting in 2d parameters per kernel,
and a total of 2Jd parameters for the patch operator.

While extremely simple, we show in the next section that
these additional degrees of freedom afford our architecture
sufficient complexity allowing it to outperform existing ap-
proaches. More complex versions of the weighting func-
tions could include additional non-linear transformation of
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MoNet
Figure 1. Left: intrinsic local polar coordinates ρ, θ on manifold around a point marked in white. Right: patch operator weighting functions
wi(ρ, θ) used in different generalizations of convolution on the manifold (hand-crafted in GCNN and ACNN and learned in MoNet). All
kernels are L∞-normalized; red curves represent the 0.5 level set.

the pseudo-coordinates u before feeding them to the Gaus-
sian kernel, or even more general network-in-a-network ar-
chitectures [25].

5. Results

5.1. Images

In our first experiment, we applied the proposed method
on a classical task of handwritten digit classification in the
MNIST dataset [23]. While almost trivial by todays stan-
dards, we nevertheless use this example to visualize an
important advantage of our approach over spectral graph
CNN methods. Our experimental setup followed [13]. The
28× 28 images were represented as graphs, where vertices
correspond to (super)pixels and edges represent their spatial
relations. We considered two constructions: all images rep-
resented on the same graph (regular grid) and each image
represented as a different graph (Figure 2 left and right, re-
spectively). Furthermore, we varied the graph size: the full
and 1

4 grids contained 728 and 196 vertices, respectively,
while the superpixel-based graphs contained 300, 150, and
75 vertices.

Three methods were compared: classical CNN LeNet5
architecture [23] (containing two convolutional, two max-
pooling, and one fully-connected layer, applied on regular
grids only), spectral ChebNet[13] and the proposed MoNet.
We used a standard splitting of the MNIST dataset into
training-, testing-, and validation sets of sizes 55K, 10K,
and 5K images, respectively. LeNet used 2×2 max-pooling;
in ChebNet and MoNet we used three convolutional lay-
ers, interleaved with pooling layers based on the Graclus
method [14] to coarsen the graph by a factor of four.

For MoNet, we used polar coordinates u = (ρ, θ) of pix-
els (respectively, of superpixel barycenters) to produce the
patch operator; as the weighting functions of the patch op-
erator, 25 Gaussian kernels (initialized with random means
and variances) were used. Training was done with 350K it-
erations of Adam method [20], initial learning rate 10−4,
regularization factor 10−4, dropout probability 0.5, and

Regular grid Superpixels
Figure 2. Representation of images as graphs. Left: regular grid
(the graph is fixed for all images). Right: graph of superpixel
adjacency (different for each image). Vertices are shown as red
circles, edges as red lines.

batch size of 10.
Table 2 summarizes the performance of different algo-

rithms. On regular grids, all the methods perform approx-
imately equally well. However, when applying ChebNet
on superpixel-based representations, the performance drops
dramatically (by up to almost 25%). In this case, each im-
age is represented as a different graph and the filters used
by the ChebNet model fail to generalize well across graphs.
The effect is most pronounced on smaller graphs (150 and
75 superpixels) that vary strongly among each other. In con-
trast, the proposed MoNet approach manifests consistently
high accuracy, and only a light performance degradation is
observed when the image presentation is too coarse (75 su-
perpixels).



Table 2. Classification accuracy of classical Euclidean CNN
(LeNet5), spectral CNN (ChebNet) and the proposed approach
(MoNet) on different versions of the MNIST dataset. The setting
of all the input images sharing the same graph is marked with *.

Dataset LeNet5 [23] ChebNet [13] MoNet

*Full grid 99.33% 99.14% 99.19%
* 1

4 grid 98.59% 97.70% 98.16%
300 Superpixels - 88.05% 97.30%
150 Superpixels - 80.94% 96.75%
75 Superpixels - 75.62% 91.11%

5.2. Graphs

In the second experiment, we address the problem of
vertex classification on generic graphs. We used the pop-
ular Cora and PubMed [32] citation graphs as our datasets.
In each dataset, a vertex represents a scientific publication
(2708 vertices in Cora and 19717 in PubMed, respectively),
and an undirected unweighted edge represents a citation
(5429 and 44338 edges in Cora and PubMed). For each
vertex, a feature vector representing the content of the pa-
per is given (1433-dimensional binary feature vectors in
Cora, and 500-dimensional tf-idf weighted word vectors in
PubMed). The task is to classify each vertex into one of the
groundtruth classes (7 in Cora and 3 in PubMed).

We followed verbatim the experimental settings pre-
sented in [44, 21]. The training sets consisted of 20 sam-
ples per class; the validation and test sets consisted of 500
and 1000 disjoint vertices. The validation set was chosen
in order to reflect the probability distribution of the various
classes over the entire dataset. We compared our approach
to all the methods compared in [21].

For MoNet, we used the degrees of the nodes as the input
pseudo-coordinates u(x, y) = ( 1√

deg(x)
, 1√

deg(y)
)>; these

coordinates underwent an additional transformation in the
form of a fully-connected neural network layer ũ(x, y) =
tanh(Au(x, y) + b), where the r × 2 matrix A and r × 1
vector b were also learned (we used r = 2 for Cora and
r = 3 for PubMed). The Gaussian kernels were applied on
coordinates ũ(x, y) yielding patch operators of the form

Dj(x)fl =
∑

y∈N (x)

e−
1
2 (ũ(x,y)−µj)

>Σ−1
j (ũ(x,y)−µj)fl(y),

where Σj , µj , j = 1, . . . , J are the r × r and r × 1 covari-
ance matrices and mean vectors of the Gaussian kernels,
respectively. DCNN, GCN and MoNet were trained in the
same way in order to give a fair comparison (see training de-
tails in Table 3). The L2-regularization weights for MoNet
were γ = 10−2 and 5×10−2 for Cora and PubMed, respec-
tively; for DCNN and GCN we used the values suggested
by the authors in [3] and [21].

Table 3. Learning configuration used for Cora and PubMed exper-
iments.

Cora PubMed

Learning Algorithm Adam Adam
Number of epochs 3000 1000
Validation frequency 0.01 0.04
Learning rate 0.1 0.1
Decay rate 10−1 -
Decay epochs 1500, 2500 -
Early stopping No No

Table 4. Vertex classification accuracy on the Cora and PubMed
datasets following the splitting suggested in [44]. Learning meth-
ods (DCNN, GCNN and MoNet) were trained and tested fifty
times for showing their average behavior with different initializa-
tions.

Method Cora PubMed

ManiReg [4] 59.5% 70.7%
SemiEmb [42] 59.0% 71.1%
LP [45] 68.0% 63.0%
DeepWalk [28] 67.2% 65.3%
Planetoid [44] 75.7% 77.2%

DCNN [3] 76.80 ± 0.60% 73.00 ± 0.52%
GCN [21] 81.59 ± 0.42% 78.72 ± 0.25%
MoNet 81.69 ± 0.48% 78.81 ± 0.44%

The vertex classification results of different methods are
summarized in Table 4. MoNet compares favorably to other
approaches. The tuning of the network hyper-parameters
has been fundamental in this case for avoiding overfitting,
due to a very small size of the training set. Being more gen-
eral, our architecture is more complex compared to GCN
and DCNN and requires an appropriate regularization to be
used in such settings. At the same time, the greater com-
plexity of our framework might prove advantageous when
applied to larger and more complex data.

5.3. Manifolds

The last application we consider is learning dense intrin-
sic correspondence between collections of 3D shapes repre-
sented as discrete manifolds. For this purpose, correspon-
dence is cast as a labelling problem, where one tries to label
each vertex of a given query shape X with the index of a
corresponding point on some reference shape Y [30, 26, 7].
Let n and m denote the number of vertices in X and Y , re-
spectively. For a point x on a query shape, the last layer of
the network is soft-max, producing an m-dimensional out-
put f(x) that is interpreted as a probability distribution on
Y (the probability of x mapped to y). Learning is done by
minimizing the standard logistic regression cost [7].

Meshes. We reproduced verbatim the experiments of



[26, 7] on the FAUST humans dataset [5], comparing to the
methods reported therein. The dataset consisted of 100 wa-
tertight meshes representing 10 different poses for 10 differ-
ent subjects with exact ground-truth correspondence. Each
shape was represented as a mesh with 6890 vertices; the
first subject in first pose was used as the reference. For all
the shapes, point-wise 544-dimensional SHOT descriptors
(local histogram of normal vectors) [39] were used as in-
put data. We used MoNet architecture with 3 convolutional
layers, replicating the architectures of [26, 7]. First 80 sub-
jects in all the poses were used for training; the remaining
20 subjects were used for testing. The output of the network
was refined using the intrinsic product manifold filter [40]
in order to remove some local outliers.

Correspondence quality was evaluated using the Prince-
ton benchmark [19], plotting the percentage of matches that
are at most r-geodesically distant from the ground-truth cor-
respondence on the reference shape. For comparison, we re-
port the performance of blended maps [19], random forests
[30], GCNN [26], ADD [8], and ACNN [7].

Figure 1 shows the weighting functions of the patch op-
erator that are fixed in GCNN and ACNN architectures, and
part of the learnable parameters in the proposed MoNet.
The patch operators of GCNN and ACNN can be obtained
as a particular configuration of MoNet, implying that if
trained correctly, the new model can only improve w.r.t.
the previous ones. Figure 3 depicts the evaluation results,
showing that MoNet significantly outperforms the compet-
ing approaches. In particular, close to 90% of points have
zero error, and for 99% of the points the error is below 4cm.
Figure 5 shows the point-wise geodesic correspondence er-
ror of our method, and Figure 6 visualizes the obtained cor-
respondence using texture transfer.
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Figure 3. Shape correspondence quality obtained by different
methods on the FAUST humans dataset. The raw performance
of MoNet is shown in dotted curve.

Range maps. Finally, we repeated the shape correspon-
dence experiment on range maps synthetically generated
from FAUST meshes. For each subject and pose, we pro-
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Figure 4. Shape correspondence quality obtained by different
methods on FAUST range maps. For comparison, we show the
performance of a Euclidean CNN with a comparable 3-layer ar-
chitecture. The raw performance is shown as dotted curve.

duced 10 rangemaps in 100×180 resolution, covering shape
rotations around the z-axis with increments of 36 degrees
(total of 1000 range maps), keeping the ground-truth cor-
respondence. We used MoNet architecture with 3 convo-
lutional layers and local SHOT descriptors as input data.
Training and testing set splitting was done as previously.

Figure 4 shows the quality of correspondence computed
using the Princeton protocol. For comparison, we show the
performance of a standard Euclidean CNN in equivalent
architecture (3 convolutional layers) applied on raw depth
values and on SHOT descriptors. Our approach clearly
shows a superior performance. Figure 7 shows the point-
wise geodesic correspondence error. Figure 8 shows a qual-
itative visualization of correspondence using similar color
code for corresponding vertices. We also show correspon-
dence on shapes from SCAPE [2] and TOSCA [9] datasets.

6. Conclusions
We proposed a spatial-domain model for deep learning

on non-Euclidean domains such as manifolds and graphs.
Our approach generalizes several previous techniques that
can be obtained as particular instances thereof. Extensive
experimental results show that our model is applicable to
different geometric deep learning tasks, achieving state-of-
the-art results. In deformable 3D shape analysis applica-
tions, the key advantage of our approach is that it is intrin-
sic and thus deformation-invariant by construction, as op-
posed to Euclidean models [36, 43, 41, 29] that in general
require significantly higher complexity and huge training
sets to learn the deformation invariance. We believe that
our framework will be of broad interest to the CVPR com-
munity and will publish all code and data.
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Figure 5. Pointwise error (geodesic distance from groundtruth) of MoNet on the FAUST humans dataset. For visualization clarity, the error
values are saturated at 7.5% of the geodesic diameter, which corresponds to approximately 15 cm. Hot colors represent large errors.

Figure 6. Examples of correspondence on the FAUST humans dataset obtained by the proposed MoNet method. Shown is the texture
transferred from the leftmost reference shape to different subjects in different poses by means of our correspondence.
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Figure 7. Pointwise error (geodesic distance from groundtruth) of MoNet on FAUST range maps. For visualization clarity, the error values
are saturated at 7.5% of the geodesic diameter, which corresponds to approximately 15 cm. Hot colors represent large errors.

Figure 8. Visualization of correspondence on FAUST range maps as color code (corresponding points are shown in the same color). Full
reference shape is shown on the left. Bottom row show examples of additional shapes from SCAPE and TOSCA datasets.
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