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Abstract. Variational techniques are a popular approach for recon-
structing the surface of an object. In previous work, the surface is repre-
sented either implicitly by the use of level sets or explicitly as a triangle
mesh. In this paper we describe new formulations and develop fast algo-
rithms for surface reconstruction based on partial differential equations
(PDEs) derived from variational calculus using an explicit, purely point-
based surface representation. The method is based on a Moving Least-
Squares surface approximation of the sample points. Our new approach
automatically copes with complicated topology and deformations, with-
out the need for explicit treatment. In contrast to level sets, it requires
no postprocessing, easily adapts to varying spatial resolutions and is in-
variant under rigid body motion. We demonstrate the versatility of our
method using several synthetic data sets and show how our technique
can be used to reconstruct object surfaces from real-world multi-view
footage.

1 Introduction

Many interesting problems in computer vision can be formulated as minimi-
sation problems of an energy functional given as a surface or curve integral
over a scalar-valued weight function. The variational formulation of these kinds
of problems lead to a curve or surface evolution PDE. Among the well-known
variational methods successfully applied in computer vision are Geodesic Active
Contours [3]. While originally designed for segmentation of objects in 2D it can
be easily generalised to 3D [4]. Caselles et al., Zhao et al. and Savadijev et al.
use this approach to model surfaces from unstructured point clouds [4,22,19].
Geodesic active contours were also employed for the detection and tracking of
moving objects in 2D [16]. Furthermore, minimal surfaces may be employed for
3D reconstruction of static objects from multiple views, as proposed by Faugeras
and Keriven [6].
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All of these problems fit into one unifying framework [9]. There, a mathemat-
ical analysis of weighted minimal hypersurfaces is given in arbitrary dimension
and for a general class of weight functions. An Euler-Lagrange equation is derived
that yields the necessary minimality condition. As an application example, the
static 3D reconstruction of a surface is generalised towards a global space-time re-
construction of the evolving surface [8]. A common feature of the aforementioned
approaches is that object geometry is implicitly defined as the zero level-set of
a function extending over the entire space. For an explicit representation, the
object shape has to be extracted using marching-cube-like techniques [15] in a
post-processing stage.

In contrast to the Eulerian approach, Duan et al. propose a PDE-based de-
formable model that takes the Lagrangian approach [5], i.e., shape and topology
of the deformable object is always explicitly represented throughout the compu-
tation. The surface is typically represented as a triangle mesh. This model is used
for surface reconstruction from volumetric images, point clouds and reconstruc-
tion from 2D multiple views. Goldlücke and Magnor recently also incorporated
an explicit surface representation into their framework for space-time coherent
reconstruction [7]. While this technique to solve PDEs directly yields an explicit
representation of the solution, the topology information encoded in the mesh
connectivity requires explicit handling when the surface topology changes. Com-
plex local mesh operations such as the deletion and creation of edges, faces, or
vertices render this approach hard to implement robustly.

Recently, purely point-based models have gained increasing popularity in tra-
ditional computer graphics as well as in the field of geometric modelling. Those
models offer great flexibility since they neither store, nor have to maintain,
any connectivity information. In this paper, we make use of this new modelling
paradigm in the context of computer vision. Specially, we apply point-based ge-
ometry representation to the problem of PDE-based surface reconstruction. We
unite several algorithms for point-based geometry processing under a common
framework for PDE-based surface evolution. Our approach combines the im-
plicit recovery of the surface topology inherent to level sets with the flexibility of
a point based geometry representation stemming from the lack of connectivity
information. In particular, our point-based PDE solver does not require any post-
processing nor explicit handling of topology changes and easily adapts to varying
spatial resolutions. Moreover, it is also invariant under rigid body motion while
level sets are vulnerable to numerical diffusion under such circumstances.

The rest of this paper is organised as follows: Section 2 reviews some pre-
requisites concerning point-based geometry representation that are at the very
heart of our work. In Sect. 3, we briefly review the mathematical framework
of weighted minimal hypersurfaces and introduce our PDE-based surface recon-
struction algorithm. We apply it to the problem of reconstructing surfaces from
unstructured point clouds and deal with the problem of surface reconstruction
from multiple views in Sect. 4. Section 5 concludes our work and presents some
ideas for future work.
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2 Review of Point-Based Models

This section briefly summarises some well-known algorithms from point-based
modelling. Each of these algorithms is designed for its very special purpose,
for example normal estimation or outlier detection. In the following sections,
we unite them under a common framework for PDE-based surface evolution on
point-based models.

Point Sample Neighbourhood and Normal Estimation. Our surface
representation consists of an unstructured point cloud P in 3D space, made up
of n oriented disks that describe an underlying manifold surface S. Contrary
to polygonal representations, in a point-based setting all local computations are
based on spatial proximity between samples, instead of geodesic proximity and
the known connections between mesh vertices. For dense samples and small Eu-
clidean neighbourhoods, both notions are similar [2]. Geodesic neighbourhoods
are proposed by Klein and Zachmann [12]. While this work more reliably es-
timates topologically correct neighbours, it is only applicable to static point
sets since the computational cost for building the underlying datastructures is
too high for the applications we have in mind. Therefore, our neighbourhood
structure relies on the notion of the k-nearest neighbours with respect to the
Euclidean distance, denoted Nk, which was already successfully used in [18].

This neighbourhood structure can be computed efficiently using a hierarchical
space partitioning technique, for example kD-trees.

Since normal vectors are not necessarily given a-priori or may change if the
shape of the model changes, they have to be estimated by analysing the local
neighbourhood of a sample point. As has been demonstrated in [11], a surface
normal can then be estimated by performing an eigenanalysis of the covariance
matrix of the local neighbourhood Nk. The eigenvector with the smallest eigen-
value defines the least-squares plane through the centroid of the neighbourhood
Nk and can therefore serve as an approximation to the local surface normal.

MLS Projection. The set of oriented disks defining our model does not pro-
vide a mathematically smooth surface definition. To compute a smooth surface
that approximates the sample points P , Levin [13,14] introduces a projection
operator based on a Moving Least-Squares (MLS) optimisation. This approach
has first been applied to point-based geometry in R

3 by Alexa et al. [1]. The MLS
projection takes a point r in space and projects it onto a polynomial that locally
approximates the underlying surface in the vicinity of r. The computation of the
polynomial can be split in two steps. First of all, a reference plane H is fitted to
the surface samples around r using a weighted least-squares optimisation. This
reference plane provides a local parameterisation of the sample points and is
used in a second least-squares fit to compute a bivariate polynomial. A global
approximation is built by blending the local polynomials.

Both the computation of the reference domain and the polynomial approxima-
tion employ a radially symmetric Gaussian weighting function θ(d) = e−d2/h2

.
The parameter h corresponds to the anticipated spacing between neighbouring
samples. In what follows, we always adapt the bandwidth to the local sampling
density of the surface as proposed in [17].
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Surface Refinement. The quality of the surface reconstruction from an
unstructured point set heavily depends on the sampling density of the point
set. If the object is undersampled, the reconstructed surface will not be able
to recover details present in the original object. Based on the surface definition
reviewed in the preceding paragraph, several methods for up- and downsampling
of point sets have been proposed [1,17,18]. However, these methods are expensive
due to the nature of the projection operator and typically generate oversampling.
An algorithm that overcomes these problems was proposed by Guennebaud et
al. [10]. We employ this method in our framework to ensure a sufficient sampling
density.

To achieve a uniform distribution of all samples, we let neighbouring point
samples repel each other. We use an algorithm for point relaxation introduced
by Turk [20] for resampling a surface defined by polygons. This approach has
been adapted to point-based geometries by Pauly et al. [17].

Outlier Detection. Noise and outliers are almost always present in a point-
sampled geometry. Weyrich et al. proposed a set of fast heuristics to detect
outliers in point sets [21]. The underlying criteria all deliver an estimator χ(p) ∈
[0, 1] which specifies the likelihood for a point sample p to be an outlier. All
criteria are solely based on the analysis of the k-nearest neighbours Nk of p.
The final classification is then computed as a weighted average of the heuristics.
The weighting of the criteria depends on the type of the underlying surface. We
refer the interested reader to [21] for details on this.

Overview. In the next section, we integrate the point-based graphics tools
reviewed in this section in a framework for PDE-based surface evolution algo-
rithms. Using the point-based models, it is easier and more elegant to obtain a
solution to these evolutions. In particular, our approach overcomes the need to
keep the surface in a consistent manifold state as it is the case with evolution
algorithms based on triangle meshes. Moreover, compared to implicit level set
representations, the point-based surface easily adapts to varying spatial resolu-
tions and may readily be rendered without the need for prior surface extraction.

3 PDE-Based Surface Reconstruction and Point-Based
Models

We now turn to the mathematical framework we build our work upon. In [9], a
mathematical analysis of weighted minimal hypersurfaces is given in arbitrary
dimension and for a general class of weight functions. The aim is to find a k-
dimensional regular hypersurface Σ ⊂ R

n which minimises the energy functional

A(Σ) :=
∫

Σ

Φ(s)dA(s). (1)

We restrict the weight function Φ to depend solely on the surface point s. The
necessary condition for a surface to be a minimum of this functional is to satisfy
the Euler-Lagrange equation

Ψ := 〈Φs,n〉 − Tr(S), (2)
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where S is the shape operator of the surface. The result presented in [9] is more
general in that the weight function may also depend on the surface normal n.
We do not consider this general case in this paper.

One of the fundamental questions in practise is how to solve the Euler-
Lagrange equation (2). Only in a very limited number of simple cases can an
analytic solution be derived directly. In all other cases, one has to numerically
solve the surface evolution equation

∂

∂τ
Στ = Ψn, (3)

where Στ represents the surface Σ ⊂ R
n and τ is the evolution parameter. If

we start with an initial surface Σ0 and let it evolve using (3), it will eventually
converge to a steady state, yielding a solution to the Euler-Lagrange equation.

We will now present our framework to solve (3) using a point-based approach.
For validation, we first test our solver with a surface reconstruction from unor-
ganised 3D sample points, which are distributed on synthetic objects whose
geometry is precisely known. Our reconstruction technique and error function is
similar to the work of Zhao et al. [22] and Caselles et al. [4], yet we are using the
more general framework of Goldlücke and Magnor [9]. The target point cloud
defines a point-based model in the sense of Sect. 2, and our surface evolution is
implemented using a purely point-based model as well.

The error functional is modelled as the signed distance function D(s) for each
surface sample s of the evolving surface to the closest point t on the target
surface:

A(Σ) :=
∫

Σ

Φ(s)dA(s), (4)

where Φ(s) := D(s). (5)

The signed distance D(s) from an arbitrary point s ∈ R
3 to a known surface Σ is

the distance between s and the closest point t ∈ Σ, multiplied by ±1, depending
on which side of the surface s lies. In a point-based setting, the distance is hence
computed as

D(s) = (s − t) · nt, (6)

that is the normal component of the distance to the closest point on the target
surface. In fact, we compute the signed distance function of s to a local tangent
plane in t. Since our surface Σ is closed, this simple rule works well.

According to [5], we add an extra term to (3), yielding

∂

∂τ
Στ = [vΦ + 〈Φs,n〉 − Tr(S)Φ]n. (7)

The term vΦ allows the model to capture arbitrary non-convex shapes and avoids
that the model gets stuck into local minima during deformation. v is a constant
velocity. Using Euler integration, we yield the following iterative formulation of
the evolution process:

pτ+∆ = pτ + ∆Ψnp, (8)
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Fig. 1. Evolution on triangle meshes compared to evolution in a point-based setting.
The evolution force Ψ (red vector) has to be distributed to the neighbouring sample
points to achieve a behaviour comparable to triangle meshes. The dashed line illustrates
the idealised MLS approximation of the sample points.

where pτ denotes the position of the surface point of the deformable model Στ

at time instant τ and np its normal. ∆ denotes the time step and may be used
to control the evolution speed.

We approximate the value Tr(S) in (7) by the mean curvature values ob-
tained from the MLS approximation presented in Sect. 2. Likewise, 〈Φs,n〉 is
approximated using fourth-order accurate central differences. Therefore, we first
compute the one-ring neighbourhood of a sample s and displace the entire neigh-
bourhood structure by a fixed amount in positive and negative normal direction.
Since the evolution along the signed distance function does not yield a uniform
point distribution and, moreover, often produces undersampled regions, we ap-
ply the upsampling scheme in combination with the point relaxation introduced
in Sect. 2 to the evolving surface to ensure a good surface approximation in the
next iteration. Moreover, we detect outliers that originate from an overshoot-
ing evolution force using the heuristics introduced in Sect. 2 to avoid incorrect
normals and curvature values. Since the evolution is based on these values, er-
rors would else amplify during the iterative process. Compared to evolutions
on triangle meshes, we have to take care that the per-point evolution force Ψ
also affects the sample points in a small neighbourhood, Fig. 1. By weighting
the forces using a Gaussian kernel, we are able to mimic an evolution behaviour
similar to triangle meshes.

4 Results and Applications

We validate our point-based approach using several models. As a first step, we
choose a model of a torus that requires an explicit topology change, Fig. 2.
The surface topology is recovered implicitly by the MLS surface approximation
without the need for additional operations. Using an explicit surface representa-
tion with connectivity information such as triangle meshes would have required
complex local mesh operations which render this approach hard to implement
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(a) Σ10 (b) Σ15 (c) Σ20

Fig. 2. Shape recovery with implicit topology change. The initial point surface Σ0 was
a sphere surrounding the target surface.

(a) Original Igea (134345
samples)

(b) Reconstructed Igea
(160700 samples) using 25
neighbours

(c) Reconstructed Igea
(160700 samples) using 80
neighbours

Fig. 3. Reconstruction with varying spatial resolutions: The original model is shown
on the left, a reconstruction based on a small neighbourhood is depicted in the middle.
The reconstruction on the right uses a larger neighbourhood. The initial points are
distributed on an sphere enclosing the geometry.

robustly. Figure 3 shows the results of the evolution on a more complex model. It
also shows the adaptivity of the point-based model to different spatial resolutions
by a varying interpolation radius, determined by the size of the neighbourhood
structure. Higher spatial resolutions are easily obtained by placing more sam-
ple points in the desired regions. Grid-based level sets on the contrary require
a more complex restructuring of the underlying grid. In both cases, the initial
point surface Σ0 was an appropriately scaled sphere surrounding the object.

In a second step, we use our point-based PDE solver to reconstruct real-world
object geometry from multiple 2D images. First, however, we need some addi-
tional notation for colour and visibility of surface samples. Let Ik denote the
image associated with camera k. Each camera projects the scene onto the image
plane via a fixed projection of the form πk : R

3 → R
2. Then, Ik ◦ πk(s) denotes

the colour of the projection of s into the image taken by camera k. For each sur-
face point s ∈ R

3, let νk(s) denote whether s is visible in camera k in the presence
of a surface Σ or not. An error measure, taking care of photo-consistency of the
evolving surface with the input images, can now be defined as
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ΦC(s) :=
1

|Vs|(|Vs| − 1)

l∑
i,j=1

νi(s)νj(s) · χi,j(s,Nk) (9)

χi,j(s,Nk) :=
1

|Nk|
∑

q∈Nk

((Ii ◦ πi)(q) − ĪNk
i ) · ((Ii ◦ πi)(q) − ĪNk

i ). (10)

ĪNk
i denotes the mean colour value in the k-neighbourhood Nk of a surface

sample. This functional is a reasonable discretization of the error functional in-
troduced in [9] for point-based models.

Using this definition of the error functional, we are able to reconstruct the
surface of an object given multiple views. We test our method on multi-view
footage of a dancer, recorded from 8 cameras distributed around the scene. All
input images are segmented into foreground and background using a thresholding
technique. The results obtained with our point-based approach on a fixed frame
of the dancer sequence are shown in Fig. 4. Our point-based PDE solver clearly
smoothes the initial surface Σ0 obtained from a space-carving approach and
improves photo-consistency. Compared to the approach taken in [8], the use of a
point-based model gives comparable results at lower implementation complexity
since explicit handling of topology changes is completely avoided.

5 Summary and Conclusions

In this paper, we have introduced a purely point-based technique to reconstruct
explicit surfaces from implicit PDE definition. We demonstrated that this rep-
resentation in combination with the powerful Moving Least-Squares surface ap-
proximation unites the advantages of a level set-based representation, i.e., im-
plicit recovery of surface topology, with direct accessibility of an explicit model
based on triangle meshes. Our representation does not depend on an underlying
grid-structure and hence easily adapts to varying spatial resolutions and is invari-
ant under rigid body motions. We showed the general applicability of point-based
geometry representation to surface reconstruction using synthetic data sets as
well as real-world data. Compared to a direct representation based on triangle
meshes, the point-based model used in our work is more flexible, especially when
topology changes are involved. It is thus the more natural choice for iterative
surface evolution. Compared to level set-based surface representations, the point-
based models are far less memory-consuming. Our, yet unoptimised, point-based
implementation already outperforms a similar implementation using level sets.

We believe that with growing interest in point-based models in the research
community, the flexibility of this surface representation will be exploited for vari-
ous tasks in computer vision. One could, for example, extend the implementation
of reconstruction from multiple views described in Sect. 4 to reconstructions in
space-time as has been outlined in [7,8]. Furthermore, a detailed analysis of
the convergence properties and a quantification of the approximation quality
as compared to grid-based level sets would be helpful. Also, the computational
complexity of our approach needs more investigation.
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(a) Initial model

(b) Final result after 180 iterations

Fig. 4. Initial and final point set for a fixed frame, coloured with per-point colour
information derived from the best two cameras. Photo-consistency has clearly improved
in the final result as can be judged by the decrease of black and grey areas on the arms
of the dancer.
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7. Bastian Goldlücke and Marcus Magnor. Spacetime-continuous Geometry Meshes
from Multiple-View Video Sequences. In Proc. IEEE International Conference on
Image Processing (ICIP’05), Genoa, Italy, 2005. accepted.

8. Bastian Goldluecke and Marcus Magnor. Space-time isosurface evolution for tem-
porally coherent 3d reconstruction. In Proc. CVPR, volume I, pages 350–355,
Washington, D.C., USA, July 2004.

9. Bastian Goldluecke and Marcus Magnor. Weighted minimal hypersurfaces and
their applications in computer vision. In Proc. ECCV (2), volume 3022 of Lecture
Notes in Computer Science, pages 366–378. Springer, 2004.

10. Gael Guennebaud, Loc Barthe, and Mathias Paulin. Real-Time Point Cloud Re-
finement. In Symposium on Point-Based Graphics, pages 41–49, 2004.

11. Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuet-
zle. Surface reconstruction from unorganized points. In Proc. SIGGRAPH ’92,
pages 71–78. ACM Press, 1992.

12. Jan Klein and Gabriel Zachmann. Point Cloud Surfaces using Geometric Proximity
Graphs. Computers & Graphics, 28(6):839–850, 2004.

13. David Levin. The approximation power of moving least-squares. Math. Comput.,
67(224):1517–1531, 1998.

14. David Levin. Mesh-independent surface interpolation. In Geometric Modeling for
Scientific Visualization, pages 37–49. Springer Verlag, 2003.

15. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. In Proc. SIGGRAPH ’87, pages 163–169, New
York, NY, USA, 1987. ACM Press.

16. Nikos Paragios and Rachid Deriche. Geodesic active contours and level sets for the
detection and tracking of moving objects. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(3):266–280, 2000.

17. Mark Pauly, Markus Gross, and Leif Kobbelt. Efficient Simplification of Point-
Sampled Surfaces. In VIS ’02: Proceedings of the conference on Visualization ’02,
pages 163–170. IEEE Computer Society, 2002.

18. Mark Pauly, Leif Kobbelt, and Markus Gross. Multiresolution Modeling of Point-
Sampled Geometry. Technical Report 378, Computer Science Department, ETH
Zurich, Switzerland, Computer Science Department RWTH Aachen, Germany,
September 2002.

19. Peter Savadijev, Frank P. Ferrie, and Kaleem Siddiqi. Surface Recovery from 3D
Point Data Using a Combined Parametric and Geometric Flow Approach. In Proc.
EMMCVPR, volume 2683 of LNCS, pages 325–340. Springer, 2003.

20. Greg Turk. Re-tiling polygonal surfaces. In Proc. SIGGRAPH ’92, pages 55–64,
New York, NY, USA, 1992. ACM Press.

21. Tim Weyrich, Mark Pauly, Simon Heinzle, Richard Keiser, Sascha Scandella, and
Markus Gross. Post-processing of Scanned 3D Surface Data. In Symposium on
Point-Based Graphics, pages 85–94, 2004.

22. Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. Fast surface reconstruction
using the level set method. In VLSM ’01: Proceedings of the IEEE Workshop on
Variational and Level Set Methods, page 194, Washington, DC, USA, 2001. IEEE
Computer Society.


	Introduction
	Review of Point-Based Models
	PDE-Based Surface Reconstruction and Point-Based Models
	Results and Applications
	Summary and Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


