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1 Theory

Proof (Proof of Proposition 1). By definition the biconjugate of ρ is given as

ρ∗∗(u) = sup
v∈R|V|

〈u,v〉 −
(

min
1≤i≤|T |

ρi(v)

)∗
= sup
v∈R|V|

〈u,v〉 − max
1≤i≤|T |

ρ∗i (v).
(1)

We proceed computing the conjugate of ρi:

ρ∗i (v) = sup
u∈R|V|

〈u,v〉 − ρi(u)

= sup
α∈∆U

n+1

〈Eiα,v〉 − ρ (Tiα) ,
(2)

We introduce the substitution r := Tiα ∈ ∆i and obtain

α = K−1i

(
r

1

)
, Ki :=

(
Ti

1>

)
∈ Rn+1×n+1, (3)

sinceKi is invertible for (V, T ) being a non-degenerate triangulation and
∑n+1
j=1 αj =

1. With this we can further rewrite the conjugate as

. . . = sup
r∈∆i

〈Air + bi, E
>
i v〉 − ρ(r)

= 〈Eibi,v〉+ sup
r∈Rn

〈r,A>i E>i v〉 − ρ(r)− δ∆i(r)

= 〈Eibi,v〉+ ρ∗i (A
>
i E
>
i v).

(4)

? These authors contributed equally.
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Proof (Proof of Proposition 2). Define Ψ i,j as

Ψ i,j(p) :=

‖Tiα− Tjβ‖ · ‖ν‖ if p = (Eiα− Ejβ)ν>, α, β ∈ ∆U
n+1, ν ∈ Rd,

∞ otherwise.

(5)

Then, Ψ can be rewritten as a pointwise minimum over the individual Ψ i,j

Ψ(p) = min
1≤i,j≤|T |

Ψ i,j(p). (6)

We begin computing the conjugate of Ψ i,j

Ψ∗i,j(q) = sup
p∈Rd×|V|

〈p, q〉 − Ψ i,j(p)

= sup
α,β∈∆U

n+1

sup
ν∈Rd

〈Qiα−Qjβ, ν〉 − ‖Tiα− Tjβ‖ · ‖ν‖

= sup
α,β∈∆U

n+1

(‖Tiα− Tjβ‖ · ‖ · ‖)∗ (Qiα−Qjβ)

= δKi,j (q),

(7)

with the set Ki,j being defined as

Ki,j :=
{
q ∈ Rd×|V|

∣∣ ‖Qiα−Qjβ‖ ≤ ‖Tiα− Tjβ‖, α, β ∈ ∆U
n+1

}
. (8)

Since the maximum over indicator functions of sets is equal to the indicator

function of the intersection of the sets we obtain for Ψ∗

Ψ∗(q) = max
1≤i,j≤|T |

Ψ∗i,j(q)

= δK(q).
(9)

Proof (Proof of Proposition 3). Let q ∈ Rd×|V| s.t. ‖Qiα−Qjβ‖ ≤ ‖Tiα− Tjβ‖
for all α, β ∈ ∆U

n+1 and 1 ≤ i, j ≤ |T |. For any 1 ≤ i ≤ |T | define

fi : Rn → Rn,

(α1, ..., αn) 7→
n∑
l=1

αlt
il + (1−

n∑
l=1

αl)t
in+1 = Tiα,

(10)

and analogously

gi : Rn → R|V|

(α1, ..., αn) 7→
n∑
l=1

αlq
il + (1−

n∑
l=1

αl)q
in+1 = Qiα.

(11)
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Fig. 1: Figure illustrating the second direction of the proof of Proposition 4. The

gray dots and lines visualize the triangulation (V, T ). The line segment between

Tiα and Tjβ is composed of shorter line segments which are fully contained in

one of the triangles. On each of the triangles the inequality (15) holds, which

allows to conclude that it holds for the whole line segment.

Let us choose an α ∈ Rn such that αi > 0,
∑
l αl < 1. Then ‖Qiα − Qjβ‖ ≤

‖Tiα− Tjβ‖ for all α, β ∈ ∆U
n+1 and 1 ≤ i, j ≤ |T | implies that

‖gi(α)− gi(α− h)‖ ≤ ‖fi(α)− fi(α− h)‖, (12)

holds for all vectors h with sufficiently small entries. Inserting the definitions of

gi and fi we find that

‖QiDh‖ ≤ ‖TiDh‖ (13)

holds for all h with sufficiently small entries. For a non-degenerate triangle, TiD

is invertible and a simple substitution yields that

‖QiD(TiD)−1h̃‖2 ≤ ‖h̃‖, (14)

holds for all h̃ with sufficiently small entries. This means that the operator norm

of Di
q induced by the `2 norm, i.e. the S∞ norm, is bounded by one.

Let us now show the other direction. For q ∈ Rd×|V| s.t.
∥∥Di

q

∥∥
S∞
≤ 1, 1 ≤

i ≤ |T |, note that inverting the above computation immediately yields that

‖Qkα−Qkβ‖ ≤ ‖Tkα− Tkβ‖ (15)
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holds for all 1 ≤ k ≤ |T |, α, β ∈ ∆U
n+1. Our goal is to show that having this

inequality on each simplex is sufficient to extend it to arbitrary pairs of simplices.

The overall idea of this part of the proof is illustrated in Fig. 1.

Let 1 ≤ i, j ≤ |T | and α, β ∈ Rn with αl, βl ≥ 0,
∑
l αl ≤

∑
l βl ≤ 1 be given.

Consider the line segment

c(γ) : [0, 1]→ Rd

γ 7→ γ Tjβ + (1− γ)Tiα.
(16)

Since the triangulated domain is convex, there exist 0 = a0 < a1 < . . . < ar = 1

and functions αl(γ) such that for γ ∈ [al, al+1], 0 ≤ l ≤ r − 1 one can write

c(γ) = γ Tjβ + (1 − γ)Tiα = Tklαl(γ) for some 1 ≤ kl ≤ T . The continuity

of c(γ) implies that Tklαl(al+1) = Tkl+1
αl+1(al+1), i.e. these points correspond

to both simplices, kl and kl+1. Note that this also means that Qklαl(al+1) =

Qkl+1
αl+1(al+1). The intuition of this construction is that the c(al+1) are located

on the boundaries of adjacent simplices on the line segment. We find

‖Tiα− Tjβ‖ =

r−1∑
l=0

(al+1 − al)‖Tiα− Tjβ‖

=

r−1∑
l=0

‖(al+1 − al)(Tiα− Tjβ)‖

=

r−1∑
l=0

‖al+1Tiα− alTiα− al+1Tjβ + alTjβ‖

=

r−1∑
l=0

‖alTjβ + (1− al)Tiα− (al+1Tjβ + (1− al+1)Tiα)‖

=

r−1∑
l=0

‖Tklαl(al)− Tklαl(al+1)‖

(15)

≥
r−1∑
l=0

‖Qklαl(al)−Qklαl(al+1)‖

≥
∥∥∥∥∥
r−1∑
l=0

(Qklαl(al)−Qklαl(al+1))

∥∥∥∥∥
=

∥∥∥∥∥
r−1∑
l=0

(Qklαl(al)−Qkl+1
αl+1(al+1))

∥∥∥∥∥
= ‖Qk0α0(a0)−Qkrαr(ar)‖
= ‖Qiα−Qjβ‖ ,

(17)

which yields the assertion.
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Proof (Proof of Proposition 4). Let ∆ = conv{t1, . . . , tn+1} be given by affinely

independent vertices ti ∈ Rn. We show that our lifting approach applied to

the label space ∆ solves the convexified unlifted problem, where the dataterm

was replaced by its convex hull on ∆. Let the matrices T ∈ Rn×(n+1) and

D ∈ R(n+1)×n be defined through

T =
(
t1, . . . , tn+1

)
, D =


1

. . .

1

−1 . . . −1

 , TD =
(
t1 − tn+1, . . . , tn − tn+1

)
,

(18)

The transformation x 7→ tn+1 +TDx maps ∆e = conv{0, e1, . . . , en} ⊂ Rn to ∆.

Now consider the following lifted function u : Ω → Rn+1 parametrized through

ũ : Ω → ∆e:

u(x) =
(
ũ1(x), . . . , ũn(x), 1−∑n

j=1 ũj(x)
)
. (19)

Consider a fixed x ∈ Ω. Plugging this lifted representation into the biconjugate

of the lifted dataterm ρ yields:

ρ∗∗(u) = sup
v∈Rn+1

〈u,v〉 − sup
α∈∆U

n+1

〈α,v〉 − ρ(Tα)

= sup
v∈Rn+1

〈ũ1(x), . . . , ũn(x), 1−
n∑
j=1

ũj(x)

 ,v

〉
−

sup
α∈∆U

n+1

〈α,v〉 − ρ(Tα)

= sup
v∈Rn+1

〈ũ, D>v〉+ vn+1−

sup
α∈∆U

n+1

〈α1, . . . , αn, 1−
n∑
j=1

αj

 ,v

〉
−

ρ

 n∑
j=1

αjt
j +

1−
n∑
j=1

αj

 tn+1


= sup
v∈Rn+1

〈ũ, D>v〉+ vn+1 − sup
α∈∆U

n+1

vn+1 + 〈α,D>v〉 − ρ(tn+1 + TDα)

(20)

Since D> is surjective, we can apply the substitution ṽ = D>v:

. . . = sup
ṽ∈Rn

〈ũ, ṽ〉 − sup
α∈∆U

n+1

〈α, ṽ〉 − ρ(tn+1 + TDα)

= sup
ṽ∈Rn

〈ũ, ṽ〉 − sup
w∈∆

〈(TD)−1(w − tn+1), ṽ〉 − ρ(w).
(21)
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In the last step the substitution w = tn+1 +TDα⇔ α = (TD)−1(w− tn+1) was

performed. This can be further simplified to

. . . = sup
ṽ∈Rn

〈ũ, ṽ〉+ 〈(TD)−1tn+1, ṽ〉 − (ρ+ δ∆)∗((TD)−T ṽ)

= sup
ṽ∈Rn

〈ũ+ (TD)−1tn+1, ṽ〉 − (ρ+ δ∆)∗((TD)−T ṽ)

= sup
ṽ∈Rn

〈TDũ+ tn+1, (TD)−T ṽ〉 − (ρ+ δ∆)∗((TD)−T ṽ).

(22)

Since TD is invertible we can perform another substitution v′ = (TD)−T ṽ.

. . . = sup
v′∈Rn

〈TDũ+ tn+1, v′〉 − (ρ+ δ∆)∗(v′)

= (ρ+ δ∆)∗∗(tn+1 + TDũ).
(23)

The lifted regularizer is given as:

R(u) = sup
q:Ω→Rd×n+1

∫
Ω

〈u,Div q〉 − Ψ∗(q) dx (24)

Using the parametrization by ũ, this can be equivalently written as

sup
q(x)∈K

∫
Ω

n∑
j=1

ũj Div(qj − qn+1) + Div qn+1 dx, (25)

where the set K ⊂ Rd×n+1 can be written as

K = {q ∈ Rd×n+1 | ‖D>q>(TD)−1‖S∞ ≤ 1}. (26)

Note that since qn+1 ∈ C∞c (Ω,Rd), the last term Div qn+1 in (25) vanishes by

partial integration. With the substituion q̃(x) = D>q(x)> we have

sup
q̃∈K̃

∫
Ω

〈ũ,Div q̃〉 dx, (27)

with set K̃ ⊂ Rd×n:

K̃ = {q ∈ Rd×n | ‖q(TD)−1‖S∞ ≤ 1}. (28)

Note that since qi ∈ C∞c (Ω,Rd), the same holds for the linearly transformed q̃.

With another substituion q′(x) = q̃(x)(TD)−1 we have

· · · = sup
q′∈K′

∫
Ω

〈ũ,Div q′TD〉 dx

= sup
q′∈K′

∫
Ω

〈TDũ,Div q′〉 dx

(29)
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Input image Mean µ Variance σ

Fig. 2: Joint estimation of mean and variance. Our formulation can optimize

difficult nonconvex joint optimization problems with continuous label spaces.

where the set K′ ⊂ Rd×n+1 is given as

K′ = {q ∈ Rd×n | ‖q‖S∞ ≤ 1}, (30)

which is the usual unlifted definition of the total variation TV (tn+1 + TDũ).

This shows that the lifting method solves

min
ũ:Ω→∆e

∫
Ω

(ρ(x, ·) + δ∆)∗∗(tn+1 + TDũ(x))dx+ λTV (tn+1 + TDũ), (31)

which is equivalent to the original problem but with a convexified data term.

2 Additional Experiment: Adaptive Denoising

In this experiment we jointly estimate the mean µ and variance σ of an image

I : Ω → R according to a Gaussian model. The label space is chosen as Γ =

[0, 255]× [1, 10] and the dataterm as proposed in [1]:

ρ(x, µ(x), σ(x)) =
(µ(x)− I(x))2

2σ(x)2
+

1

2
log(2πσ(x)2). (32)

As the projection onto the epigraph of (ρ + δ∆)∗ seems difficult to compute,

we approximate ρ by a piecewise linear function using 29 × 29 sublabels and

convexify it using the quickhull algorithm [2]. In Fig. 2 we show the result of

minimizing (32) with total variation regularization.
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