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Abstract

In this work, we consider nonconvex com-
posite problems that involve inf-convolution
with a Legendre function, which gives rise to
an anisotropic generalization of the proximal
mapping and Moreau-envelope. In a convex
setting such problems can be solved via al-
ternating minimization of a splitting formu-
lation, where the consensus constraint is pe-
nalized with a Legendre function. In con-
trast, for nonconvex models it is in general
unclear that this approach yields stationary
points to the infimal convolution problem.
To this end we analytically investigate local
regularity properties of the Moreau-envelope
function under prox-regularity, which allows
us to establish the equivalence between sta-
tionary points of the splitting model and the
original inf-convolution model. We apply our
theory to characterize stationary points of
the penalty objective, which is minimized by
the elastic averaging SGD (EASGD) method
for distributed training. Numerically, we
demonstrate the practical relevance of the
proposed approach on the important task of
distributed training of deep neural networks.

1 Introduction

In this work, we are interested in optimizing nonconvex
composite models which involve infimal convolutions
with Legendre functions:

minimize
u∈Rn

eφλf(Au) + g(u). (1)
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Here both f : Rm → R := R ∪ {+∞,−∞} and
g : Rn → R are extended real-valued, proper1 and
lower semi-continuous (lsc) functions which are possi-
bly nonconvex and nonsmooth, and A ∈ Rm×n is a
coupling matrix. Let dom f := {z ∈ Rm : f(z) < ∞}
denote the domain of f . By eφλf we denote the infi-
mal convolution of a function f with some Legendre
function φ : Rm → R; see Definition 3.1. The infi-
mal convolution of f with a potential φ and scaling
parameter λ is defined as

eφλf(v) = inf
z∈Rm

f(z) +
1

λ
φ(v − z). (2)

We shall refer to eφλf as the φ-envelope of f , and the
corresponding arg min map

Pφλ f(v) = arg min
z∈Rm

f(z) +
1

λ
φ(v − z), (3)

as the φ-proximal mapping of f at v.

Note that for φ = 1
2‖·‖2 they specialize to the classical

Moreau-envelope and proximal mapping [16, 17].

Under suitable assumptions that guarantee that the
inf is attained when finite, eφλf yields a regularized

variant of f in the sense that the epigraph of eφλf is
obtained via the Minkowski sum of the epigraphs of
the individual functions f and φ [22, Exercise 1.28].
For convex proper lsc f and Lipschitz differentiable2

φ, eφλf is a Lipschitz differentiable approximation to f .

In contrast, when f is nonconvex and nonsmooth, eφλf
remains nonsmooth and nonconvex in general which
renders the optimization of (1) challenging.

Inf-convolution models are well grounded in machine
learning and signal processing. A variety of convex
and nonconvex loss functions and regularizers can be
written as an infimal convolution. There, the potential
φ is chosen in accordance with the underlying noise
prior, e.g., quadratic for Gaussian.

1A function f : Rm → R is called proper if f(z̄) < ∞
for some z̄ ∈ Rm and f(z) > −∞ for all z ∈ Rm.

2A function is called Lipschitz differentiable if it is dif-
ferentiable and its gradient is Lipschitz continuous.
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In addition, benefits of inf-convolution regularization
(with quadratic φ) have been observed empirically in
neural network training in recent works [27, 8].

1.1 Motivation

To compute a stationary point of (1), we resort to a
splitting model

minimize
u∈Rn, z∈Rm

F (u, z) := f(z) +
1

λ
φ(Au− z) + g(u),

(4)
where the violation of the constraint Au = z is pe-
nalized with φ. From Equation (2) it can be seen
that model (4) is equivalent to model (1) in terms of
global optima but in general not in terms of stationary
points3. The splitting formulation (4) is amenable to
alternating optimization, which, under mild assump-
tions, converges subsequentially to a stationarity point
(ū, z̄) of F , satisfying the following conditions (assum-
ing domφ is open): Aū − z̄ ∈ domφ, ū ∈ dom g,
z̄ ∈ dom f , and

0 ∈ ∂g(ū) + 1
λA
>∇φ(Aū− z̄), (5a)

0 ∈ ∂f(z̄)− 1
λ∇φ(Aū− z̄). (5b)

Here ∂ denotes the (limiting) subdifferential of a func-
tion, cf. Definition 4.1.

Meanwhile, in order for ū to qualify as a stationary
point of the original problem (1) it must satisfy

0 ∈ ∂(eφλf ◦A+ g)(ū). (6)

When eφλf is smooth around Aū and ū ∈ dom g, the
stationarity condition (6) simplifies to

0 ∈ A>∇eφλf(Aū) + ∂g(ū), (7)

via [22, Exercise 8.8 (c)].

It is important to realize that conditions (5a)–(5b) do
not imply (6) or (7) in general when f is nonconvex.
This stands in stark contrast to the convex setting,
where the stationarity condition (7) (for quadratic φ =
1
2‖ · ‖2) can be guaranteed via the well known gradient
formula for the Moreau-envelope [22, Theorem 2.26]:

∇e‖·‖
2/2

λ f(v) =
1

λ
(v − P ‖·‖

2/2
λ f(v)). (8)

To this end, note that (5b) resembles the necessary
(and in the convex setting also sufficient) optimality

3A stationary point (ū, z̄) of (4) is a point that satisfies
the necessary first order optimality condition 0 ∈ ∂F (ū, z̄),
cf. Fermat’s rule generalized [22, Theorem 10.1]. When
(ū, z̄) ∈ domF is feasible and φ is continuously differen-
tiable on domφ open, 0 ∈ ∂F (ū, z̄) is implied by (5a)–(5b)
via [22, Exercise 8.8 (c) and Proposition 10.5].

condition of the φ-proximal mapping z̄ = Pφλ (Aū).
For this reason, a main focus of this work is to derive
sufficient conditions that guarantee the translation of
stationarity in the more general nonconvex setting for
(nonquadratic) φ, which ultimately boils down to the
following implication:

(5b) ⇒ 1
λ∇φ(Aū− z̄) = ∇eφλf(Aū). (9)

In this sense, the implication in (9) is a generalization
of the gradient formula (8) for the the φ-envelope.

1.2 Contributions

Our contributions are summarized as follows:

• We consider an anisotropic generalization of the
proximal mapping and Moreau-envelope [14, 26,
9] induced by a Legendre function in the non-
convex setting. More precisely we establish local
regularity properties of the envelope function and
proximal mapping under prox-regularity, includ-
ing a generalization of the well known gradient
formula for the Moreau-envelope. The translation
of stationarity is a consequence of this theory.

• We apply our theory to characterize stationary
points of the model that is minimized by the
elastic averaging SGD (EASGD) [27] method for
distributed training with anisotropic (i.e., non-
quadratic) penalty functions. There, our theory
can be invoked to obtain a robust measure of sta-
tionarity via the gradient of the Moreau-envelope.

• Numerically, we apply our algorithm to dis-
tributed training of deep neural networks and
showcase merits of anisotropic inf-convolution po-
tentials over standard quadratic in this context.

2 Related Work

Proximal mappings and Moreau-envelopes date back
to the seminal papers of Moreau [16, 17].

[14, 26, 9] consider an anisotropic generalization of
the proximal mapping which is obtained by replacing
the quadratic penalty with a Legendre function and
study its properties in a convex setting. [9] relates the
anisotropic proximal mapping to the Bregman prox-
imal mapping (introduced in [7, 24] and investigated
in [3]) via a generalization of Moreau’s decomposition
[16, 17], which holds for convex functions. The Breg-
man prox and the anisotropic prox are different gen-
eralizations of the classical prox with complementary
properties.

In the convex setting the Moreau-envelope has strong
regularity properties such as Lipschitz differentiabil-
ity. In the nonconvex setting the Moreau-envelope is
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nonsmooth in general. In [19, 22] the concept of prox-
regular functions is introduced, which allows the au-
thors to (locally) recover some of the properties known
from the convex setting: These include the (local)
single-valuedness of the prox and (local) Lipschitz dif-
ferentiability of the envelope.

In [15, 18], prox-regularity is used to establish a local
convergence result for alternating and averaged projec-
tions methods. Similar to this work but specialized to
quadratic φ, in [12], prox-regularity is utilized to show
a translation of stationarity for the model (1) which is
computationally resolved by multiblock ADMM.

More recently, in [10] the gradient of the Moreau-
envelope has been used as a stationarity measure in
stochastic optimization methods.

Inf-convolution regularization has recently been uti-
lized in neural network training [27, 8]: In [27] the au-
thors have considered the consensus training of deep
neural networks by optimizing a relaxed consensus
model of the form (4) with quadratic φ. Similar al-
gorithms were later connected to partial differential
equations [8].

3 Anisotropic Proximal Mapping

In this section, we introduce the notion of Legendre
functions that gives rise to an anisotropic generaliza-
tion of the proximal mapping and Moreau-envelope
investigated in the convex setting by [14, 26, 9]. We
establish a sufficient condition for the well-definedness
of the anisotropic prox (denoted as φ-prox) and enve-
lope (denoted as φ-envelope) in the nonconvex setting,
based on a generalized notion of prox-boundedness [22,
Definition 1.23].

A proper convex lsc Legendre function is defined below
according to [21, Section 26]. Here ∂φ reduces to the
classical convex subdifferential.

Definition 3.1 (Legendre function). The proper con-
vex lsc function φ : Rm → R is

(i) essentially smooth, if the interior of the domain
of φ is nonempty, i.e. int domφ 6= ∅, and φ is
differentiable on int domφ such that ‖∇φ(wν)‖ →
∞ whenever wν → w ∈ bdry domφ;

(ii) essentially strictly convex, if φ is strictly convex
on every convex subset of dom ∂φ := {w ∈ Rm :
∂φ(w) 6= ∅};

(iii) Legendre, if φ is both essentially smooth and es-
sentially strictly convex.

Let φ∗ denote the convex conjugate of φ. Then, Leg-
endre functions have the following essential properties:

Lemma 3.2. Let φ : Rm → R be proper lsc convex
and Legendre. Then φ has the following properties:

(i) dom ∂φ = int domφ, [21, Theorem 26.1].

(ii) ∇φ : int domφ → int domφ∗ is bijective
with inverse ∇φ∗ : int domφ∗ → int domφ
with both ∇φ and ∇φ∗ continuous on int domφ
resp. int domφ∗, [21, Theorem 26.5].

Overall we will make the following (additional) as-
sumptions on φ:

(A1) φ : Rm → R is proper lsc convex and Legendre.

(A2) domφ is open.

(A3) φ is twice continuously differentiable on int domφ
with positive definite Hessian, i.e., ∇2φ(w) � 0
for any w ∈ int domφ.

(A4) φ is super-coercive, i.e., ‖φ(w)‖/‖w‖ → ∞ when-
ever ‖w‖ → ∞.

(A5) φ(0) = 0 and ∇φ(0) = 0.

(A2) ensures that φ(wν) → ∞, whenever wν → w ∈
bdry domφ. In particular this allows us to utilize al-
ternating gradient descent steps as updates in our al-
gorithm, cf. Section 5. (A3) implies that φ is “lo-
cally” strongly convex and Lipschitz differentiable in
the sense of [4, Proposition 2.10]: For any compact
and convex K ⊂ dom ∂φ, there are constants µ, γ > 0
such that for any w1, w2 ∈ K:

φ(w1) ≥ φ(w2) + 〈∇φ(w2), w1 − w2〉+
µ

2
‖w1 − w2‖2,

‖∇φ(w1)−∇φ(w2)‖ ≤ γ‖w1 − w2‖.

Such functions are known under the term very strictly
convex [4, Definition 2.8] which lie “strictly between
the class of strongly convex and the class of strictly
convex functions”, [4, Remark 2.9]. (A4) is required
later on in Section 4 to show the translation of station-
arity. (A5) is technically not required in our theory.
However, it naturally leads to a smoothing which un-
der prox-regularity preserves stationarity (see Corol-
lary 5.1).

Examples for such φ include the scaled quadratic
φ(w) = w>Qw (with matrix Q symmetric positive def-
inite) or a log-barrier function φ(w) = − log(1−‖w‖2).
Further examples are provided in Section 6.

It is important to realize that for nonconvex f the
well-definedness of the φ-proximal mapping and enve-
lope requires additional assumptions: More precisely,
we shall guarantee that eφλf is proper and Pφλ f(v) 6= ∅
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for any v ∈ dom eφλf . In addition, this condition al-
lows us to extract a continuity property for the φ-
proximal mapping and envelope which is extensively
needed later on to prove the desired translation of sta-
tionarity in Section 4:

Definition 3.3 (φ-prox-boundedness). We say f :
Rm → R is φ-prox-bounded if there exists λ > 0 such
that for any v̄ ∈ Rm there exists ε > 0 and a constant
β > −∞ such that

eφλf(v) ≥ β (10)

for any v with ‖v − v̄‖ ≤ ε. The supremum of the
set of all such λ is the threshold λf of the φ-prox-
boundedness.

When f is bounded from below it is φ-prox-bounded
with threshold λf =∞. Notably, in the classical case
(when φ is quadratic) the definition can be made min-
imalistic, cf. [22, Definition 1.23]: It suffices to assume

the existence of some v̄ ∈ Rm so that eφλf(v̄) > −∞.

Overall we summarize below the properties of φ-prox
and envelope under φ-prox-boundedness that shall be
used along our course in the next section.

Lemma 3.4. Let f : Rm → R be proper lsc and φ-
prox-bounded with threshold λf > 0. Then for any λ ∈
(0, λf ), Pφλ f and eφλf have the following properties:

(i) Pφλ f(v) 6= ∅ is compact for all v ∈ dom eφλf =

dom f + domφ, whereas Pφλ f(v) = ∅ for v /∈
dom eφλf .

(ii) The φ-envelope eφλf is continuous relative to

dom eφλf .

(iii) For any sequence vν → v̄ contained in dom eφλf

and zν ∈ Pφλ f(vν) we have {zν}ν∈N is bounded

and all its cluster points z̄ lie in Pφλ f(v̄).

4 Translation of Stationarity

In this section we prove the translation of stationarity,
see (9), under prox-regularity: We emphasize that it is
a major concern of the splitting approach in the non-
convex setting to justify whether solving the splitting
model (4) guarantees solving the original model (1),
both in terms of stationarity.

To this end we recall the definitions of the regular and
the limiting subdifferential according to [22, Definition
8.3].

Definition 4.1 (subdifferential). Let f : Rm → R and
z̄ ∈ dom f be given. For y ∈ Rm, we say

(i) y is a regular subgradient of f at z̄, written y ∈
∂̂f(z̄), if

lim inf
z→z̄
z 6=z̄

f(z)− f(z̄)− 〈y, z − z̄〉
‖z − z̄‖ ≥ 0.

We refer to the set ∂̂f(z̄) as the regular subdiffer-
ential of f at z̄.

(ii) y is a (limiting) subgradient of f at y, written
y ∈ ∂f(z̄), if there exist zν → z̄ with f(zν) →
f(z̄) and yν ∈ ∂̂f(zν) with yν → y. We refer to
the set ∂f(z̄) as the (limiting) subdifferential of f
at z̄.

We remark that for f convex, both the regular and
the limiting subdifferential coincide with the classical
convex subdifferential, [22, Proposition 8.12].

Next, we define prox-regularity of functions, according
to [22, Definition 13.27]:

Definition 4.2 (prox-regularity of functions). As-
sume f : Rm → R is lsc and finite at z̄ ∈ Rm. We
say f is prox-regular at z̄ for ȳ ∈ ∂f(z̄) if there exist
ε > 0 and r ≥ 0 such that for all ‖z′ − z̄‖ < ε

f(z′) ≥ f(z) + 〈y, z′ − z〉 − r

2
‖z′ − z‖2, (11)

whenever ‖z − z̄‖ < ε, f(z) − f(z̄) < ε, y ∈ ∂f(z),
‖y − ȳ‖ < ε. When this holds for all ȳ ∈ ∂f(z̄), f is
said to be prox-regular at z̄.

Prox-regularity is a local property in nature. Exam-
ples for (everywhere) prox-regular functions include:
(i) proper, (weakly) convex, lsc functions; (ii) C2-
functions; and (iii) indicator functions of C2-manifolds
[19, 22]. For further examples we refer to [19, 22].

Based on prox-regularity and φ-prox-boundedness, we
now extend [22, Proposition 13.37] to Pφλ f and eφλf in
our context (see Theorem 4.3) and eventually derive
the translation of stationarity as desired (see Corollary
4.4). As a key ingredient in the proof of Theorem 4.3
we may invoke the generalized implicit function the-
orem [20, Theorem 2.1] [11, Theorem 2B.5] to assert

Pφλ f is locally a single-valued, Lipschitz map.

Theorem 4.3. Let f : Rm → R proper lsc and φ-prox-
bounded with threshold λf . Let v̄ ∈ z̄ + domφ. Then
for any λ ∈ (0, λf ) sufficiently small and f finite and
prox-regular at z̄ for ȳ ∈ ∂f(z̄) with

ȳ =
1

λ
∇φ(v̄ − z̄)

the following statements hold true:
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(i) Pφλ f is a singled-valued, Lipschitz map near v̄

such that z̄ = Pφλ f(v̄) and

Pφλ f(v) = (I +∇φ∗ ◦ λT )−1(v), (12)

where T is the f -attentive ε-localization of ∂f near
(z̄, ȳ), i.e. the set-valued mapping T : Rm ⇒ Rm
defined by T (z) := {y ∈ ∂f(z) : ‖y − ȳ‖ < ε} if
‖z − z̄‖ < ε and f(z) < f(z̄) + ε, and T (z) := ∅
otherwise.

(ii) eφλf is Lipschitz differentiable around v̄ with

∇eφλf(v) =
1

λ
∇φ(v − z). (13)

Proof. We provide a short proof sketch for part (i).
For a detailed proof of part (i) and part (ii) we refer
to the supplements.

(i) Using the definition of prox-regularity, the as-
sumptions in the theorem and the continuity prop-
erty of the prox from Lemma 3.4 (which holds under
φ-prox-boundedness) it can be proven that for some
λ ∈ (0, λf ) sufficiently small for any ξ sufficiently
near 0 we have ξ ∈ T (z) − 1

λ∇φ(v̄ − z), for some
z near z̄. Furthermore, using the definition of prox-
regularity and Assumption (A3), it can be shown that
T − 1

λ∇φ(v̄ − ·) is strongly monotone.

This implies that ξ 7→
(
T − 1

λ∇φ(v̄ − ·)
)−1

(ξ) is a
single-valued, Lipschitz map in a neighborhood of

0 such that
(
T − 1

λ∇φ(v̄ − ·)
)−1

(0) = z̄. Invok-
ing the generalized implicit function theorem [11,

Theorem 2B.7], we assert that v 7→ Pφλ f(v) =(
T − 1

λ∇φ(v − ·)
)−1

(0) is a single-valued, Lipschitz

map in a neighborhood of v̄ such that z̄ = Pφλ f(v̄).

As an immediate consequence of the above theorem,
the implication in (9) holds true and the translation
of stationarity is attained under prox-regularity.

Corollary 4.4 (translation of stationarity). Let (ū, z̄)
be a stationary point for the splitting model (4) satis-
fying Aū − z̄ ∈ domφ, ū ∈ dom g, z̄ ∈ dom f and
conditions (5a)–(5b). Let f : Rm → R be φ-prox-
bounded with threshold λf and prox-regular at z̄ for
ȳ := 1

λ∇φ(Aū − z̄). Then, for λ ∈ (0, λf ) sufficiently
small, the stationarity condition (7) is fulfilled, i.e., ū
is a stationary point for the inf-convolution model (1).

Proof. Invoking Theorem 4.3 with (z̄, 1
λ∇φ(Aū −

z̄)) and λ ∈ (0, λf ) sufficiently small, we obtain

A>∇eφλf(Aū) = 1
λA
>∇φ(Aū − z̄). In combination

with (5a), this yields 0 ∈ A>∇eφλf(Aū) + ∂g(ū).

Since eφλf is continuously differentiable around Aū and
ū ∈ dom g, this implies (7) due to [22, Exercise 8.8
(c)].

5 Application to Distributed Training

In this section, we present a stochastic alternating min-
imization scheme (Algorithm 1) tailored to distributed
empirical risk minimization in (15). As an interesting
special case, we consider scenarios where all workers
have access to the entire training set and the method
specializes to elastic averaging SGD (EASGD) [27].

5.1 Inexact Alternating Minimization

For the optimization of the splitting problem (4) one
typically resorts to alternating minimization where the
variables u and z are updated as:

ut+1 ∈ arg min
u∈Rn

g(u) +
1

λ
φ(Au− zt), (14a)

zt+1 ∈ arg min
z∈Rm

1

λ
φ(Aut+1 − z) + f(z). (14b)

Such a scheme is known as the Gauss-Seidel or block
coordinate descent method and has been investigated
in a general setting by, e.g., [2, 5, 25].

In our case we regard alternating minimization as a
generic scheme where the subproblems (in particular
the z-update) may be solved approximately (e.g., by
replacing the function with a surrogate) as long as con-
vergence to a stationary point of the splitting problem
can be guaranteed. Then, the translation of stationar-
ity from Corollary 4.4 applies under prox-regularity.

For instance, the vanilla Gauss-Seidel method can
be extended with a proximal regularization as in [1].
When φ is Lipschitz differentiable, the coupling term
φ(Au− z) can be replaced by a proximal linearization
in z (resp. u) at zt (resp. ut), so that the updates
become proximal gradient steps on F as in proximal
alternating linearized minimization (PALM) [6].

Alternating minimization can also incorporate
stochastic gradient updates, as described in the next
subsection.

5.2 Stochastic Alternating Minimization for
Distributed Training

In distributed learning, a set ofM workers collaborates
on the training of a model parameterized by consensus
weights u. To this end, with access to a prescribed
subset (indexed by Ij) of the full training set (indexed
by I), each individual worker trains its local copy zj of
the model parameters u under a (relaxed) consensus
constraint u = zj . As a consequence, all workers can
update their copies in parallel.

In terms of the model (4), this is formulated as follows.
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For the remainder of this section let f : RnM → R with

f(z) =

M∑
j=1

fj(zj)

be a separable sum of (regularized) continuously dif-
ferentiable empirical risks fj : Rn → R, each assigned
to worker j. More specifically each fj is defined as

fj(zj) =
1

|Ij |
∑
i∈Ij

`(hi, H(xi; zj)) +R(zj),

for training pairs (xi, hi)i∈Ij , some prediction func-
tion H(·; z) parameterized by weights z, a loss func-
tion `(·, ·) and a regularizer R. Furthermore, let g := 0
and A := [I, · · · , I]> ∈ R(nM)×n, and set the Legendre
penalty as

φ(w) :=

M∑
j=1

φ̂(wj)

which is separable over the copies wj . Overall
model (4) then reads:

min
u,(zj)Mj=1∈Rn

F (u, z) =

M∑
j=1

fj(zj) +
1

λ
φ̂(u− zj), (15)

where φ̂(u − zj) loosely enforces the consensus con-
straint u = zj .

The stochastic instance of the alternating minimiza-
tion scheme is formulated in Algorithm 1 below. No-
tably, Algorithm 1 specializes to EASGD [27] in the
isotropic case, i.e. when φ is quadratic and all workers
have access to the entire training set I, i.e. Ij = I.

Algorithm 1 Stochastic Alternating Linearized Min-
imization

1: for all t = 1, 2, . . . do
2: Choose proper step sizes σt, τ > 0.
3: ut+1 = ut − τA>∇φ(Aut − zt).
4: Draw a sample of the random variable ξt.
5: Compute ∆(zt; ξt) as an unbiased estimate of

the gradient of f + 1
λφ(Aut+1 − ·) at zt.

6: zt+1 = zt − σt∆(zt; ξt).
7: end for

To obtain an unbiased estimate of the gradient
∇zF (ut+1, zt) of F (ut+1, ·) = f + 1

λφ(Aut+1−·) at zt,
worker j samples a uniformly random minibatch Btj
from Ij , and computes the standard stochastic gradi-
ent,

δtj =
1

|Btj |
∑
i∈Bt

j

∇(`(hi, H(xi; ·)))(ztj). (16)

Then we may define ∆(zt; ξt) := (∆j(z
t
j ; ξ

t
j))

M
j=1 for

∆j(z
t
j ; ξ

t
j) = δtj +∇R(ztj)−

1

λ
∇φ(ut − ztj). (17)

The u-update in Algorithm 1 combines the current
model parameters ztj of the workers into a consensus

model ut+1. Notably, for the isotropic case and the
particular choice τ = 1/M , the consensus update re-
duces to the arithmetic mean of the copies ztj .

As a main difference to EASGD, for general φ the u-
update can be regarded as a more general form of av-
eraging. For instance, for the non-admissible choice
φ = ‖ · ‖1, it is well known that minimization of F
w.r.t. u yields the (componentwise) median.

A convergence proof for the stochastic method is be-
yond the scope of the paper. Instead we focus on the
characterization of the stationary points (ū, z̄), that
the algorithm attempts to find.

Invoking the translation of stationarity reveals that the
solution ū is stationary w.r.t. the sum of φ-envelopes∑M
j=1 e

φ̂
λfj . If furthermore all workers can sample from

the entire training set I, i.e., Ij = I and therefore

all fj = f̂ are equal, perfect consensus ū = z̄j holds
at stationary points for some finite penalty parameter
1/λ > 0, which translates to a stationary point of the

unregularized problem minu f̂(u) satisfying 0 ∈ ∂f̂(ū).
This is not trivial as the workers may follow differ-
ent paths to different stationary points if not coupled
tightly (due to stochasticity). In addition, our theory
shows that the φ-envelope is Lipschitz differentiable at
ū and ∇eφλf̂(ū) = 0, implying that whenever uν → ū

it holds that ‖∇eφλf̂(uν)‖ → 0. The gradient norm of
the φ-envelope may thus serve as a measure of station-
arity, more robust compared to dist(0, ∂f̂(uν)) → 0,
see [10]. All of these properties are formally stated in
the following corollary.

Corollary 5.1. Let (ū, z̄) be a stationary point for

the splitting model (15) satisfying ū− z̄j ∈ dom φ̂ and
conditions (5a)–(5b). If f : Rm → R is prox-regular
at z̄ for ȳ = 1

λ∇φ(Aū − z̄) and φ-prox-bounded with
threshold λf , then for λ ∈ (0, λf ) sufficiently small, ū

is a stationary point of
∑M
j=1 e

φ̂
λfj, i.e.,

∑M
j=1 e

φ̂
λfj is

Lipschitz differentiable around ū and

M∑
j=1

∇eφ̂λfj(ū) = 0.

If in addition Ij = I for all 1 ≤ j ≤ M and therefore

fj = f̂ the stationarity condition reduces to

0 = ∇eφ̂λf̂(ū),

and it holds that, ū = z̄j for all j and 0 ∈ ∂f̂(ū).
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Figure 1: Convergence plots for stochastic distributed training with Algorithm 1 and classical Nesterov momen-
tum SGD on MNIST for 4 workers (upper row) and 8 workers (lower row). In the 4 workers setting each worker
completes 50 epochs. In the 8 worker setting each worker completes 10 epochs. In both cases our method is run
with a learning rate of τ = 0.005, much higher than the highest one possible with SGD (for τ = 8 · 10−4 mSGD
already becomes unstable). For all algorithms the batch-size is 20.

Proof. The first part of the corollary follows directly
from Corollary 4.4 and the special structure of A, f, g
and φ. For the second part we invoke Theorem 4.3 (i)

and obtain that for some λ > 0, sufficiently small P φ̂λ f̂

is single-valued at ū and that z̄j = P φ̂λ f̂(ū), showing
that all z̄j ’s are equal. From (5a) it follows that

0 = A>∇φ(Aū− z̄) = M∇φ̂(ū− P φ̂λ f̂(ū)).

By Assumptions (A1), (A5) and Lemma 3.2 we have

∇φ̂(w) = 0 if and only if w = 0, and therefore ū =

z̄j and ȳj = 0. From (5b) we know 0 ∈ ∂f̂(z̄j) =

∂f̂(ū).

6 Numerical Experiments

In the experiments we consider the stochastic dis-
tributed training of a deep neural network with Al-

gorithm 1 where all workers have access to the en-
tire training set, i.e. Ij = I for all j in terms of the
model (15). More precisely, we report comparisons of

different choices of potentials. We manually set φ̂ as

φ̂(wj) :=

L∑
l=1

̂̂
φ

(
wjl
η

)
, (18)

where η is a scaling parameter (in addition to λ), and
l indexes the (learnable) layers. The different choices

of
̂̂
φ are summarized in Table 2. Since both the log-

and tan-potentials have bounded domains, we incor-
porate a line search in our algorithm to ensure that
the iterates stay feasible. Note that cubic does not
satisfy Assumption (A3) as its Hessian is 0 at 0. Yet
we include it in our numerical evaluation.

We apply a variant of our Algorithm 1 with constant
step size, that in addition incorporates Nesterov mo-
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Table 1: Comparison of different potentials on the stochastic consensus training of a deep neural network on
MNIST. Results after 30, 000 iterations, so that each of the 4 workers completes 10 epochs with batch size 20.
For each potential we report the best values in performance over all configurations. Our evaluation suggests that
quadratic is not the best smoothing potential in general.

φ Objective Train Loss (nll) Train Error Test Loss (nll) Test Error

quad, [27] 2.49 2.47 0.00 % 294.12 0.65 %

cubic 7.44 6.87 0.00 % 231.42 0.56 %

tan 0.90 0.83 0.00 % 300.84 0.62 %

tan-sep 0.91 0.87 0.00 % 306.91 0.64 %

log 2.36 2.35 0.00 % 299.60 0.64 %

log-sep 2.46 2.44 0.00 % 299.82 0.67 %

Table 2: Choices for
̂̂
φ . To ensure that cubic satisfies

Assumption (A3) a small quadratic may be added.

acronyms
̂̂
φ dom

̂̂
φ

quad ‖ · ‖2 Rm

cubic ‖ · ‖33 Rm

tan tan(‖ · ‖2)
{
w : ‖w‖ <

√
π
2

}
tan-sep

∑
i tan((·)2i )

{
w : |wi| <

√
π
2

}
log − log(1− ‖ · ‖2) {w : ‖w‖ < 1}

log-sep
∑
i− log(1− (·)2i ) {w : |wi| < 1}

mentum [23] in the SGD updates of the zj . Note that
for φ := 1

2‖ · ‖2 this algorithm specializes to the syn-
chronous EASGD, resp. mEASGD [27].

We report results of the training of a classifier on
the MNIST dataset resorting to the standard LeNet-5
CNN architecture [13] given as

Conv20,5,1 → ReLU → Pool2,2 → Conv50,5,1

→ ReLU → Pool2,2 → FC → Softmax

In Table 1 we compare different potentials
̂̂
φ . To this

end we perform a grid search over different learning
rates σ = τ ∈ {0.001, 0.005}, momentum parame-
ters κ ∈ {0.9, 0.99}, and different scalings of the po-
tentials λ ∈ {0.1, 0.05, 0.025, 0.01, 0.005, 0.0025}, η ∈
{0.5, 1, 2}. We set the number of workers to 4, the
batch size to 20 and the regularization parameter
ν = 10−4. We run the algorithm for 30, 000 itera-
tions, so that each worker completes 10 epochs. For
each potential we report the best performances over
all scalings and configurations in Table 1.

In terms of training loss, the tan- and log-potentials
seem slightly superior, while the non-separable vari-
ants yield slightly better performance than the sep-
arable ones. The cubic potential performs worst in
terms of training loss. All potentials consistently yield
0% training error after 10 epochs (for each worker).

Notably, we observe that the cubic potential performs
better, in terms of low test error, than all other poten-
tials. This is even true for a whole range of scalings.

In Figure 1, we show convergence plots for a repre-
sentative configuration of our Algorithm 1 for 4 and 8
workers respectively. In addition, we show a compari-
son to plain SGD with Nesterov momentum (mSGD).
The different EASGD variants “see” 4 to 8 times more
training examples than mSGD within one iteration.
As a result the distributed method is stable at much
higher learning rates and requires fewer iterations than
mSGD to achieve low objective value.

7 Conclusion

In this work we have considered an anisotropic general-
ization of the proximal mapping and Moreau-envelope.
We derived a gradient formula for the Moreau-envelope
in the nonconvex setting based on prox-regularity.
This allows us to equivalently (in terms of stationary
points) reformulate the problem as a splitting prob-
lem which is amenable to (stochastic) alternating min-
imization. As an application of our theory we charac-
terize stationary points of the penalty objective that
is optimized by the elastic averaging SGD method.
There, our theory can be used to obtain a robust mea-
sure of stationarity. Through numerical validations
we demonstrated the relevance of our theory and algo-
rithm on the important task of consensus training of
deep neural networks.
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A Proofs

A.1 Proof of Lemma 3.4

In parametric minimization problems, such as encountered in the definitions of φ-prox and φ-envelope, a sufficient
condition for the continuity of the arg min map is given by uniform level boundedness [22, Definition 1.16 and
Theorem 1.17] of the map h : (z, v) 7→ f(z) + 1

λφ(v − z).
Definition A.1 (uniform level boundedness). We say a function h : Rm × Rm → R with values h(z, v) is
level-bounded in z locally uniformly in v if for each v̄ ∈ Rm and α ∈ R there is a neighborhood V of v̄ along with
a bounded set X ⊂ Rm such that

{z : h(z, v) ≤ α} ⊂ X
for all v ∈ V .

In the next lemma we establish the uniform level boundedness of the map h : (z, v, ξ) 7→ f(z) + 1
λφ(v− z)−〈ξ, z〉

from φ-prox-boundedness so that [22, Theorem 1.17] can be invoked to assert the continuity of φ-prox and φ-
envelope. The Lemma is stated in a more general form including an additional linear term 〈ξ, z〉, which is needed
later on in the proof of Theorem 4.3, see Section A.2.

Lemma A.2. Let f : Rm → R be proper lsc and φ-prox-bounded with threshold λf > 0. Then for any λ ∈ (0, λf ),
the function h : Rm × Rm × Rm → R, defined via

h(z, ξ, v) := f(z) +
1

λ
φ(v − z)− 〈ξ, z〉,

is level-bounded in z locally uniformly in (ξ, v).

Proof. We assume the contrary: More precisely let λ ∈ (0, λf ) and assume that h is not level-bounded in z
locally uniformly in v. On the one hand, this means that there exist v̄, ξ̄ ∈ Rm, α ∈ R and sequences vν → v̄,
ξν → ξ̄ and zν , ‖zν‖ → ∞ such that

f(zν) +
1

λ
φ(vν − zν)− 〈ξν , zν〉 ≤ α.

On the other hand, we know that

f(zν) +
1

λ′
φ(vν − zν) ≥ β,

for some λ′ > λ, with λ′ ∈ (0, λf ) and ν sufficiently large. Summing the inequalities yields:(
1

λ
− 1

λ′

)
φ(vν − zν)− 〈ξν , zν〉 ≤ α− β.

Due to the super-coercivity of φ, for ν →∞ this yields ∞ ≤ α− β, a contradiction.

Now we are ready to prove Lemma 3.4 invoking [22, Theorem 1.17]:

Lemma. Let f : Rm → R be proper lsc and φ-prox-bounded with threshold λf > 0. Then for any λ ∈ (0, λf ),

Pφλ f and eφλf have the following properties:

(i) Pφλ f(v) 6= ∅ is compact for all v ∈ dom eφλf = dom f + domφ, whereas Pφλ f(v) = ∅ for v /∈ dom eφλf .

(ii) The φ-envelope eφλf is continuous relative to dom eφλf .

(iii) For any sequence vν → v̄ contained in dom eφλf and zν ∈ Pφλ f(vν) we have {zν}ν∈N is bounded and all its

cluster points z̄ lie in Pφλ f(v̄).

Proof. Obviously it holds for the domain that dom eφλf = dom f +domφ. In view of Lemma A.2 (with ξ = 0) we
assert that h : (z, v) 7→ f(z) + 1

λφ(v − z) is level-bounded in z locally uniformly in v. Then we may invoke [22,

Theorem 1.17] to assert that Pφλ f(v) 6= ∅ is compact for any v ∈ dom eφλf whereas Pφλ f(v) = ∅ for v /∈ dom eφλf
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and in addition for any v̄ ∈ dom eφλf and any sequence zν ∈ Pφλ f(vν) with vν → v̄ contained in dom eφλf , that

{zν}ν∈N is bounded. Furthermore, as φ is continuous relative to its domain, we know for some z̄ ∈ Pφλ f(v̄) that
h(z̄, ·) is continuous relative to z̄ + domφ containing v̄. Through [22, Theorem 1.17] all cluster points of the

sequence zν ∈ Pφλ f(vν) lie in Pφλ f(v̄) and eφλf(vν) → eφλf(v̄) and therefore eφλf is continuous at v̄ relative to

dom eφλf . Since this holds for all v̄ ∈ dom eφλf , eφλf is continuous relative to dom eφλf .

A.2 Proof of Theorem 4.3

In order to prove the desired statement we need the following intermediate result. For the sake of notational
convenience recall the notion of Bregman distances as a short-hand notation for φ(w′)−φ(w)−〈∇φ(w), w′ − w〉:
Definition A.3 (Bregman distance). The φ-induced Bregman distance Bφ : Rm × Rm → R is defined by

Bφ(w′, w) =

{
φ(w′)− φ(w)− 〈∇φ(w), w′ − w〉 if w ∈ int(domφ)

+∞ otherwise.
(19)

Lemma A.4. Let f : Rm → R proper lsc and φ-prox-bounded with threshold λf . In addition assume that f is
finite and prox-regular at z̄ for ȳ ∈ ∂f(z̄) such that the subgradient inequality (11) is satisfied by constants r > 0
and ε > 0 and let v̄ ∈ z̄ + domφ. Then the following inequality holds for all z ∈ Rm and r1 ≥ max{r, λ−1

f }
sufficiently large:

f(z) ≥ f(z̄) + 〈ȳ, z − z̄〉 − r1Bφ(v̄−·)(z, z̄). (20)

Proof. By prox-regularity of f we know there exist r > 0 and ε > 0 such that the subgradient inequality

f(z) ≥ f(z̄) + 〈ȳ, z − z̄〉 − r

2
‖z − z̄‖2, (21)

holds for ‖z − z̄‖ < ε. By Assumption (A3) and [4, Proposition 2.10] we have that

Bφ(v̄−·)(z, z̄) = φ(v̄ − z)− φ(v̄ − z̄) + 〈∇φ(v̄ − z̄), z − z̄〉 ≥ µ

2
‖z − z̄‖2, (22)

for some µ > 0. Summing (21) and (22) yields (20), which holds for any z with ‖z − z̄‖ < ε and r1 ≥ r
µ . To

show the assertion we prove that (20) also holds for any z with ‖z − z̄‖ ≥ ε for r1 ≥ max{ rµ , λ−1
f } sufficiently

large. By φ-prox-boundedness it holds for λ ∈ (0, λf ) and v̄ ∈ dom eφλf that +∞ > eφλf(v̄) > −∞. We have

f(z) ≥ eφλf(v̄)− 1

λ
φ(v̄ − z), (23)

showing, that the desired inequality (20) is implied by

eφλf(v̄)− 1

λ
φ(v̄ − z) ≥ f(z̄) + 〈ȳ, z − z̄〉 − r1Bφ(v̄−·)(z, z̄),

which is equivalent to

(r1 − λ−1)Bφ(v̄−·)(z, z̄) ≥ f(z̄)− eφλf(v̄) + 〈ȳ, z − z̄〉+
1

λ
φ(v̄ − z̄)− 1

λ
〈∇φ(v̄ − z̄), z − z̄〉 ,

and (using Cauchy-Schwarz) implied by

(r1 − λ−1)
Bφ(v̄−·)(z, z̄)

‖z − z̄‖ ≥ f(z̄)− eφλf(v̄) + 1
λφ(v̄ − z̄)

‖z − z̄‖ + ‖ȳ − λ−1∇φ(v̄ − z̄)‖. (24)

Due to the super-coercivity of φ (24) holds for z with ‖z − z̄‖ ≥ γ for some γ > 0 sufficiently large. To make
(24) also hold for z with ε ≤ ‖z − z̄‖ < γ we can choose r1 > max{r, λ−1

f } sufficiently large as Bφ(v̄−·)(z, z̄) is
bounded away from zero, due to the strict convexity of φ(v̄ − ·).

Throughout the proof we work with graphical localizations of set-valued mappings F , which are constructed
graphically by intersecting the graph of F with some neighborhood of some reference point (z̄, ȳ) ∈ gphF :
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Definition A.5 (graphical localization). For F : Rm ⇒ Rn and a pair (z̄, ȳ) ∈ gphF , a graphical localization
of F at z̄ for ȳ is a set-valued mapping T such that

gphT = (U × V ) ∩ gphF

for some neighborhoods U of z̄ and V of ȳ, so that

T (z) :=

{
F (z) ∩ V if z ∈ U,
∅ otherwise.

(25)

In the proof of Theorem 4.3, we shall invoke the following generalized implicit function theorem specialized
from [11, Theorem 2B.7], originally due to Robinson [20] for analyzing the solutions of parametric variational
inequalities.

Theorem A.6 (generalized implicit function theorem). Consider a function G : Rm×Rm → Rm and a set-valued
map T : Rm ⇒ Rm with (v̄, z̄) ∈ int domG and 0 ∈ G(v̄, z̄) + T (z̄), and suppose that

l̂ipv(G; (v̄, z̄)) := lim sup
v,v′→v̄
z→z̄
v 6=v′

‖G(v, z)−G(v′, z)‖
‖v − v′‖ ≤ γ <∞.

Let H : Rm → Rm be a strict estimator of G w.r.t. z uniformly in v at (v̄, z̄) with constant µ, i.e.,

l̂ipz(e; (v̄, z̄)) ≤ µ <∞ for e(v, z) = G(v, z)−H(z).

Suppose that (H + T )−1 has a Lipschitz continuous single-valued localization around 0 for z̄ with modulus κ and
κµ < 1. Then the solution mapping

S : v ∈ Rm 7→ {z ∈ Rm : 0 ∈ G(v, z) + T (z)}

has a Lipschitz continuous single-valued localization around v̄ for z̄ with modulus κγ
1−κµ .

We are now ready to prove the desired statement Theorem 4.3:

Theorem. Let f : Rm → R proper lsc and φ-prox-bounded with threshold λf . Let v̄ ∈ z̄ + domφ. Then for any
λ ∈ (0, λf ) sufficiently small and f finite and prox-regular at z̄ for ȳ ∈ ∂f(z̄) with

ȳ =
1

λ
∇φ(v̄ − z̄)

the following statements hold true:

(i) Pφλ f is a singled-valued, Lipschitz map near v̄ such that z̄ = Pφλ f(v̄) and

Pφλ f(v) = (I +∇φ∗ ◦ λT )−1(v), (26)

where T is the f -attentive ε-localization of ∂f near (z̄, ȳ), i.e. the set-valued mapping T : Rm ⇒ Rm defined
by T (z) := {y ∈ ∂f(z) : ‖y − ȳ‖ < ε} if ‖z − z̄‖ < ε and f(z) < f(z̄) + ε, and T (z) := ∅ otherwise.

(ii) eφλf is Lipschitz differentiable around v̄ with

∇eφλf(v) =
1

λ
∇φ(v − z). (27)

Proof. (i) Due to the prox-regularity at z̄ for ȳ with constants ε > 0 and r > 0 and the φ-prox-boundedness of f
with threshold λf we can invoke Lemma A.4 to assert that for some λ ∈ (0,min{λf , r−1}) sufficiently small the
following inequality holds globally for all z 6= z̄:

f(z) +
1

λ
φ(v̄ − z) > f(z̄) +

1

λ
φ(v̄ − z̄) + 〈ȳ, z − z̄〉 − 1

λ
〈∇φ(v̄ − z̄), z − z̄〉 . (28)
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By assumption ȳ = 1
λ∇φ(v̄ − z̄) showing that

f(z′) +
1

λ
φ(v̄ − z′) > f(z̄) +

1

λ
φ(v̄ − z̄),

for any z′ 6= z̄. Therefore we can assert Pφλ f(v̄) = z̄.

Due to the φ-prox-boundedness of f and the coercivity of φ we can invoke Lemma A.2 to assert that h(z, v) :=

f(z) + 1
λφ(v − z) is level-bounded in z locally uniformly in v. By Lemma 3.4 it follows that Pφλ f(v) 6= ∅ for any

v ∈ dom eφλf . Furthermore, we assert, that for any sequence zν ∈ Pφλ f(vν), vν → v̄ we have {zν} is bounded and

all its cluster points lie in Pφλ f(v̄) = z̄, meaning zν → z̄ and eφλf(vν)→ eφλ(v̄). In addition, we have f(zν)→ f(z̄)

as eφλf(vν) = f(zν) + 1
λφ(vν − zν)→ eφλf(v̄) = f(z̄) + 1

λφ(v̄ − z̄). Overall this shows, that for any v, sufficiently

near v̄ we have z ∈ Pφλ f(v), ‖z − z̄‖ < ε, |f(z) − f(z̄)| < ε and ‖ 1
λ∇φ(v − z) − ȳ‖ < ε, due to the continuity of

∇φ on a neighborhood of v̄ − z̄. From applying Fermat’s rule [22, Theorem 10.1] to Pφλ f(v) we obtain

1

λ
∇φ(v − z) ∈ ∂f(z),

and we can assert that 1
λ∇φ(v − z) ∈ T (z) via the arguments above. This shows that

∅ 6= Pφλ f(v) ⊂
(
T − 1

λ
∇φ(v − ·)

)−1

(0), (29)

where ∂f is replaced by T . It is straightforward to verify, using the fact (∇φ)−1 = ∇φ∗ from Lemma 3.2, that(
T − 1

λ
∇φ(v − ·)

)−1

(0) = (I +∇φ∗ ◦ λT )−1(v).

We proceed showing that (I + ∇φ∗ ◦ λT )−1 is a single-valued Lipschitz map in a neighborhood of v̄. Via the

inclusion above this means that Pφλ f = (I +∇φ∗ ◦ λT )−1 on this neighborhood.

To this end, consider the function h : Rm×Rm×Rm → R defined via h(v, ξ, z) := f(z)+ 1
λφ(v−z)−〈ξ, z〉. In view

of Lemma A.2 we assert that h(v, ξ, z) is level-bounded in z locally uniformly in (v, ξ). Through [22, Theorem
1.17] we know that for any sequence ξν → 0 with infz∈Rm h(v̄, ξν , z) <∞ there is zν ∈ arg minz∈Rm h(v̄, ξν , z) 6= ∅
with zν → z̄ = arg minz∈Rm h(v̄, 0, z) = Pφλ f(v̄) and infz∈Rm h(v̄, ξν , z)→ infz∈Rm h(v̄, 0, z) = eφλf(v̄).

From applying Fermat’s rule [22, Theorem 10.1] to the minimization problem above we know that ξν + 1
λ∇φ(v̄−

zν) ∈ ∂f(zν) and for ν sufficiently large we have that ‖ξν+ 1
λ∇φ(v̄−zν)− ȳ‖ ≤ ε due to the continuity of ∇φ on a

neighborhood of v̄− z̄. In addition, we have f(zν)→ f(z̄) as infz∈Rm h(v̄, ξν , z) = f(zν)+ 1
λφ(v̄−zν)−〈ξν , zν〉 →

eφλf(v̄) = f(z̄) + 1
λφ(v̄ − z̄). Overall this means that for any ξ sufficiently near 0 we have:

ξ ∈ T (z)− 1

λ
∇φ(v̄ − z),

for some z near z̄, and ∂f is interchangeable with T .

Now pick any (z1, y1), (z2, y2) ∈ gphT . Then it follows from (11) that

f(z2) ≥ f(z1) +
〈
y1, z2 − z1

〉
− r

2
‖z2 − z1‖2, (30)

f(z1) ≥ f(z2) +
〈
y2, z1 − z2

〉
− r

2
‖z1 − z2‖2, (31)

and furthermore, due to Assumption (A3) and [4, Proposition 2.10] we have that

Bφ(v̄−·)(z
2, z1) = φ(v̄ − z2)− φ(v̄ − z1) +

〈
∇φ(v̄ − z1), z2 − z1

〉
≥ µ

2
‖z2 − z1‖2.

for some µ > 0. Then we have

φ(v̄ − z2) ≥ φ(v̄ − z1)−
〈
∇φ(v̄ − z1), z2 − z1

〉
+
µ

2
‖z2 − z1‖2, (32)

φ(v̄ − z1) ≥ φ(v̄ − z2)−
〈
∇φ(v̄ − z2), z1 − z2

〉
+
µ

2
‖z1 − z2‖2. (33)
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Summing the four inequalities yields for ξ1 := y1 − 1
λ∇φ(v̄ − z1) and ξ2 := y2 − 1

λ∇φ(v̄ − z2):〈
z1 − z2, ξ1 − ξ2

〉
≥ (µλ − r)‖z1 − z2‖2, (34)

Consequently, the map T − 1
λ∇φ(v̄ − ·) is (µλ − r)-strongly monotone.

Define H(z) := − 1
λ∇φ(v̄− z), G(v, z) := − 1

λ∇φ(v− z) and e(v, z) := G(v, z)−H(z). Then the above argument

implies that ξ 7→ (T +H)
−1

(ξ) is a single-valued, (µλ − r)−1-Lipschitz map in a neighbourhood of 0 such that
0 ∈ T (z̄) + G(v̄, z̄). Due to Assumption (A3) and [4, Proposition 2.10] ∇φ is Lipschitz on a neighbourhood of

v̄ − z̄ ∈ int domφ and we may conclude that l̂ipv(G; (v̄, z̄)) and l̂ipz(e; (v̄, z̄)) are finite. This implies that H
is a strict estimator of G w.r.t. z uniformly in v at (v̄, z̄) ∈ int domG. Invoking Theorem A.6, we assert that

v 7→ {z ∈ Rm : 0 ∈ G(v, z) + T (z)} has a single-valued, Lipschitz localization around v̄ for z̄. Since z̄ = Pφλ f(v̄)

is single-valued at v̄ and for any v near v̄ and z ∈ Pφλ f(v) it holds that z is near z̄, we may conclude that

Pφλ f(v) = {z ∈ Rm : 0 ∈ G(v, z) + T (z)} is single-valued and Lipschitz on a neighborhood of v̄.

(ii) Let (z, v), (z′, v′) be sufficiently close to (z̄, v̄) with z = Pφλ f(v), z′ = Pφλ f(v′). Then, by Fermat’s rule
[22, Theorem 10.1] it holds y ∈ ∂f(z) such that y = 1

λ∇φ(v − z). Furthermore, by assumption the subgradient
inequality (11) holds true at (z, y) ∈ gphT . This means in particular that y is a proximal subgradient [22,

Definition 8.45] of f at z. In view of [22, Proposition 8.46 (e)], we assert y ∈ ∂̂f(z). Thus (and using the
differentiability of φ on domφ) one can derive

eφλf(v′)− eφλf(v) = f(z′)− f(z) +
1

λ
φ(v′ − z′)− 1

λ
φ(v − z)

≥ 〈y, z′ − z〉+ o(‖z′ − z‖) +
1

λ
〈∇φ(v − z), (v′ − v)− (z′ − z)〉+ o(‖(v′ − v)− (z′ − z)‖).

(35)

Using the conclusion from (i) that v 7→ z is a Lipschitz map near v̄ there is some α such that

‖z′ − z‖ ≤ α‖v′ − v‖.

This shows that o(‖(v′ − v)− (z′ − z)‖) + o(‖z′ − z‖) = o(‖v′ − v‖) and we get from (35) that

eφλf(v′)− eφλf(v)− 1

λ
〈∇φ(v − z), v′ − v〉 ≥ o(‖v′ − v‖). (36)

On the other hand, we have

eφλf(v′) = inf
z′′
f(z′′) +

1

λ
φ(v′ − z′′) ≤ f(z) +

1

λ
φ(v′ − z). (37)

Due to the differentiability of φ, we have

φ(v′ − z) = φ(v − z) + 〈∇φ(v − z), v′ − v〉+ o(‖v′ − v‖). (38)

This yields

eφλf(v′)− eφλf(v) ≤ f(z) +
1

λ
φ(v′ − z)− f(z)− 1

λ
φ(v − z)

=
1

λ
〈∇φ(v − z), v′ − v〉+ o(‖v′ − v‖). (39)

Combining (36) and (39), we conclude that eφλf is differentiable at v and 1
λ∇φ(v − z) = ∇eφλf(v). Since

furthermore ∇φ is Lipschitz around v̄ − z̄ it holds that ∇eφλf is the composition of two locally Lipschitz maps
and therefore Lipschitz around v̄.
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