
Distributed Photometric Bundle Adjustment

Nikolaus Demmel, Maolin Gao, Emanuel Laude, Tao Wu and Daniel Cremers
Technical University of Munich

{nikolaus.demmel, maolin.gao, emanuel.laude, tao.wu, cremers}@tum.de

Abstract

In this paper we demonstrate that global photometric
bundle adjustment (PBA) over all past keyframes can signif-
icantly improve the global accuracy of a monocular SLAM
map compared to geometric techniques such as pose-graph
optimization or traditional (geometric) bundle adjustment.
However, PBA is computationally expensive in runtime, and
memory usage can be prohibitively high. In order to address
this scalability issue, we formulate PBA as an approximate
consensus program. Due to its decomposable structure,
the problem can be solved with block coordinate descent
in parallel across multiple independent workers, each hav-
ing lower requirements on memory and computational re-
sources. For improved accuracy and convergence, we pro-
pose a novel gauge aware consensus update. Our experi-
ments on real-world data show an average error reduction
of 62% compared to odometry and 33% compared to inter-
mediate pose-graph optimization, and that compared to the
central optimization on a single machine, our distributed
PBA achieves competitive pose-accuracy and cost.

1. Introduction
Bundle Adjustment (BA) — the joint optimization of

camera poses and 3D landmark positions — is a central
component of many Visual SLAM and Structure from Mo-
tion systems (SfM) [28, 19]. In Photometric Bundle Ad-
justment (PBA), instead of the more traditional geometric
reprojection error based on keypoint matches, we work di-
rectly with image pixel values and minimize the intensity
differences of reprojected points [7, 2, 8]. Minimizing the
photometric error is also known as a direct method, as op-
posed to indirect, feature-based approaches with fixed point
associations. PBA is paramount for the high accuracy of
direct odometry and SLAM systems [8, 35].

While the photometric error is often used with a dense
depth representation, this is not inherent for direct meth-
ods. In fact, more recent works [2, 8, 35] instead optimize
over a sparse set of 3D points and with the term photomet-
ric bundle adjustment we implicitly refer to this sparse for-

ground truth
dpba (ours)
pgo

Figure 1. Top: Reconstructed sparse point cloud of machine hall
(MH01) after global PBA. Keyframes are colored according to
their partitioning into subproblems. Bottom: Estimated camera
trajectory before and after global PBA for sequence V103.

mulation. Therein, landmarks are not directly related by
residuals, and thus the Schur complement trick — which is
crucial for efficiently solving large BA problems — can also
be applied. However, PBA is still computationally more ex-
pensive both in runtime and memory usage compared to its
geometric counterpart: We make use not only of corner fea-
tures but also other points with sufficient image gradient,
like edges, and thus optimize over more landmarks. Each
point observation has higher dimension, as it consists of a
whole patch of intensity differences instead of just a differ-
ence in pixel location. And finally, the optimized cost is

1

1.5 2.0 2.5 3.0 3.5 4.0
#observations (millions)

5

10

m
em

 (G
B)

Figure 2. Memory used by our central PBA implementation with
growing problem size on the EuRoC sequences.

more expensive to evaluate, requiring image interpolation
and gradient computation during the optimization. This also
necessitates keeping keyframe images in memory. There-
fore, PBA in a SLAM context is so far limited to a small
set of local keyframes. To correct the accumulated drift
over time, direct SLAM systems employ geometric tech-
niques such as keypoint-based loop-closure detection and
pose-graph optimization (PGO) [12].

In this paper, we for the first time demonstrate that global
photometric bundle adjustment over all past keyframes can
significantly improve the global map accuracy compared to
PGO alone (see Fig. 1). However, even moderately-sized
problems with thousands of keyframes and millions of land-
marks can exceed the memory of a typical desktop com-
puter. Fig. 2 shows that the memory usage of our (central)
PBA solver grows linearly with the problem size. We hence
propose to make the optimization feasible by distributing
the computation across multiple parallel workers, each hav-
ing lower requirements on memory.

In order to achieve this, our key idea is to reformulate the
optimization cost in a decomposable way, such that each
subproblem is of the same structure as PBA and can be
solved independently with standard techniques. We propose
a distributed approximate consensus optimization scheme
to synchronize between the parallel workers on a master
(assuming a star-shaped network topology) and thus (ap-
proximately) minimize the same cost as in the original cen-
tralized formulation. One important innovation is: unlike
previous consensus-optimization schemes for BA [10, 33],
we explicitly consider the problem’s gauge freedom when
combining the individual workers’ results on the master.

Our decomposition strategy has several advantages. The
workers have to exchange only camera variables with the
master, while landmarks are treated as purely local, limit-
ing communication overhead [33]. For each worker, only
the subset of the keyframe images in overlapping regions
are shared with a small subset of neighboring clusters, and
not at all with the master. And lastly, the updates on the
master are efficient, and all computationally expensive work
is done in parallel on the workers.

The contributions of this paper include: (i) We for the
first time demonstrate the effectiveness of global photomet-
ric bundle adjustment in obtaining highly accurate maps of
sparse landmarks. (ii) We propose a novel distributed ap-
proximate consensus optimization that takes into account

the specifics of PBA (every residual relates one landmark
with two keyframes; additional per-frame optimization vari-
ables for brightness transfer, . . .). (iii) Unlike previous work
[10, 33], we evaluate not only the optimized cost, but also
the pose-accuracy of solutions. (iv) We explicitly consider
the gauge freedom of monocular PBA in the distributed for-
mulation and show that our novel gauge aware consensus
update leads to faster convergence and more accurate so-
lutions. (v) We release our global PBA pipeline as open
source: https://go.vision.in.tum.de/dpba.

2. Related Work
Photometric Bundle Adjustment While feature-based
methods have long been dominant for SfM and SLAM, they
are ultimately limited by the accuracy of feature detection
and matching. In the last decade, direct methods relying on
the photometric error have become popular for pose esti-
mation (typically frame-to-frame) [18, 9] and (semi-)dense
depth estimation [9, 20, 25]. Those methods show great
accuracy and robustness in real-time, but don’t attempt to
optimize structure and motion jointly.

The joint optimization with photometric residuals has
been proposed with a variety of dense structure parame-
terizations, such as meshes [7], surfels [22] or learnt low-
dimensional depth map representations [4]. However, their
joint optimization is limited to a small number of frames
[7, 4, 27]. Impressive performance is demonstrated in [22],
but the formulation relies heavily on depth measurements
from an RGB-D camera and to achieve real-time, they al-
ternate between the refinement of poses and structure.

More recently, the idea of sparse photometric bundle ad-
justment has emerged [2, 8, 14]. Representing the map as
a sparse set of landmarks allows use of the Schur comple-
ment trick, unlocking efficient joint optimization at large
scale [28]. These odometry systems have demonstrated
real-time performance in a sliding window of 5-7 keyframes
and thousands of points. Extensions to SLAM are either
also limited to joint refinement in a small window of covis-
ible keyframes [35] or use features-based loop-closure esti-
mation and subsequent pose-graph optimization (PGO), i.e.
globally optimize only for poses [12]. There is no attempt
at global refinement of all keyframes and landmarks, as is
common in feature-based SLAM systems [19], presumably
due to the substantial computational cost.

While [2] parameterizes landmarks as 3D positions in
map coordinates, we base our model on [8], which rep-
resents points by the inverse depth w.r.t. a fixed pixel po-
sition in a host frame. This allows residuals to take into
account rotation and scale changes between host and tar-
get frames — important for larger baselines — but it also
means, that unlike in traditional BA, every residual now re-
lates two frames. We later show that this is important to
consider when clustering the map into subproblems.

2

https://go.vision.in.tum.de/dpba

oursLDSODSO

sliding window
odometry

loop-closure
detection &
pose-graph

optimization

augment map with
photometric
observations

across loop closures

partition host-
frames into clusters

global photometric
bundle adjustment

Figure 3. Our pipeline to initialize the global PBA problem for
refinement of the map created by LDSO [12].

Distributed Optimization The need for parallel compu-
tation for solving BA problems has long been recognized
[21, 31]. Ni et al. [21] highlight the computational feasi-
bility with limited memory on a single machine and pro-
pose an out-of-core solver that alternates between optimiz-
ing independent clusters and the so called separator vari-
ables in overlapping regions. Unlike our consensus-based
approach, the optimization over these boundary regions has
to be done jointly and it inevitably grows with growing
problem size. Wu et al. [31] avoid explicit instantiation of
the Schur complement matrix by using a specific iterative
solver for the normal equations: preconditioned conjugate
gradient (PCG). Their implementation computes each PCG
step in parallel, and thus has to synchronize in every PCG it-
eration. Our consensus optimization parallelizes on a higher
level, i.e. the formulation of BA itself, and is somewhat ag-
nostic to the subproblem solver.

A numerical method that has received considerable at-
tention in the field of distributed optimization is the con-
sensus alternating direction method of multipliers (ADMM)
[15] originally due to [13, 11]. More recently, in computer
vision, the method has been applied to large scale feature-
based BA [10, 33]. Eriksson et al. [10] propose a distributed
BA model with point consensus. To avoid large communi-
cation overhead, [33] instead propose a camera consensus
formulation which is optimized by ADMM. We follow their
conclusion and also impose consensus only on camera vari-
ables. However, we propose an algorithmic variation that
leaves out the Lagrange multipliers (the dual variables) in
ADMM. Due to the Lagrange multiplier updates, ADMM
generally suffers from a lack of convergence in the non-
convex setting, unless the cost function is strongly smooth
[15]. We found this to be the case in our experiments
with ADMM and infer that it is due to lack of smooth-
ness of the photometric error, inherited from the spatial non-
smoothness of image intensities.

Distributed optimization has recently also been proposed
for the related problems of PGO [6] and motion averag-
ing [34]. Optimizing over camera poses only, they show
impressive results on very large scale problems (by skip-
ping the joint structure and motion refinement), but sacrifice
some of the potential accuracy.

3. Pipeline Overview
Global PBA can be useful in a variety of applications.

While it is feasible to perform on top of feature-based ini-

tializations (SLAM or SfM), it would require careful selec-
tion and initialization of additional non-corner points to ex-
ploit one of the key advantages of PBA over BA. Doing this
well is a whole separate research topic. To keep the setup
simple and focus on the optimization, we therefore choose
the direct SLAM system LDSO [12] and evaluate the gained
global map-accuracy after offline post-processing its out-
put with PBA. As PBA is a non-convex problem where
successful optimization highly depends on accurate initial-
ization, we rely on LDSO to select a meaningful set of
keyframes, landmarks and observations, and correct accu-
mulated drift after detecting loop closures. In the following
we briefly review LDSO and discuss how on top of that we
augment the map with additional observations of existing
landmarks where loop closures are detected and how we
partition the resulting observations graph into the desired
number of clusters using on-graph k-means (see Fig. 3). We
then devote Section 4 to our distributed PBA formulation —
the main focus of this paper.

3.1. Odometry and Pose-Graph Optimization

The monocular odometry [8] localizes sequential images
by maintaining a sliding window of up to 7 keyframes.
For each keyframe, up to 2000 sparse points are selected
in high-gradient regions of the image, and their depth is
initialized with epipolar-line search in following frames.
Using well-initialized points, a set of active landmarks is
maintained in the sliding window. In order to cope with
unknown exposure times, missing photometric calibration
or changes in lighting conditions, each keyframe main-
tains affine brightness transfer parameters. Keyframe poses,
brightness transfer parameters, as well as landmark posi-
tions are refined by local photometric bundle adjustment.
We refer to the keyframe-poses at this stage as odom in our
evaluation (Section 5).

Since the odometry inevitably accumulates drift, global
mapping [12] attempts to correct this. Candidate loop-
closures are proposed with visual bag-of-words using ORB-
descriptors, and after geometric verification, relative pose
constraints are inserted into a pose-graph as loop-closure
edges. A subsequent Sim(3) optimization corrects all
keyframe poses. It should be noted that while we optimize
over frames only, the corrected scale of each keyframe is
used to rescale its hosted landmarks accordingly. We use
this optimized map to add photometric observations in the
following stage and we initialize our global PBA with the
corrected state, which we refer to as pgo in the evaluation.
For further details, please refer to the respective works.

3.2. Augmenting the Map

In order to benefit from global PBA, we need to associate
temporally distant keyframes when a loop closure has oc-
cured. For this, we rely on the undirected observation graph

3

of the initial map, where cameras are connected if they share
observations. For each keyframe we consider the set of all
keyframes connected via loop-closure edges, and their di-
rect neighbors in the observation graph, which gives a set of
new candidate edges. For each candidate edge, we reproject
all landmarks from host to target frame (both ways), and in-
clude a new observation, if the reprojection falls within the
image bounds of the target frame and the relative scale (ra-
tio of distance in host and target frame) is sufficiently close
to 1. Note that more elaborate schemes are possible: detect-
ing outliers, occlusions and duplicate points. However, ro-
bust norms make our optimization somewhat robust to out-
liers and the evaluation shows that even this simple scheme
results in great accuracy. This is in contrast to traditional
BA, where great attention has to be given to filtering outlier
matches to get accurate results.

3.3. Clustering into Subproblems

Different approaches have been proposed to partition a
BA graph into subproblems, e.g. (normalized) graph cuts
[34, 21, 33]. As we are proposing camera consensus [33],
we need to partition the set of landmarks and assign them
to unique clusters. Here we want to highlight an important
difference to traditional BA: In our PBA formulation every
residual involves two frames, hence all landmarks sharing
the same host frame, as well as all residuals involving these
landmarks, should be assigned to the same cluster. Thus, we
start by partitioning the set of host frames, which then in-
duces an assignment of landmarks and observations and in
turn the required camera copies by the target-frame relation.

This keyframe partitioning should satisfy several criteria.
It should be balanced, i.e. comprise clusters of similar size.
Communication overhead during optimization should be
low, i.e. we desire a low number of camera copies. Lastly,
the clusters should be connected and well constrained. In
our experiments we found on-graph k-means clustering on
the observation graph with pairwise Euclidean distances of
initial camera positions as edge weights to be effective in
balancing these conflicting goals. Intuitively, relying on the
initial camera positions as well as the connectivity of the ob-
servation graph results in spatially compact, connected clus-
ters (see Fig. 1). For further details on how we implement
this as an integer linear program to enforce hard-constraints
on cluster balance [3], please refer to the supplementary
material. Note that to ensure all camera copies are well-
constrained, we do in fact also duplicate some landmarks
and observations (see Section 4.1), but we neither enforce
consensus on any duplicate landmarks, nor do they require
additional camera copies.

3.4. Global Photometric Bundle Adjustment

We refine the final map from LDSO by optimizing Ffull

over the states Θi of all keyframes i ∈ F (comprising

world-to-camera SE(3) transformations Ti ' (Ri, ti) and
brightness transfer parameters ai, bi) and inverse distances
dq of all landmarks q:

Ffull :=
∑
i∈F

∑
q∈Pi

∑
j∈Qq

Fi,q,j(Θi, dq,Θj), (1)

Fi,q,j(·) :=
∑

p∈Nq

∥∥(Ij(p
′)− bj)− eaj−ai(Ii(p)− bi)

∥∥
γ
,

(2)

p′ := Π(Rj,i Π−1(p) + dqtj,i). (3)

We sum over all host frames i ∈ F and the hosted points
Pi therein. Each point q ∈ Pi is observed by target
frames Qq and in each j ∈ Qq we compute the brightness-
adjusted photometric error Fi,q,j . Specifically, Fi,q,j is
evaluated using a sum of Huber norms ‖·‖γ over the 8-
pixel neighborhood pattern Nq proposed in [8]. Each re-
projected pixel p′ depends on the relative keyframe pose
(Rj,i, tj,i) :' TjT

−1
i , and the target frame image inten-

sity Ij(p′) is computed by bilinear interpolation. In addi-
tion, Π and Π−1 are camera projection and back-projection
(to unit-vector) with fixed intrinsic parameters.

In the centralized case, we minimize (1) with Levenberg-
Marquardt (LM) — as is common for global BA [28, 2, 8]
— and refer to the result as pba in the evaluation. Similar
to the related work on consensus optimization for BA [10,
33], we employ the same solver for the local subproblems
in our distributed optimization (see Section 4.2). We build
our implementation on the popular Ceres Solver [1].

4. Distributed Global PBA
4.1. Model Formulation

We propose a distributed formulation of the global pho-
tometric bundle adjustment (1). As discussed in Section 3.3,
we start by partitioning the host frames F into L subsets,
i.e., F = ∪Ll=1F l. Based on this partition, we split the
sum of residuals in (1) into the L clusters, which become
independent with the introduction of cluster-wise local du-
plicates to the global variables.

In order to assign residuals to clusters and determine
which variables need to be duplicated, we define the scope
of cluster l, denoted by Cl, as the union of all host frames
and their associated targets frames:

Cl := F l ∪
(
∪i∈Fl ∪q∈Pi

Qq

)
. (4)

Whenever i ∈ Cl, we introduce θli as the local duplicate of
the frame variable Θi in cluster l. We also define for each
point q the set of target frames limited to cluster l as Qlq
and for each frame i ∈ Cl we limit the set of hosted points
P li to ensure it has at least one observation in cluster l:

Qlq := Qq ∩ Cl, P li := {q ∈ Pi : Qlq 6= ∅}. (5)

4

With that, a residual Fi,q,j occurs in cluster l if i ∈ Cl,
q ∈ P li , j ∈ Qlq. Notice that we also include points hosted
in frames i ∈ Cl \ F l that are not in the initial partition F l,
as long as they have at least one observation in cluster l.
We do this, because otherwise we observed some local pure
target frames i ∈ Cl \ F l to be underconstrained.

Since the same residual Fi,q,j may appear in multiple
clusters, we normalize it with the number of appearances:

ni,q,j :=
∣∣{l : i ∈ Cl, q ∈ P li , j ∈ Qlq

}∣∣ . (6)

While also some points may occur in multiple clusters, we
choose to not enforce any consensus and keep {dlq} as inter-
nal variables for cluster l. This limits communication over-
head [33]. For comparison to the central solver we need
to evaluate the cost (1) with global variables, for which we
pick dlq from the cluster where the point’s host frame was
initially assigned to by partition F l.

We are now ready to formulate the distributed PBA as an
approximate consensus program:

Fsplit :=

L∑
l=1

∑
i∈Cl

∑
q∈Pl

i

∑
j∈Ql

q

1

ni,q,j
Fi,q,j(θ

l
i, d

l
q, θ

l
j)

+

L∑
l=1

∑
i∈Cl

P li (Θi, θ
l
i). (7)

Notice how the summands over clusters l are independent
w.r.t. local variables. To relate local and global frame vari-
ables, we add quadratic penalties:

P li (Θi, θ
l
i) :=

(ρR
2

∥∥Ri −Rl
i

∥∥2

F
+
ρt
2

∥∥ti − tli
∥∥2

2

+
ρa
2
|ai − ali|2 +

ρb
2
|bi − bli|2

)
. (8)

Here ρR, ρt, ρa, ρb are the weights of respective consen-
sus penalties on the discrepancy between global variables
and local duplicates. We start with low weights and in-
crease them during the optimization to enforce consensus.
In particular, we choose to penalize the difference between
Ri,R

l
i ∈ SO(3) with respect to the Frobenius norm ‖·‖F

in the embedding space R3×3. See Fig. 4 for an illustration
of the approximate consensus program.

Our design follows the principle of camera consensus
similar to [33] — only the frame variables are duplicated
and enforced with consensus constraints. The main differ-
ences to the previous work are two-fold:

1. The factor graph is structurally different. Unlike tradi-
tional bundle adjustment [28], the PBA here param-
eterizes its residual using the relative camera pose,
hence involving two frame variables for each residual.
As a result, the distributed formulation inevitably in-
volves duplicates of both frame variables (poses and

θ22 θ23 θ24θ11 θ12 θ13

F1,a,2 F2,b,1
1

2
F2,b,3

1

2
F3,c,2

1

2
F2,b,3

1

2
F3,c,2

F4,d,3

d1a d1b d1c d2b d2c d2d

C1 C2

Θ2 Θ3

P 1
2 P 1

3 P 2
2 P 2

3

Figure 4. Factor graph of the distributed photometric bundle ad-
justment (7). The host frames are initially partitioned into two
clusters F1 = {1, 2}, F2 = {3, 4}, inducing local duplicates of
variables and photometric residuals F in C1, C2. The consensus
is imposed on the frame variables θli with quadratic penalties P ,
but not on the point variables dlq. Local duplicates (solid) of the
same global variable (dashed) are shown in equal colors. Dupli-
cated residuals F have weights that sum up to 1. It can be seen that
optimizing over local variables with fixed globals can be done in-
dependently for each cluster and optimizing global variables with
fixed locals only involves frame variables.

brightness transfer parameters) and point variables (in-
verse distances), unless some local pure target frames
be left poorly constrained.

2. The distributed BA in [10, 33] aims for perfect consen-
sus between global variables and their duplicates. In
our formulation, the consensus between global and lo-
cal frame variables is enforced by quadratic penalties,
which can be optimized by purely primal alternating
minimization (see Section 4.2). This avoids numer-
ically unstable dual updates (see the related work in
Section 2) which we found to be particularly challeng-
ing for the non-smooth photometric residuals.

These two differences make our consensus program ap-
proximate. Despite this, we show in Section 5 that the
distributed optimization approaches the performance of the
central solver both in cost and accuracy.

4.2. Solution Algorithm

Our solution algorithm for the distributed global PBA (7)
deploys an alternating minimization strategy switching be-
tween local update and (global) consensus update, which
we elaborate in the following. At the end of each outer it-
eration, we increase the penalty weights with rate β > 1 in
order to tighten the consensus.

Local Update as Bundle Adjustment The local update
takes place in parallel over the L clusters. Within each clus-
ter, the minimization of the distributed model (7) over local

5

variables {θli : i ∈ Cl} ∪ {dlq : q ∈ ∪i∈ClP li} reduces to:∑
i∈Cl

∑
q∈Pl

i

∑
j∈Ql

q

1

ni,q,j
Fi,q,j(θ

l
i, d

l
q, θ

l
j) +

∑
i∈Cl

P li (Θi, θ
l
i).

(9)

Since the quadratic consensus penalties fit the nonlinear
least squares framework, this subproblem has in essence the
same structure as our central PBA and we implement it with
the same solver (see Section 3.4).

Naive Consensus Update We turn to the minimization of
model (7) over the global variables {Θi : i ∈ F} (with
all local variables fixed), which we refer to as the global or
consensus update. Naively, it reduces to minimizing:

L∑
l=1

∑
i∈Cl

P li (Θi, θ
l
i). (10)

A simple closed form solution exists as arithmetic means
for each ti, ai, bi, and the Fréchet mean under ‖·‖F for each
Ri ∈ SO(3). The consensus algorithm that alternates the
local update (9) with the naive consensus update (10) is re-
ferred to as nogauge in the evaluation.

Gauge Freedom The naive consensus update (10) causes
slow convergence of the overall solution algorithm or,
worse, convergence towards some undesirable local mini-
mizer (see Fig. 5). The reason for this pitfall is the pres-
ence of gauge freedom in any bundle adjustment problem
[28, 16]. In essence, any solution of a bundle adjust prob-
lem is invariant (in terms of the objective function) under a
gauge transform. In monocular BA this is typically a simi-
larity transformation with 7 degrees of freedom. In our case,
we have one additional degree of freedom corresponding to
the brightness transfer variables ai. All invariant solutions
form the so-called gauge orbit [28].

In the distributed PBA model (7), each residual
Fi,q,j(θ

l
i, d

l
q, θ

l
j) is invariant under the gauge transform:

Rl
i ← Rl

iR̃
l, tli ← Rl

it̃
l + s̃ltli, (11)

dlq ← dlq/s̃
l, ali ← ali + ãl, (12)

parameterized by the (cluster-wise) gauge variables ξl =
(R̃l, t̃l, s̃l, ãl) ∈ SO(3) × R3 × R>0 × R. Given a gauge
transform ξl, we denote the transformed local variables by
θ̃li(θ

l
i, ξ

l) and d̃lq(dlq, ξ
l).

Consensus Update assisted by Gauge Alignment If
we replace the local variables {θli}, {dlq} in the dis-
tributed photometric bundle adjustment model (7) with
{θ̃li(θli, ξl)}, {d̃lq(dlq, ξ

l)}, we realize that optimizing only

over the gauge variables {ξl} can be interpreted as a sub-
space local update: We allow changing the local variables
only along the gauge orbit (w.r.t. the photometric residu-
als). Then, by construction, the photometric residuals re-
main constant and the subspace local update is equivalent to
minimising (13) over gauge variables {ξl : l ∈ {1, . . . , L}}
with fixed globals {Θi}:

L∑
l=1

∑
i∈Cl

P li (Θi, θ̃
l
i(θ

l
i, ξ

l)). (13)

This optimization involves the same shared frame variables
as the naive consensus update (10) and can thus be com-
puted efficiently on the master with a simple closed-form
solution without additional communication.

Instead of a single naive consensus update, we initialize
(R̃l, t̃l, s̃l, ãl) = (I3, 0, 1, 0) for each l, followed by an in-
ner loop of alternating minimization of the consensus cost
(13) over gauge and global variables. The minimization
over the global variables {Θi} is structurally the same as
(10). Upon completion of the inner loop, with the (near-)op-
timal gauge variables {ξl}, we apply the gauge transforms
on the local variables using (11)–(12) and reset {ξl} for the
next inner loop. The next outer iteration with the (full) local
update follows.

As a remark, the gauge in the local update (9) of each
cluster is fixed by the penalty terms. However, each cluster
may be locked onto a slightly different point along its gauge
orbit. So an alternative view on the inner loop of alternating
minimization is that we attempt to find the joint minimum of
(13) w.r.t. to gauge and global variables to align the gauges
of all clusters.

Summary and Convergence Analysis In summary, one
outer iteration of our solution (referred to as dpba in the
evaluation) consists of the following steps:

1. perform local update (9) in parallel
2. gather shared local variables on master
3. perform gauge aware consensus update (13)
4. broadcast global and gauge variables to workers
5. apply gauge transform to all local variables
6. update consensus weights

Please refer to the supplementary material for pseudo code
of the entire algorithm as well as the closed form solutions
we use in the gauge aware consensus update.

Note that unlike ADMM our algorithm is a specializa-
tion of block coordinate descent. In each algorithmic step
we monotonically decrease the bounded energy (7). Under
mild assumptions on sufficient descent and sub-problem ac-
curacy, the alternating minimization of (7) converges to a
stationary point. For a proof analogous to [19], please refer
to the supplementary.

6

5. Evaluation
Setup In order to evaluate the performance of global PBA
we test our implementation on the EuRoC MAV dataset [5].
These sequences constitute images from a flying drone in
an indoor setting and contain accurate ground truth poses.
Since we use LDSO as initialization we choose the same
subset of frames as [12] for each sequence1 and run our
monocular pipeline on images from the left camera.

We evaluate the result from odometry before (odom) and
after (pgo) pose-graph optimization and run global photo-
metric bundle adjustment with our central (pba) and dis-
tributed (dpba) implementation. Unlike LDSO, we do not
undistort images in the global optimization. Instead, we
use the Kannala-Brandt camera model [17] for radial dis-
tortion. Intrinsics are pre-calibrated using the basalt cali-
bration tools [29, 30].

We give a detailed account of our choices for hyper-
parameters in the supplementary material, but unless indi-
cated otherwise, they are all kept constant across all experi-
ments. By default, we run our distributed dpba for 250 outer
iterations, with initial penalty weights ρR = ρt = ρa = 102

and ρb = 1, while increasing the ρ in every iteration by a
factor of β = 1.06. For our central pba we let LM converge.

Accuracy We employ the commonly used Absolute Tra-
jectory Error (ATE) in meters [26], which measures the
root-mean-squared camera position error, after Sim(3)-
alignment of the estimated keyframe trajectory to the
ground truth:

ATE({ti,Ri}) = min
R,t,s

∑
i

∥∥x̂i + sR(R>i ti)− t
∥∥2
,

(14)
where (R, t, s) ∈ SO(3) × R3 × R>0 is the alignment-
transform, x̂i are ground truth camera positions and−R>i ti
are the corresponding estimates from global variables.
Ground truth poses are interpolated at image time stamps.

Table 1 shows the ATE for all sequences. While PGO
usually reduces the odometry drift noticeably, subsequent
global PBA can significantly improve the accuracy even
further. As a baseline, we also compare to running tradi-
tional (geometric) BA with the same PGO initialization, af-
ter feature matching and outlier removal (gba). Note that
for MH04 and V203 the odometry has large scale/rotation
drift and no verified loop closures were detected.2 In this
failure case of the initialization, global PBA does not help.
Please refer to the supplementary material for further illus-
trations of these failure cases. Despite this, for central and

1Initial rapid rotations (intended for IMU initialization) are skipped.
Effectively, the part where the MAV is in the air is used.

2Our results for pgo are for the most part in line with the resulte re-
ported in [12], with the exception of MH04, where [12] reports a low error,
but we consistently see large rotation drift.

[8] [12] ours
odom pgo gba pba dpba

MH01 0.059 0.034 0.019 0.013 0.014
MH02 0.037 0.019 0.019 0.014 0.014
MH03 0.237 0.087 0.039 0.039 0.043
MH04 3.111 3.122 3.080 3.208 3.223
MH05 0.101 0.074 0.075 0.058 0.058
V101 0.116 0.040 0.035 0.029 0.030
V102 0.256 0.058 0.043 0.017 0.016
V103 0.134 0.134 0.162 0.085 0.085
V201 0.052 0.026 0.019 0.013 0.016
V202 0.088 0.053 0.041 0.059 0.063
V203 1.318 1.318 1.319 1.312 1.279

Table 1. Accuracy for all EuRoC sequences. The final ATE in me-
ters for odometry (odom), pose-graph optimization (pgo), global
PBA in central (pba) and distributed (dpba) implementation with
5 clusters shows that global PBA significantly improves over PGO
— more so than traditional bundle adjustment (gba). The perfor-
mance of central and distributed implementation is competitive.

0 50 100 150 200 250
outer iteration

2.335

2.340

2.345

2.350

2.355

2.360

2.365

2.370

co
st

1e8
global cost dpba
local cost dpba
global cost nogauge
local cost nogauge
cost pba

0 50 100 150 200 250
outer iteration

0.0850

0.0875

0.0900

0.0925

0.0950

0.0975

0.1000

AT
E

[m
]

dpba
nogauge
pba

Figure 5. Convergence analysis for sequence V103. Top: With in-
creasing penalty weight ρ in our distributed dpba, global and local
cost of the photometric residuals approach the final cost achieved
by our central pba from above and below, as expected. Bottom:
Unlike the global cost, the pose accuracy of the central solver is
already matched after around 50 iterations. Both: Our gauge aware
consensus update leads to faster convergence and lower final cost
and ATE compared to the naive consensus update (nogauge).

distributed implementation, the average error reduction is,
respectively, 64% and 62% compared to odom and 36%
and 33% compared to pgo, as can be seen from the first
two columns in Table 2. Qualitative results for optimized
landmarks and camera poses are shown in Fig. 1.

Convergence To analyse the convergence behaviour of
the distributed algorithm (dpba), we compare the final cost
of the photometric residuals Ffull (1), evaluated with local

7

gba pba dpba nogauge
ρ-increase rate β 1.06 1.1 1.2 1.06
iterations (avg) 148 250 150 75 250
fraction of odom-ATE 0.463 0.363 0.376 0.379 0.380 0.386
fraction of pgo-ATE 0.822 0.644 0.667 0.673 0.673 0.685
cost global 1.0000 1.0022 1.0038 1.0076 1.0085
cost local 1.0000 0.9987 1.0003 1.0040 1.0040

Table 2. ATE reduction as a fraction of initial (odom and pgo) er-
ror, and final cost as a fraction of the final cost the central solver
(pba, ours) achieved. We show geometric averages over all EuRoC
sequences. All distributed variations (dpba, ours) are for 5 clusters
and share the same initial and final penalty weights ρ. Increasingly
higher ρ-increase rates β finish with fewer outer iterations. While
the final accuracy is similar, higher β leads to slightly worse solu-
tions in terms of cost. The cost gap of around 0.36% remains the
same. Thanks to our novel gauge aware consensus update, even
the more aggressive optimization of dpba over 75 iterations with
β = 1.2 still results in better results than nogauge over 250 itera-
tions with β = 1.06, that takes more than 3× as long in runtime.

and global variables, to the cost achieved by our central
solver (pba). For different residuals, the local cost may be
evaluated with different values for the same frame variables,
and thus the cost is expected to be lower than the global cost,
while the global cost corresponds to the final result of our
optimization, on which ATE is evaluated, so we expect it
to be low for good global solutions. Fig. 5 shows the cost
evolution for one example sequence, and Table 2 shows the
geometric mean of the ratio to the central solver’s final cost.
The final cost-gap is approximately 0.35%. Note that we
don’t expect the gap to vanish completely, since our con-
sensus optimization is approximate.

We can achieve convergence to the same cost-gap faster
with higher ρ-increase rates, but only by sacrificing a lit-
tle accuracy, as the three middle columns of Table 2 show.
Lastly, if we skip our proposed gauge aware consensus up-
date, the convergence can be significantly slower and result
in worse solutions, see nogauge in Fig. 5 and Table 2.

Number of Clusters, Runtime and Memory Usage The
results in Table 3 show that our distributed PBA is robust
to different number of clusters. Since the map sizes remain
constant, larger number of clusters here means smaller clus-
ters, but also more overlap and more copies per camera. It
is therefore natural to expect a slight increase in final error
and cost as the number of clusters increases.

Our current implementation runs on a single machine
and processes clusters sequentially, so we take the max-
time over all clusters for the local update. With 5 clusters
we get an average single-threaded runtime (normalized by
number of keyframes!) of 43ms per LM-iteration of central
pba, and 55ms per outer-iteration of dpba, on an Intel Xeon
W-2133 @ 3.60GHz. Remember that every outer iteration
of the distributed PBA involves multiple LM iterations in
the local update. In our view, communication bandwidth is

pba dpba
clusters 3 5 10 15 30
fraction of odom-ATE 0.363 0.366 0.376 0.396 0.397 0.401
fraction of pgo-ATE 0.644 0.649 0.667 0.702 0.704 0.712
cost global 1.0000 1.0018 1.0022 1.0044 1.0056 1.0067
cost local 1.0000 0.9994 0.9987 0.9991 0.9982 0.9970
time/outer-iteration 1.00 1.60 1.22 0.87 0.77 0.66
memory/worker [GB] 8.0 3.5 2.3 1.4 1.2 0.9

Table 3. Average ATE reduction over all EuRoC sequences for our
distributed dpba with different number of clusters, compared to
our central pba. As we increase the number of clusters for fixed-
size maps, we increase the overlap between clusters and number of
copies for each camera. The improvement over the initialization
(pgo) is slightly reduced, but still substantial. Costs / runtime are
averaged fractions of the central solver’s final cost / runtime, and
accuracy is shown as averaged fractions of initial ATE. Memory
usage is averaged over sequences and clusters.

not a major concern, as we follow [33] with consensus only
for frame variables. The local update dominates the dpba
runtime with more than 99%, i.e. the runtime of clustering
and consensus/gauge update is largely insignificant. Table 3
shows estimated memory usage based on the number of ob-
servations in each cluster and the linear relation from Fig. 2.

6. Conclusion

This paper proposes a novel formulation for decompos-
able bundle adjustment. In contrast to prior approaches we
consider a direct rather than a feature based method which
introduces additional challenges: Due to the nonsmooth-
ness of the photometric cost, we resort to a more stable pri-
mal alternating minimization scheme rather than a primal-
dual iteration as in ADMM. We derive a novel gauge aware
consensus update to significantly improve the performance
of the overall method and it would be interesting to transfer
this to other approaches [10, 33]. Compared to the central
optimization on a single machine, the distributed formula-
tion of PBA achieves competitive accuracy and optimized
cost and significantly increases the global map accuracy
over [12] and over geometric BA. At this stage, the overall
runtime is still relatively high, due to a high number of outer
iterations required for accurate results and the need to syn-
chronize all workers after every outer iteration (i.e. we have
to wait for the slowest). The former could be addressed in
the future by adaptive per-variable penalty weight schedules
(similar to [33]) and the latter by exploring decentralized
consensus optimization [32, 24, 23]. However, one signifi-
cant advantage of our distributed algorithm already is, that
it can run on a set of workers with limited memory, where
the central solver would not fit in any single one.

Acknowledgment This work was supported through the
DFG projects WU 959/1-1 and CR 250/20-1 “Splitting
Methods for 3D Reconstruction and SLAM”.

8

References
[1] S. Agarwal and K. Mierle. Ceres solver: Tutorial & Refer-

ence. Google Inc., 2012. 4, 13
[2] H. Alismail, B. Browning, and S. Lucey. Photometric Bundle

Adjustment for vision-based SLAM. In Asian Conference on
Computer Vision (ACCV), pages 324–341. Springer, 2016. 1,
2, 4

[3] K. Bennett, P. Bradley, and A. Demiriz. Constrained K-
Means clustering. Technical Report MSR-TR-2000-65, Mi-
crosoft Research, 2000. 4, 11, 12

[4] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and
A. J. Davison. Codeslam — learning a compact, optimisable
representation for dense visual slam. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2560–
2568, 2018. 2

[5] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder,
S. Omari, M. W. Achtelik, and R. Siegwart. The EuRoC
micro aerial vehicle datasets. The International Journal of
Robotics Research, 2016. 7

[6] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Chris-
tensen, and F. Dellaert. Distributed mapping with privacy
and communication constraints: Lightweight algorithms and
object-based models. The International Journal of Robotics
Research, 36(12):1286–1311, 2017. 3

[7] A. Delaunoy and M. Pollefeys. Photometric Bundle Ad-
justment for dense multi-view 3d modeling. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1486–1493, 2014. 1, 2

[8] J. Engel, V. Koltun, and D. Cremers. Direct sparse odom-
etry. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 40:611–625, 2017. 1, 2, 3, 4, 7, 15

[9] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale
direct monocular slam. In European Conference on Com-
puter Vision (ECCV), pages 834–849. Springer, 2014. 2

[10] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson. A
consensus-based framework for distributed Bundle Adjust-
ment. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1754–1762. IEEE, 2016. 2, 3, 4, 5, 8

[11] D. Gabay and B. Mercier. A dual algorithm for the solu-
tion of nonlinear variational problems via finite element ap-
proximation. Computers & Mathematics with Applications,
2(1):17–40, 1976. 3

[12] X. Gao, R. Wang, N. Demmel, and D. Cremers. LDSO:
Direct sparse odometry with loop closure. In International
Conference on Intelligent Robots and Systems (IROS), 2018.
2, 3, 7, 8

[13] R. Glowinski and A. Marroco. Sur l’approximation, par
éléments finis d’ordre un, et la résolution, par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires.
Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, 9(2):41–76, 1975. 3

[14] C. Ham, S. Lucey, and S. Singh. Proxy templates for in-
verse compositional photometric Bundle Adjustment. arXiv
preprint arXiv:1704.06967, 2017. 2

[15] M. Hong, Z.-Q. Luo, and M. Razaviyayn. Convergence anal-
ysis of Alternating Direction Method of Multipliers for a

family of nonconvex problems. SIAM J. Optim., 26:337–
364, 2016. 3

[16] K. Kanatani and D. D. Morris. Gauges and Gauge trans-
formations for uncertainty description of geometric structure
with indeterminacy. IEEE Trans. Inform. Theory, 47:2017–
2028, 2001. 6

[17] J. Kannala and S. S. Brandt. A generic camera model and cal-
ibration method for conventional, wide-angle, and fish-eye
lenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 28(8):1335–1340, 2006. 7

[18] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for
rgb-d cameras. In International Conference on Intelligent
Robots and Systems (IROS), pages 2100–2106. IEEE, 2013.
2

[19] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cam-
eras. Transactions on Robotics (T-RO), 33(5):1255–1262,
2017. 1, 2

[20] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:
Dense tracking and mapping in real-time. In International
Conference on Computer Vision (ICCV), pages 2320–2327.
IEEE, 2011. 2

[21] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle ad-
justment for large-scale 3d reconstruction. In International
Conference on Computer Vision (ICCV), pages 1–8. IEEE,
2007. 3, 4

[22] T. Schops, T. Sattler, and M. Pollefeys. Bad slam: Bundle
adjusted direct rgb-d slam. In Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 134–144, 2019.
2

[23] W. Shi, Q. Ling, G. Wu, and W. Yin. EXTRA: An exact
first-order algorithm for decentralized consensus optimiza-
tion. SIAM J. Optim., 25:944–966, 2015. 8

[24] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On the lin-
ear convergence of the ADMM in decentralized consensus
optimization. IEEE Trans. Signal Process., 62:1750–1761,
2014. 8

[25] J. Stühmer, S. Gumhold, and D. Cremers. Real-time dense
geometry from a handheld camera. In Pattern Recognition
(DAGM), pages 11–20. Springer, 2010. 2

[26] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM
systems. In International Conference on Intelligent Robots
and Systems (IROS), pages 573–580. IEEE, 2012. 7

[27] C. Tang and P. Tan. Ba-net: Dense bundle adjustment net-
work. In International Conference on Learning Representa-
tions (ICLR), 2019. 2

[28] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle Adjustment — a modern synthesis. In International
Workshop on Vision Algorithms, pages 298–372, 1999. 1, 2,
4, 5, 6

[29] V. Usenko, N. Demmel, and D. Cremers. The double sphere
camera model. In International Conference on 3D Vision
(3DV), pages 552–560. IEEE, 2018. 7

[30] V. Usenko, N. Demmel, D. Schubert, J. Stückler, and D. Cre-
mers. Visual-inertial mapping with non-linear factor recov-
ery. arXiv preprint arXiv:1904.06504, 5, 2019. 7

9

[31] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore
bundle adjustment. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3057–3064. IEEE, 2011.
3

[32] L. Xiao and S. Boyd. Fast linear iterations for distributed
averaging. Syst. Control Lett., 53:65–78, 2004. 8

[33] R. Zhang, S. Zhu, T. Fang, and L. Quan. Distributed very
large scale Bundle Adjustment by global camera consensus.
In International Conference on Computer Vision (ICCV),
pages 29–38. IEEE, 2017. 2, 3, 4, 5, 8

[34] S. Zhu, R. Zhang, L. Zhou, T. Shen, T. Fang, P. Tan, and
L. Quan. Very large-scale global SfM by distributed motion
averaging. In Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018. 3, 4

[35] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel. Direct
sparse mapping. Transactions on Robotics (T-RO), pages 1–
8, 2020. 1, 2, 16

10

Distributed Photometric Bundle Adjustment Supplementary Material

Nikolaus Demmel, Maolin Gao, Emanuel Laude, Tao Wu and Daniel Cremers
Technical University of Munich

{nikolaus.demmel, maolin.gao, emanuel.laude, tao.wu, cremers}@tum.de

In this supplementary material we include the following ad-
ditional content to support the claims of the main paper.
While not essential for the understanding, we hope this is
useful for practitioners that want to implement our approach
and offers more detailed insights into the experiments and
theory. We describe our balanced on-graph k-means clus-
tering of host frames in Section A, followed by implemen-
tation details of our distributed photometric bundle adjust-
ment including closed-form solutions for the gauge aware
consensus update in Section B. Furthermore, we give de-
tailed information about map and cluster sizes for all the
sequences of the EuRoC dataset in Section C. We expand
upon the qualitative results in Section D in the form of tra-
jectory plots for all sequences, as well as a discussion of
odometry failure cases. We also include quantitative results
expanded to show values for each sequence instead of the
averages found in the main paper. Section E presents an
additional ablation study regarding different initializations
and, finally, Section F provides a convergence proof for our
distributed optimization.

A. Balanced On-Graph k-Means Clustering
As discussed in Section 3.3, our distributed PBA model

requires a partitioning of host frames into clusters as in-
put, i.e. F = ∪Ll=1F l. In our implementation we rely on
balanced on-graph k-means clustering on the observation
graph with pairwise Euclidean distances of initial camera
positions as edge weights. We summarize this approach in
the following for the interested reader, but alternative al-
gorithms to partition the host frames could be employed as
well. Clusters must be connected, and should be balanced as
well as minimize the number of induced variable copies —
three conflicting goals. Our approach in practice guarantees
the former two properties, while the latter is approximated.

In the observation graph G = (F , E) with keyframes F
as nodes and undirected edges E , two keyframes are con-
nected if they share an observation. Formally, for host frame
i ∈ F we denote the set of target frames as:

Ti := ∪q∈PiQq, (15)

i.e. the union of target frames Qq for all hosted points q.

With this, the set of edges in the observations graph can be
defined as:

E := {{i, j} ⊆ F : j ∈ Ti ∨ i ∈ Tj}. (16)

If an edge is “cut” by the clustering, a target-frame copy
has to be included in one or both clusters (but the number
of copies is usually much less than the number of cut edges,
since multiple edges can lead to the same required copy).
Hence, the compact clusters produced by our k-means al-
gorithm are associated with small overlapping regions and
few induced copies.

For the purpose of clustering, we denote the shortest-
path distance between nodes i, j ∈ F as D(i, j), using the
Euclidean distance between initial 3D camera center posi-
tions as edge weight. Using the on-graph distance D(i, j),
we propose the following extension to classical Euclidean
k-means clustering of the 3D camera locations, where we
enforce upper and lower bounds on the size of the clusters.
We denote the L cluster centers by µl ∈ F , i.e. they are re-
stricted to graph nodes, not arbitrary 3D positions. The clus-
ter assignment is encoded by matrix y ∈ {e1, . . . , eL}|F| ⊂
RL×|F| [3], where el ∈ {0, 1}L denotes the lth indicator
vector. This means that for each frame i the assignment to
cluster l is unique and denoted by yli = 1.

The balancing can be phrased as integer linear con-
straints on the cluster assignment:

Y :=

{
y ∈ {e1, . . . , eL}|F| :

blow ≤
∑
i∈F

yli ≤ bhigh,∀ 1 ≤ l ≤ L
}
. (17)

Here, blow and bhigh denote hard lower and upper bounds on
the number of vertices assigned to each cluster. We opti-
mize the following cost function in an alternating fashion:

min
(µ1,...,µL)∈FL

y∈Y

∑
i∈F

L∑
l=1

D2(i, µl)yli. (18)

11

More precisely, in every iteration we alternate the updates:

yt+1 = arg min
y∈Y

∑
i∈F

L∑
j=1

D2(i, µtl)yli, (19)

µt+1
l = arg min

µl∈F

∑
i∈F

D2(i, µl)y
t+1
li . (20)

The y-update (19) yields a simple integer linear program.
The problem can be reformulated as a min-cost-flow prob-
lem [3], for which efficient algorithms exist. In practice,
we solve the LP-relaxation of the integer linear program us-
ing the simplex method and round the solution (if required).
The centroid update (20) can be solved efficiently by ex-
haustive search: For each cluster l and each potential cen-
troid j ∈ F we compute the sum of (precomputed) squared
shortest-path distances to all vertices i assigned to cluster l
and then select the vertex j for which this sum is minimal.

Finally, in case the solution contains a cluster whose in-
duced subgraph is not fully connected, we iteratively fuse
the smallest connected component of that cluster with a
neighboring cluster, as a post-processing. This may result
in an infeasible solution (w.r.t. balancing), but in practice
we observe that the subgraphs after the k-means clustering
are almost always already connected. Intuitively, the reason
is that without the balancing constraints, on-graph distances
— unlike 3D Euclidean distances — would lead to guaran-
teed connected clusters.

B. Distributed PBA Implementation Details

In this section we discuss some implementation details
going beyond the description in Section 4.2. This is not
essential to understand the proposed algorithm, but intended
to assist others when attempting to reproduce our results.
Algorithm 1 summarizes the procedure in pseudo code and
Table 4 lists important hyper-parameters and their default
values in our experiments, unless otherwise indicated.

Global Update Remember that we formulate the penal-
ties (8) for rotation matrices in the embedding space R3×3

and need to ensure that global variables Ri and gauge vari-
ables R̃l stay in their domain SO(3) in each update step. To
this end, we make use of the metric projection of M ∈ R3×3

onto SO(3) under the Frobenius norm ‖·‖F ,

ProjSO(3)(M) := arg min
R∈SO(3)

‖R−M‖F , (21)

which can be efficiently computed using singular value de-
composition.

Given gauge variables {(R̃l, t̃l, s̃l, ãl)}, the minimiza-
tion of (13) over the global variables {(Ri, ti, ai, bi)} is

Algorithm 1 Distributed Photometric Bundle Adjustment
1: Partition the set of keyframes into clusters F =
∪Ll=1Fl. Initialize the global and local variables from
the loop-closing odometry, and for each l ∈ {1, ..., L}
the gauge variables (R̃l, t̃l, s̃l, ãl) = (I3, 0, 1, 0).

2: while not converged do
3: For each l ∈ {1, ..., L}, update the local variables

{(Rl
i, t

l
i, a

l
i, b

l
i) : i ∈ Cl} ∪ {dlq : q ∈ ∪i∈ClP li} by

applying non-linear least squares solver to (9).
4: while not converged do
5: Update the global variables {(Ri, ti, ai, bi) : i ∈

F} by Eq. (22)–(25).
6: Update the gauge variables {(R̃l, t̃l, s̃l, ãl) : l ∈

{1, ..., L}} by Eq. (26)–(28).
7: end while
8: Perform the gauge transform on the local variables

{(Rl
i, t

l
i, a

l
i, b

l
i) : i ∈ Cl} ∪ {dlq : q ∈ ∪i∈ClP li}

using Eq. (11)–(12). Reset (R̃l, t̃l, s̃l, ãl) =
(I3, 0, 1, 0) for each l.

9: Increase the penalty weights: ρR ← βρR, ρt ←
βρt, ρa ← βρa, ρb ← βρb.

10: end while

solved by either arithmetic or Fréchet means under ‖·‖F :

Ri = ProjSO(3)

(
1

mi

∑
l:i∈Cl

Rl
iR̃

l

)
, (22)

ti =
1

mi

∑
l:i∈Cl

(Rl
it̃
l + s̃ltli), (23)

ai =
1

mi

∑
l:i∈Cl

(ali + ãl), (24)

bi =
1

mi

∑
l:i∈Cl

bli, (25)

wheremi is the number of clusters that frame i is copied to,
i.e. mi =

∑
l:i∈Cl 1.

Gauge Update Given global variables {(Ri, ti, ai, bi)},
the minimization of (13) over the gauge variables
{(R̃l, t̃l, s̃l, ãl)} leads to the following updates:

R̃l = ProjSO(3)

(
1

|Cl|
∑
i∈Cl

(Rl
i)
>Ri

)
, (26)

ãl =
1

|Cl|
∑
i∈Cl

(ai − ali), (27)

[
A11 A12

A>12 A22

] [
t̃l

s̃l

]
=

[
b1

b2

]
, (28)

12

parameter description value

adding observations (Section 3)

relative scale the permissible range of relative scale of inverse depth in host and target frame while adding new photometric observations (0.7, 1.3)

boundary margin distance in pixels from the image boundary for a projected point to be considered in bounds when adding observations 10

model (Section 4.1)

γ huber parameter for photometric residual 5

algorithm (Section 4.2)

N outer
max maximum number of outer iterations (see Algorithm 1) 250

N gauge
max maximum number of iterations of global/gauge loop (see Algorithm 1) 5

N local
max maximum number of LM iterations for local solver 10

N local
max success maximum number of successful LM iterations for local solver 2

λinit
max maximum initial LM-dampening factor for local solver 10−4

β rate of increase of penalty parameters ρ• 1.06

ρ0 base-factor to initialize penalty parameters ρ• 102

ρ250 final base-factor for penalty parameters ρ• after 250 iterations ∼ 2.1× 108

αR scale factor for penalty parameter ρR 1

αt scale factor for penalty parameter ρt 1

αa scale factor for penalty parameter ρa 1

αb scale factor for penalty parameter ρb 0.02

clustering (Section A)

btol tolerance for balancing constraint; how much we allow the cluster size to deviate from a perfectly balanced result, i.e.
blow =

|F|
L (1− btol) and bhigh =

|F|
L (1 + btol)

0.1

Table 4. Important hyper-parameters and their default values.

with

A11 := |Cl|I3, (29)

A12 :=
∑
i∈Cl

(Rl
i)
>tli, (30)

A22 :=
∑
i∈Cl

∥∥tli∥∥2

2
, (31)

b1 :=
∑
i∈Cl

(Rl
i)
>ti, (32)

b2 :=
∑
i∈Cl

t>i t
l
i. (33)

The linear system (28) can be efficiently solved using the
Schur complement:

As := A22 −A>12A
−1
11 A12, (34)

bs := b2 −A>12A
−1
11 b1, (35)

s̃l =
bs
As

, (36)

t̃l = A−1
11 (b1 −A12s̃l). (37)

There is a theoretical possibility of getting a negative scale
factor s̃l in (36). In practice, this occurs only when the
whole optimization diverges due to very poor initializa-
tion. In our implementation, we catch this case and assign
s̃l ← s̃l

2 instead.

Local Sub-problem Solver To perform the local update
we solve (9) using a standard Levenberg-Marquardt (LM)

solver as implemented in the Ceres library [1]. For every
outer iteration of Algorithm 1, we perform for each cluster
up to N local

max = 10 LM-iterations. Those iterations can ei-
ther be successful, if they decrease the cost, or unsuccessful,
otherwise. In the latter case, the dampening factor λ is in-
creased. In our experiments we found that it is not essential
to solve the sub-problems as accurately as possible in every
outer iteration. Instead, it is sufficient to achieve a number
of successful LM steps, and we thus abort the local solver
after N local

max success = 2 successful steps. What we did find to
be essential is ensuring a sufficiently small initial dampen-
ing factor λ to allow progress. At the start of every outer
iteration, we therefore take the initial λ as the minimum of
λinit

max = 10−4 and the smallest λ, that lead to a successful
step for this cluster in the previous outer iteration.3

Initializing Penalty Parameters The penalty parameters
ρ• are increased by factor β in every iteration (see Algo-
rithm 1). To make the initial penalty parameters indepen-
dent of the map and cluster size, we initialize ρ• = κα•ρ

0

for all • ∈ R, t, a, b. Here, ρ0 = 102 is the chosen initial
ρ-base-factor, α• is a scale factor compensating for differ-
ent dimensions of the different variable types, and κ is the
average number of times each local frame variable appears
in a photometric residual, to balance the penalty terms and
the photometric cost. For β = 1.06, after 250 iterations we
have a final ρ-base-factor of ρ250 = ρ0β250 ≈ 2.1× 108.

3Note that in Ceres we configure the initial trust region radius 1
λ

.

13

odom pgo
#l-c #kf #lm #obs #obs

eurocMH01 16 481 308039 2291053 114%
eurocMH02 7 382 249158 1919379 111%
eurocMH03 19 650 376060 2992960 116%
eurocMH04 0 410 193002 1477691 100%
eurocMH05 14 400 214937 1682726 116%
eurocV101 21 695 449646 3639173 113%
eurocV102 11 673 350979 2764613 107%
eurocV103 1 949 392339 3228913 101%
eurocV201 7 412 246423 2013929 107%
eurocV202 22 868 429225 3322179 116%
eurocV203 0 1083 325252 2660546 100%

Table 5. Size of the optimization problem for all EuRoC se-
quences. For the initialization from odometry (odom) we show:
number of loop-closure edges (#l-c), number of keyframes (#kf),
number of landmarks (#lm) and number of photometric landmark
observations (#obs). We also show the total number of observa-
tions after pose-graph optimization and augmentation of the map
with additional observations across loop-closure edges (see Sec-
tion 3) as a percentage of the number of observations in odometry
(pgo). All global PBA variants use the same observations as shown
for pgo.

Single-copy Cameras For cameras that only have a sin-
gle copy, i.e. only appear in a single cluster, the global up-
date is an average over one variable and thus effectively as-
signs the global variable the value of that one local copy
(respecting the gauge transform). The penalty terms in the
local update thus effectively only act as dampening on these
variables. We found that one can treat such frame variables
as purely local, ignoring the penalty term. It can be seen
as setting ρ = 0 for these variables. Then, in the local up-
date there is no penalty cost and the gauge update is affected
only by variables that have two copies or more.

C. Dataset Details

Table 5 gives an overview of the size of the optimization
problem for all sequences in the EuRoC dataset, where we
have ∼ 103 keyframes, ∼ 105 landmarks and ∼ 106 ob-
servations. The two sequences where odometry failed can
also be identified as the ones without validated loop-closure
edges. Our scheme to augment the map with additional ob-
servations across loop-closure edges before global PBA re-
sults in an up to 16% increase in the number of observations.

Table 6 gives more detail on the experiments with dif-
ferent number of clusters (see Table 3 and Table 8 for ac-
curacy and convergence results). It shows the average ef-
fective cluster size (count of local cameras / landmarks /
observations), as resulting from our proposed balanced on-
graph k-means clustering, for varying number of clusters.
The total map size is always the same for each sequence. As
we increase the number of clusters, they naturally become
smaller, but the relative overlap and thus the average num-
ber of copies per camera / landmark / observation increases.
For example, with five clusters, we have an average num-

pba dpba
clusters 3 5 10 15 30
no-overlap ratio 1.00 0.33 0.20 0.10 0.07 0.03
cam / cluster 1.00 0.42 0.27 0.16 0.13 0.09
lm / cluster 1.00 0.41 0.27 0.16 0.13 0.09
obs / cluster 1.00 0.41 0.27 0.16 0.12 0.08

Table 6. Average number of cameras (cam), landmarks (lm) and
observations (obs) per cluster, as a fraction of the total counts for
the whole map (pba). Values are geometric averages over all Eu-
RoC sequences and shown for different number of clusters (dpba),
while map size remains constant for each sequence. For compari-
son, a theoretical fraction assuming no overlap and no duplication
between clusters, which equals 1

clusters
, is shown as no-overlap

ratio. Note that for successful distributed optimization, we require
some overlap between the clusters.

ber of copies of 0.27
0.20 ≈ 1.4 per global camera, which also

means that more than half of the global cameras only have
one copy, i.e. appear only in a single cluster. For 30 clusters
however, the average number of copies per global camera is
higher, around 0.09

0.03 ≈ 3.

D. Additional Results
Visualized Trajectories and Odometry Failure In Ta-
ble 10 we show estimated trajectories before and after
global distributed photometric bundle adjustment for all se-
quences. It can be seen that the quantitative improvement
in ATE (see Table 1) is also obvious in the trajectory align-
ment. In general, the trajectories after PBA fit the ground-
truth much better.

For the failure cases (MH04, V203) of the odometry (our
initialization), it can be seen that while parts of the trajecto-
ries fit the ground-truth very well, when the odometry fails,
there is significant rotation- and translation-drift (first half
of MH04) or scale-drift (last half of V203). Since the defi-
nition of the ATE uses least-squares alignment based on all
poses, this results in a large RMS translational error. In this
case, global PBA (without additional preprocessing) does
not help, since it relies on good-enough initialization and is
otherwise prone to get stuck in local minima of the highly
non-convex cost function. However, given the initializa-
tion, PBA still behaves reasonably: the accurate part of the
trajectory shows significant improvement over the odom-
etry poses. To show this, we provide additional plots of
these trajectories aligned using only the last (MH04) or first
(V203) half of the trajectory. Computing the ATE for these
halfs shows that our distributed global PBA reduces the er-
ror substantially from 0.084 to 0.050 meters (MH04), and
from 0.255 to 0.080 meters (V203), even though no loop-
closure is detected.

Quantitative Results In Table 7 and Table 8 we expand
upon the results presented in Table 2 and Table 3, respec-
tively, by showing values for all individual sequences, in-

14

gba pba dpba nogauge
ρ-increase rate β 1.06 1.1 1.2 1.06
iterations (avg) 148 250 150 75 250

MH01
0.552 0.400 0.416 0.425 0.442 0.445

1.0000 1.0012 1.0015 1.0021 1.0027
1.0000 0.9960 0.9963 0.9970 0.9974

MH02
1.010 0.715 0.734 0.730 0.705 0.708

1.0000 1.0014 1.0019 1.0033 1.0044
1.0000 0.9967 0.9971 0.9985 0.9994

MH03
0.450 0.447 0.501 0.558 0.641 0.700

1.0000 1.0029 1.0039 1.0078 1.0080
1.0000 1.0008 1.0019 1.0058 1.0059

MH04
0.987 1.028 1.032 1.032 1.030 1.043

1.0000 0.9996 0.9995 0.9999 1.0003
1.0000 0.9984 0.9984 0.9987 0.9988

MH05
1.019 0.791 0.790 0.767 0.721 0.688

1.0000 1.0031 1.0050 1.0131 1.0076
1.0000 0.9972 0.9993 1.0073 1.0017

V101
0.874 0.744 0.753 0.745 0.747 0.742

1.0000 1.0036 1.0059 1.0084 1.0068
1.0000 0.9988 1.0008 1.0037 1.0019

V102
0.744 0.286 0.275 0.275 0.278 0.309

1.0000 1.0076 1.0179 1.0369 1.0365
1.0000 1.0033 1.0135 1.0324 1.0316

V103
1.212 0.635 0.633 0.637 0.653 0.686

1.0000 1.0002 1.0002 1.0005 1.0014
1.0000 0.9993 0.9994 0.9996 1.0005

V201
0.748 0.505 0.609 0.618 0.617 0.654

1.0000 1.0036 1.0040 1.0072 1.0194
1.0000 0.9986 0.9990 1.0015 1.0082

V202
0.777 1.118 1.199 1.180 1.055 0.950

1.0000 1.0024 1.0032 1.0061 1.0035
1.0000 0.9981 0.9989 1.0018 0.9991

V203
1.001 0.996 0.970 0.977 0.984 1.009

1.0000 0.9992 0.9991 0.9993 1.0031
1.0000 0.9986 0.9983 0.9980 1.0002

Table 7. ATE reduction as a fraction of initial (pgo) error, and final
global and local cost as a fraction of the final cost the central solver
(pba, ours) achieved. The three metrics shown for each entry are
top-to-bottom: “fraction of pgo-ATE”, “cost global” and “cost lo-
cal” (“fraction of odom-ATE” is not shown, as it is qualitatively
similar). We show the same results as in Table 2, but for each
individual sequence, so please refer to its caption. Highlights for
smallest and second smallest value in each row exclude the first
two columns (gba and pba). For “fraction of pgo-ATE” and “cost
global” smaller is better. For “cost local” values close to “cost
global” show good consensus between local and global variables.

stead of averages over all.
Generally, the same conclusions can be drawn. From

Table 7 it can be seen that a higher ρ-increase rate β leads to
faster optimization, at a slight expense of final accuracy and
achieved cost value, which allows to trade off speed versus
accuracy depending on the application. Applying our novel
gauge aware consensus update always leads to lower final
cost and generally to higher accuracy. Interestingly, in a
few cases the naive consensus update (nogauge) has lower
final ATE and it seems ATE values are not always congruent
with the optimized cost. Regardless, enabling the gauge
update does lead to more consistent results and behaviour
more similar to the central pba.

The tradeoff of having more clusters is to down-scale the
sub-problem size, while being prone to lower overall accu-
racy due to introduction of more duplicates with consensus

pba dpba
clusters 3 5 10 15 30

MH01
0.400 0.411 0.416 0.644 0.664 0.720
1.0000 1.0012 1.0012 1.0024 1.0028 1.0026
1.0000 0.9986 0.9960 0.9969 0.9958 0.9949

MH02
0.715 0.676 0.734 0.718 0.709 0.730
1.0000 1.0006 1.0014 1.0018 1.0015 1.0016
1.0000 0.9979 0.9967 0.9962 0.9951 0.9937

MH03
0.447 0.545 0.501 0.662 0.722 0.774
1.0000 1.0049 1.0029 1.0084 1.0088 1.0089
1.0000 1.0011 1.0008 1.0028 1.0020 1.0008

MH04
1.028 1.027 1.032 1.035 1.018 0.982
1.0000 0.9997 0.9996 1.0003 1.0013 1.0036
1.0000 0.9991 0.9984 0.9966 0.9954 0.9936

MH05
0.791 0.768 0.790 0.729 0.693 0.706
1.0000 1.0030 1.0031 1.0086 1.0089 1.0100
1.0000 1.0001 0.9972 1.0022 0.9993 0.9981

V101
0.744 0.749 0.753 0.750 0.733 0.730
1.0000 1.0025 1.0036 1.0047 1.0059 1.0057
1.0000 0.9993 0.9988 0.9989 0.9966 0.9964

V102
0.286 0.272 0.275 0.282 0.313 0.284
1.0000 1.0021 1.0076 1.0115 1.0154 1.0205
1.0000 0.9986 1.0033 1.0053 1.0072 1.0088

V103
0.635 0.630 0.633 0.674 0.698 0.732
1.0000 1.0001 1.0002 1.0009 1.0012 1.0020
1.0000 0.9996 0.9993 0.9981 0.9975 0.9951

V201
0.505 0.534 0.609 0.635 0.596 0.598
1.0000 1.0035 1.0036 1.0032 1.0033 1.0032
1.0000 0.9989 0.9986 0.9957 0.9941 0.9915

V202
1.118 1.074 1.199 0.985 0.917 0.923
1.0000 1.0053 1.0024 1.0083 1.0112 1.0110
1.0000 1.0026 0.9981 1.0015 1.0013 0.9998

V203
0.996 0.985 0.970 0.990 0.997 1.002
1.0000 0.9973 0.9992 0.9981 1.0013 1.0043
1.0000 0.9970 0.9986 0.9963 0.9964 0.9939

Table 8. ATE reduction for our distributed dpba with different
number of clusters, compared to our central pba. The three met-
rics shown for each entry are top-to-bottom: “fraction of pgo-
ATE”, “cost global” and “cost local” (“fraction of odom-ATE” is
not shown, as it is qualitatively similar). We show the same results
as in Table 3, but for each individual sequence, so please refer to
its caption. Highlights for best and second best value in each row
exclude the first column (pba).

augment map – yes no
init state from – pgo odom pgo odom
method pgo pba dpba pba dpba pba dpba pba dpba
odom-ATE frac. 0.56 0.36 0.38 0.50 0.54 0.60 0.57 0.60 0.67

Table 9. Comparing different initializations by ATE reduction
(fraction of odometry ATE) averaged over all EuRoC sequences.

constraints. In the experiments (Table 8), we observe that
deterioration of accuracy due to increase of number of clus-
ters appears to be mild.

E. Notes on Initialization
In our experience, global photometric BA is very sen-

sitive to good initialization, more so than geometric BA.
This is in line with the discussion in [8]. There are two
aspects of using the result after loop closure as initializa-
tion, as opposed to the pure odometry result. First, we use
the detected loop closures to augment the map by adding
observations between temporally distant keyframes. Sec-
ond, we use the updated state after PGO as initialization for

15

global PBA. Both are critical. The first ensures that we can
actually correct drift and don’t just batch-optimize the slid-
ing window open loop graph. The second is important for
the global PBA to find good minima. Table 9 shows addi-
tional results from the experiments in the main paper (the
first three columns correspond to values in Table 2). While
all global optimizations improve over pure odometry, we
can clearly see that not augmenting the map doesn’t bring
the full benefit (results are worse than just running PGO)
and that initializing the global PBA with the corrected state
from PGO is also essential for convergence (the region of
convergence could be increased a bit with a coarse-to-fine
approach [35]). Note that the central and distributed vari-
ants in each case show similar behaviour.

F. Convergence Proof

In the following we prove that under mild assumptions
on sufficient descent and sub-problem accuracy, our pro-
posed distributed photometric BA converges to a stationary
point.

Notation Let P l := ∪i∈ClP li be the set of all points that
appear in cluster l. To streamline the notation, we stack
all variables (including the rotation matrices) into column
vectors, such that the norms used in the definition of the
penalty cost become the regular 2-norm. We refer to the lo-
cal variables {θli : i ∈ Cl} ∪ {dlq : q ∈ P l} for cluster l
as (θl, dl) ∈ Kl :' (SO(3) × R3 × R × R)C

l × RPl

≥0, to
the local variables (θ1, . . . , θL, dl, . . . , dL) for all clusters
as (θ, d), to the global variables {Θi : i ∈ F} as Θ ∈ B :'
(SO(3) × R3 × R × R)F , and to the local variables under
gauge parameterization {θ̃li(θli, ξl) : i ∈ Cl} ∪ {d̃lq(dlq, ξ

l) :

q ∈ P l} for cluster l as (θ̃l(θl, ξl), d̃l(dl, ξl)) ∈ Kl.
We denote the set of all possible gauge transformations as
X := SO(3) × R3 × R>0 × R, i.e. ξl ∈ X . The subset of
variables in Θ corresponding to θl for cluster l is denoted as
AlΘ, where matrix Al selects the rows from Θ that corre-
spond to variables appearing in cluster l (the rows of Al are
a subset of the rows of the identity matrix I|B|). We define
the diagonal matrix W with positive penalty weights ρR,
ρt, ρa, ρb on the diagonal in such a way that we can mul-
tiply WΘi, and likewise diagonal matrix W l with repeated
diagonal blocks W such that we can multiply W lθl.

With that, we can abbreviate the local bundle adjustment
cost with:

F lBA(θl, dl) :=
∑
i∈Cl

∑
q∈Pl

i

∑
j∈Ql

q

1

ni,q,j
Fi,q,j(θ

l
i, d

l
q, θ

l
j),

(38)

and the penalty terms with:

P l(Θ, θl) :=
1

2
‖W l

1
2 (AlΘ− θl)‖2 (39)

=
1

2

∑
i∈Cl
‖W 1

2 (Θi − θli)‖2. (40)

Then, the splitting cost function reads:

F lsplit(θ
l, dl,Θ) := F lBA(θl, dl) + P l(Θ, θl), (41)

Fsplit(θ, d,Θ) :=

L∑
l=1

F lsplit(θ
l, dl,Θ). (42)

Algorithm Note that Algorithm 1 is procedural, similar
to how one would implement it in practice. In particular,
it factors the alternating minimization of (13) into an inner
loop (lines 4–7), as it can be performed on the master with-
out intermediate communication with the workers. How-
ever, as discussed earlier, the optimization of gauge vari-
ables can also be viewed as a subspace local update, where
the local variables are constrained to the gauge orbit (of the
bundle adjustment residuals). For the convergence analy-
sis we use a more suitable view onto the same algorithm
and make the “subspace update” interpretation explicit: In
this modified formulation each iteration t ∈ {0, 1, ...} com-
prises one local update followed by one global update. Let
T ⊂ {0, 1, ...} be the iterations where we perform the full
local update. In the proof we reason about the conver-
gence of iterates in this subsequence, but this is not a re-
striction, since the distance between two consecutive t ∈ T
is bounded by N gauge

max (the inner loop in Algorithm 1 has at
most N gauge

max iterations). Note that in particular 0 ∈ T . For
all other iterations t /∈ T the subspace local update with
gauge parameterization is used.

Specifically, for each cluster l, the local update without
gauge constraint (t ∈ T) reads:

(θl,t+1, dl,t+1) ∈ arg min
(θl,dl)∈Kl

F lsplit(θ
l, dl,Θt), (43)

and with gauge constraint (t 6∈ T) reads:

ξt+1
l ∈ arg min

ξl∈X
P l(Θt, θ̃l(θl,tk(t)+1, ξl)), (44)

and

(θl,t+1, dl,t+1) =
(
θ̃l(θl,tk(t)+1, ξt+1

l),

d̃l(dl,tk(t)+1, ξt+1
l)

)
, (45)

where tk(t) = max {tk ∈ T : tk ≤ t} denotes for a given
iteration t the most recent iteration tk(t) where a full local
update was performed. Note that we parameterize the gauge
orbit with the local variables from iteration tk(t) + 1 for

16

Algorithm 2 Distributed Photometric Bundle Adjustment
Convergence Analysis

1: Partition the set of keyframes into clusters F =
∪Ll=1Fl. Initialize the global and local variables at
t = 0 from the loop-closing odometry.

2: for t = 0, 1, . . . do
3: for l ∈ {1, ..., L} do
4: if t ∈ T then
5: Update the local variables (θl,t+1, dl,t+1) by

applying non-linear least squares solver to (43).
6: else
7: Update the gauge variables ξl,t+1 with the

closed-form solution to Eq. (44).
8: Update the local variables (θl,t+1, dl,t+1) with

(45).
9: end if

10: end for
11: Update the global variables Θt+1 with the closed-

form solution to (46).
12: end for

the optimization (44), since in Algorithm 1 we only apply
the gauge normalization once after the inner loop (line 8).
Finally, the global update in each iteration is:

Θt+1 ∈ arg min
Θ∈B

L∑
l=1

P l(Θ, θl,t+1). (46)

The above steps are summarized in Algorithm 2. One
minor difference to Algorithm 1 is that there, at the end
of each inner iteration, a gauge update is directly followed
by the full local update of the subsequent outer iteration.
While in practice this is useful to do, since the gauge up-
date is cheap to compute, we skip this intermediate gauge
update in Algorithm 2, as it does not change the optimality
conditions of the full local update and hence has no influ-
ence on convergence. Moreover, we only consider the case
of constant penalty weights ρ, since in practice, for a con-
tinuation scheme with increasing ρ like ours, one performs
only a maximum number of steps of increasing ρ, leaving it
constant thereafter if full convergence is desired.

Assumptions We assume that the subproblems are solved
possibly inexactly, but such that there always hold relative
error conditions w.r.t. the limiting subdifferential [36, Defi-
nition 8.3(b)]. For t ∈ T we have after the full local update

εl,t+1
θ ∈ ∇F lBA(θl,t+1, dl,t+1) +NKl(θl,t+1, dl,t+1)

+ (W l(θl,t+1 −AlΘt),0), (47)

for every cluster l, where NKl(θl,t+1, dl,t+1) denotes the
(limiting) normal cone of Kl at (θl,t+1, dl,t+1), and we as-

sume bound

‖εl,t+1
θ ‖ ≤ γ1‖(θl,t+1, dl,t+1)− (θl,t, dl,t)‖ (48)

for some γ1 ∈ R>0. After the global update, for any itera-
tion t, we have:

εt+1
Θ = −

L∑
l=1

Al
>
W l(θl,t+1 −AlΘt+1) +NB(Θt+1),

(49)

where similarly NB(Θt+1) denotes the (limiting) normal
cone of B at Θt+1, and we assume bound

‖εt+1
Θ ‖ ≤ γ1‖Θt+1 −Θt‖. (50)

Furthermore, we assume the following descent conditions:
For any t ∈ T we have:

Fsplit(θ
t+1, dt+1,Θt)− Fsplit(θ

t, dt,Θt)

≤ −γ2‖(θl,t+1, dl,t+1)− (θl,t, dl,t)‖2, (51)

for some γ2 ∈ R>0 and for all iterations t ∈ {0, 1, . . . }:

Fsplit(θ
t+1, dt+1,Θt+1)− Fsplit(θ

t+1, dt+1,Θt)

≤ −γ2‖Θt+1 −Θt‖2. (52)

We remark that conditions (47)–(52) typically hold when
our algorithm is applied in practice. Additionally, they
could easily be enforced by solving quadratically perturbed
problems in place of (43) and (46), obtained by adding prox-
imal terms ε‖(θl, dl) − (θl,t, dl,t)‖2 resp. ε‖Θ − Θt‖2 for
some ε ∈ R>0. Then, Fermat’s rule [36, Theorem 10.1]
yields the four conditions above.

If t 6∈ T , we have by the properties of the gauge orbit:

Fsplit(θ
t+1, dt+1,Θt)− Fsplit(θ

t, dt,Θt)

= P l(Θt, θl,t+1)− P l(Θt, θl,t) ≤ 0. (53)

Proposition F.1. Let t ∈ {0, 1, . . . } be the sequence of
iterates generated by Algorithm 2 and assume conditions
(47)–(52) hold. Then the cost function Fsplit(θ

t,Θt, dt) is
monotonically decreasing and as a result converges to some
finite value. Furthermore every limit point of the sequence
{(θt+1,Θt+1dt+1)}t∈T is a stationary point of Fsplit.

Proof. Let J·K denote the Iverson bracket. We obtain by
summing Inequalities (52) with (51) or (53) as

−∞ < Fsplit(θ
t+1, dt+1,Θt+1)− Fsplit(θ

t, dt,Θt)

≤ −γ2‖Θt+1 −Θt‖2

− γ2Jt ∈ T K
L∑
l=1

‖(θl,t+1, dl,t+1)− (θl,t, dl,t)‖2,

(54)

17

that Fsplit(θ
t, dt,Θt) is monotonically decreasing and since

Fsplit ≥ 0 is bounded from below the energies converge to
a finite value Fsplit(θ

t, dt,Θt) → F ∗split. Then summing
from t = 0 to t = T yields:

−∞ < C

≤ Fsplit(θ
T+1, dT+1,ΘT+1)− Fsplit(θ

0, d0,Θ0)

≤
T∑
t=0

−γ2‖Θt+1 −Θt‖2

− γ2Jt ∈ T K ·
L∑
l=1

‖(θl,t+1, dl,t+1)

− (θl,t, dl,t)‖2, (55)

showing that ‖Θt+1 − Θt‖ → 0 and ‖(θl,tk+1, dl,t+1) −
(θl,tk , dl,tk)‖ → 0 for the subsequence tk ∈ T and via
the relative error bounds also εt+1

Θ → 0 and εl,tk+1
θ → 0.

Furthermore, using the shorthand notation

∇F l,tBA := ∇F lBA(θl,t, dl,t), (56)

N t
Kl := NKl(θl,t, dl,t), (57)

we have in view of [36, Proposition 10.5] and [36, Exercise
8.8(c)]:

NB(Θt+1)−∑L
l=1A

l>W l(θl,t+1 −AlΘt+1)

∇F 1,t+1
BA +N t+1

K1 + (W 1(θ1,t+1 −A1Θt+1),0)
...

∇FL,t+1
BA +N t+1

KL + (WL(θL,t+1 −ALΘt+1),0)


= ∂Fsplit(θ

t+1, dt+1,Θt+1) (58)

By the individual optimality conditions we have for any
tk ∈ T :

ωtk :=


εtk+1
Θ

ε1,tk+1
θ + (W 1A1(Θtk −Θtk+1),0)

...
εL,tk+1
θ + (WLAL(Θtk −Θtk+1),0)


∈ ∂Fsplit(θ

tk+1, dtk+1,Θtk+1). (59)

Now consider a convergent sub-sequence
(θtkj

+1, dtkj
+1,Θtkj

+1) → (θ∗, d∗,Θ∗) of the iter-
ates (θtk+1, dtk+1,Θtk+1) indexed by j. Then we have in
view of the inclusion above that ωtkj → 0 with

ωtkj ∈ ∂Fsplit(θ
tkj

+1, dtkj
+1,Θtkj

+1), (60)

and

Fsplit(θ
tkj

+1, dtkj
+1,Θtkj

+1)→ F ∗split, (61)

F ∗split = Fsplit(θ
∗, d∗,Θ∗). (62)

The equality in (62) holds, since the iterates are feasible and
the domain domFsplit is closed and Fsplit is continuous on
its domain. Since the graph of the subdifferential, see [36,
Definition 8.3(b)], gph ∂Fsplit = {(x, y) : y ∈ ∂Fsplit(x)}
is a closed set under the Fsplit-attentive topology and
((θtkj

+1, dtkj
+1,Θtkj

+1), ωtkj) ∈ gph ∂Fsplit, we obtain
by passing to the limit ((θ∗, d∗,Θ∗), 0) ∈ gph ∂Fsplit, i.e.,
0 ∈ ∂Fsplit(θ

∗, d∗,Θ∗).

References
[36] R. T. Rockafellar and R. J. B. Wets. Variational Analysis.

Springer, Berlin, 1998.

18

Table 10. Estimated camera trajectories before (pgo) and after (dpba) our global distributed photometric bundle adjustment for all EuRoC
sequences, after Sim(3) alignment to the ground-truth poses.

MH01
ground truth
dpba (ours)
pgo

MH02
ground truth
dpba (ours)
pgo

MH03
ground truth
dpba (ours)
pgo

MH04
ground truth
dpba (ours)
pgo

MH04 align last half
ground truth
dpba (ours)
pgo

19

MH05
ground truth
dpba (ours)
pgo

V101
ground truth
dpba (ours)
pgo

V102
ground truth
dpba (ours)
pgo

V103
ground truth
dpba (ours)
pgo

V201
ground truth
dpba (ours)
pgo

V202
ground truth
dpba (ours)
pgo

20

V203
ground truth
dpba (ours)
pgo

V203 align first half
ground truth
dpba (ours)
pgo

21

