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Abstract

We propose Anisotropic Windowed Fourier Transform
(AWFT), a framework for localized space-frequency anal-
ysis of deformable 3D shapes. With AWFT, we are able to
extract meaningful intrinsic localized orientation-sensitive
structures on surfaces, and use them in applications such
as shape segmentation, salient point detection, feature point
description, and matching. Our method outperforms previ-
ous approaches in the considered applications.

1. Introduction
Fourier analysis is a tool ubiquitously used in a wide

range of problems in mathematics and engineering and is
the pillar of classical signal processing [18]. The Fourier
basis functions used to compute frequency-domain repre-
sentations, are in fact eigenfunctions of the Laplace op-
erator. This interpretation allows to naturally generalize
Fourier analysis to non-Euclidean domains (manifolds or
graphs) by considering the respective Laplacian of these do-
mains [15].

Signal processing on geometric data is an active field of
research since the seminal work of Taubin [29], introduc-
ing a Laplacian-based approach for mesh smoothing. His
approach found extensive application in several other mesh
processing tasks, including mesh parametrization [19] and
compression [13] to name a few (we refer to [15] for an
excellent survey). In the area of shape analysis, recent ef-
forts concentrated on the definition of spectral isometry-
invariant shape descriptors for matching and retrieval pur-
poses [22, 26, 6]. Of particular interest is the family of spec-
tral methods that build upon the ideas of diffusion geometry
[9] in order to encode local geometric structures. Examples
of such methods include the heat kernel signature (HKS)
[28, 11] and the wave kernel signature (WKS) [2]. A recent
promising trend is based on the use of machine learning

methods to learn optimal task-specific feature descriptors
from examples [17, 16, 25, 30, 4, 5]. The main advantage
of spectral methods consists of their ability to encode intrin-
sic structure of the manifold, thus automatically endowing
the respective methods with deformation invariance.

It is worth noting that the majority of spectral methods
rely on a global frequency analysis, considering the Lapla-
cian eigenfunctions as the basis. Localized Fourier analy-
sis (a standard construction in signal processing known as
the short-time or windowed Fourier transform) has recently
been done on graphs [27] and manifolds [4].
Contributions. In this paper, we propose the Anisotropic
Windowed Fourier Transform (AWFT) for localized and
orientation-sensitive analysis on manifolds. Our work ex-
tends the previous works of [27] and [4] by adding direc-
tional information, resulting in a construction similar in
its spirit to the classical Gabor transform. We show that
in many cases the additional information captured by the
AWFT is very beneficial. We demonstrate the utility of the
proposed method on three common shape analysis tasks:
segmentation, salient point detection, and the construction
of intrinsic feature descriptors. Our results in these applica-
tions compare favorably to the state of the art on standard
benchmarks.

2. Background.
Manifolds. We model a 3D shape as a connected smooth
compact two-dimensional manifold (surface) X embedded
into R3. Locally around each point x ∈ X , the manifold is
homeomorphic to the tangent plane TxX . Every element in
TxX is called tangent vector at x. The tangent bundle TX
can be seen as the disjoint union of all the tangent planes
of X . A (tangent) vector field on the manifold is a smooth
function v : X → TX . A Riemannian metric is an inner
product 〈·, ·〉TxX : TxX × TxX → R on the tangent plane
depending smoothly on x. Given a Riemannian metric, it is
possible to define the second fundamental form, a 2×2 ma-
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trix, which describes how the manifold locally differs from
a plane. The eigenvalues κM , κm of the second fundamen-
tal form are called the principal curvatures and their corre-
sponding eigenvectors vM ,vm are called the principal cur-
vature directions. The pair vM (x),vm(x) constitutes an
orthonormal basis on the tangent plane TxX .

Laplacian. We denote the space of square-integrable real
functions (scalar fields) on the manifold by L2(X) = {f :
X → R :

∫
X
f(x)2dx <∞}, where dx is the area element

induced by the Riemannian metric. The intrinsic gradient
∇Xf of a smooth scalar field f ∈ L2(X) is defined as

〈∇Xf(x),v〉TxX = ∂vf(x) ,

where v ∈ TxX is a tangent vector, and ∂vf denotes the di-
rectional (covariant) derivative. Given a smooth vector field
v, the intrinsic divergence can be defined as its negative
formal adjoint

〈∇Xf(x),v(x)〉TxX = −〈f(x), divXv(x)〉X . (1)

The Laplace-Beltrami operator (or Laplacian) is defined as

∆Xf(x) = −divX(∇Xf(x)). (2)

Fourier analysis on manifolds. The Laplacian admits an
eigendecomposition

∆Xφi(x) = λiφi(x)

with orthonormal eigenfunctions φ0, φ1, . . . (generalizing
the standard Fourier basis) and corresponding non-negative
eigenvalues 0 = λ0 ≤ λ1 ≤ . . . (which can be inter-
preted as frequencies). The first eigenvector is constant
φ0(x) = 1

(area(X))1/2
, and plays the role of DC in classi-

cal signal processing.
A function f ∈ L2(X) can be expressed as a Fourier se-

ries
f(x) =

∑
i≥0

〈f, φi〉L2(X)φi(x) ,

where f̂i = 〈f, φi〉L2(X) are the Fourier coefficients. The
generalized convolution of f and g on the manifold can be
defined by the analogy to the classical case as

(f ? g)(x) =
∑
i≥0

〈f, φi〉L2(X)〈g, φi〉L2(X)φi(x) (3)

=
∑
i≥0

f̂iĝiφi(x).

In the Euclidean case, this relation is known as the convo-
lution theorem. In the non-Euclidean case, Eq. (3) can be
regarded as a definition of a non-shift-invariant convolution.

Anisotropic Laplacian. Andreux et al. [1] considered an
anisotropic Laplace-Beltrami operator of the form

∆Xf(x) = −divX(D(x)∇Xf(x)) , (4)

αij

βij θ
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Figure 1. Triangular mesh discretization. The orthogonal basis
vectors vM , vm, as well as their rotated counterparts (in red), lie
in the plane of the respective triangle (reproduced from [5]).

where D(x) acts on the intrinsic gradient direction in
the tangent space, represented in the orthogonal basis
vM (x),vm(x) of principal curvature directions. In partic-
ular, the authors considered anisotropy along the maximum
curvature direction,

Dα(x) =

[
1

1+α

1

]
, (5)

where parameter α > 0 controls the level of anisotropy.
Boscaini et al. [5] considered anisotropic Laplacians with
anisotropy at angle θ w.r.t. the maximum curvature direc-
tion,

Dαθ(x) = RθDα(x)R>θ , (6)

where Rθ is a rotation by θ in the tangent plane. The result-
ing Laplacian operator

∆αθf(x) = −divX(RθDα(x)R>θ ∇Xf(x)) (7)

is the centerpiece of the construction proposed in this paper.

3. Anisotropic Windowed Fourier Transform

The main drawback of standard Fourier analysis is that
the basis functions are globally supported. As a result, it
is practically impossible to localize a small spatial feature
in the frequency domain. A common technique in sig-
nal processing, referred to as the Windowed Fourier Trans-
form (WFT, also known as Short-Time Fourier Transform
or spectrogram) is to localize frequency analysis to a win-
dow, considering the Fourier coefficients of a function for
each window location. The result is a combined space-
frequency representation.

WFT on manifolds. Shumann et al. [27] and Boscaini et
al. [4] generalized this construction to graphs and mani-
folds, respectively. The window is defined in the frequency
domain and its translation to point ξ is expressed as a gen-



eralized convolution with a delta-function,

Tξg = (g ? δξ)(x) =
∑
i≥0

ĝi〈δξ, φi〉L2(X)φi(x) (8)

=
∑
i≥0

ĝiφi(ξ)φi(x) .

The WFT is computed as

(Sf)ξi = 〈f, ρφi
∑
j≥0

ĝjφj(ξ)φj︸ ︷︷ ︸
gξi(x)

〉L2(X) (9)

= ρ
∑
j≥0

ĝjφj(ξ)〈f, φiφj〉L2(X) ,

where gξi(x) is the window at position ξ modulated with
the ith frequency, referred to as an atom. We can think of it
as a translated and modulated version of g,

gξi(x) = ρMiTξg(x) = ρφi(x)(g ? δξ)(x) .

ρ = (area(X))1/2 is a normalization constant ensuring that
the modulation with DC is norm-preserving,

ρMif(x) = ρφ0(x)f(x) = ρ
1

ρ
f(x) = f(x).

Note that (Sf)ξi has two indices: spatial location ξ and
frequency i.

AWFT. While allowing for a localized frequency analysis,
the WFT atoms are agnostic to directional information (see
Figure 2, left). Such information can be introduced using
the anisotropic Laplacian. Let

∆αθφαθ,i(x) = λαθ,iφαθ,i(x)

be the eigendecomposition of the anisotropic Laplacian
with orthogonal eigenfunctions φαθ,0, φαθ,1, . . . and corre-
sponding non-negative eigenvalues 0 = λαθ,0 ≤ λαθ,1 ≤
. . .. We define the anisotropic WFT as

(Sf)ξαθi =
∑
j≥0

ĝαθ,jφαθ,j(ξ)〈f, φαθ,iφαθ,j〉L2(X). (10)

The atoms gξθi(x) (Figure 2, right) are direction-aware.
One of the important consequences of direction-awareness
is the fact that AWFT is capable of disambiguating intrinsic
reflection symmetries, as will be discussed in the following.

Choice of the window. The choice of the window allows
for a tradeoff between spatial and frequency localization
(by virtue of the uncertainty principle, it is impossible to
achieve a perfect localization in both): a narrow window in
the frequency domain (rapidly decaying Fourier coefficients

ĝi) results in a wide window in the spatial domain, and vice
versa. We use a decaying window

ĝαθ,i = e−τ(λαθ,i−λαθ,1) , (11)

where the parameter τ controls the decay rate (larger values
of τ produce windows with poorer spatial localization). In
order to make this parameter scale-invariant, we recall that
scaling the coordinates of the shape uniformly by a factor β
scales its area by β2 and Laplacian eigenvalues by a factor
of β−2. We therefore multiply τ by area(X).

Total Weighted Power Rabiei et al. [21] used the total
weighted power (TWP) as an aggregate of all frequency in-
formation weighted by the normalized corresponding eigen-
value,

(STWPf)ξαθ =
∑
k≥0

λ2αθ,k
‖Λαθ‖22

(Sf)2ξαθk, (12)

where ‖Λ‖22 =
∑
k≥0 λ

2
αθ,k is the norm of the set of eigen-

values. Such an aggregation allows removing the potential
ambiguities due to different signs and ordering of the eigen-
functions. Attributing greater value to high frequencies the
TWP can be seen as a filter that emphasizes localized (high-
frequency) properties.

4. Discretization
In the discrete setting, the surface X is sampled at

N points x1, . . . , xN , on which we construct a triangu-
lar mesh T = ({1, . . . , N}, E, F ). A function on the
surface is represented by an N -dimensional vector f =
(f(x1), . . . , f(xN ))>. The inner product is discretized as
〈f ,g〉 = f>Ag, where A = diag(a1, . . . , aN ) is the mass
matrix, and ai denotes the local area element at vertex i.
To each triangle ijk of the mesh, we attach an orthonormal
reference frame Uijk = [vM ,vm, n̂] ∈ R3×3, where n̂ is
the unit normal vector to the triangle and vm and vM are
the directions of principal curvature, computed using the
method of [8]. The tensor Dα for the triangle ijk operating
on tangent vectors is expressed w.r.t. Uijk as:

Dα =

 1
1+α

1
1

 .
In the case θ = 0, let eij ∈ R3 denote the oriented edge
pointing from vertex i to vertex j, normalized to unit length,
and consider the triangle ijk. We define the H-weighted
inner product between edges ekj and eki as

〈ekj , eki〉H = eTkj UijkDαUT
ijk︸ ︷︷ ︸

H

eki , (13)



Figure 2. Some atoms of the AWFT on the point marked with small pink spheres on the cat shape. These are obtained with τ = 0.002, the
first on the left is the isotropic window while the others are obtained with α = 300 and different θ, from left to right 45, 90, 135, 180.

where the shear matrix H encodes the anisotropic scal-
ing up to an orthogonal basis change. Note that in the
isotropic case (α = 0) we have H = I, such that the
H-weighted inner product simplifies to the standard inner
product 〈ekj , eki〉H = cosαij .

The discretization of the anisotropic Laplacian takes the
form of an n × n sparse matrix ∆αθ = −A−1W. The
stiffness matrix W is composed of weights

wij =


− 1

2

(
〈ekj ,eki〉H

sinαij
+
〈ehj ,ehi〉H

sin βij

)
(i, j) ∈ E

−
∑
k 6=i wik i = j

0 else

(14)

where the notation is according to Figure 1. In the isotropic
case, 〈ekj ,eki〉Hsinαij

=
cosαij
sinαij

= cotαij , thus reducing equa-
tion (14) to the classical cotangent formula [20].

To obtain the general case θ 6= 0, it is sufficient to rotate
the basis vectors Uijk on each triangle around the respec-
tive normal n by the angle θ, equal for all triangles (see Fig-
ure 1, red). Denoting by Rθ the corresponding 3×3 rotation
matrix, this is equivalent to modifying the H-weighted in-
ner product with the directed shear matrix Hθ = RθHRT

θ .
The resulting weightswij in equation (14) are thus obtained
by using the inner products 〈ekj , eki〉Hθ

= eTkjHθeki.
The computation of the Laplacian eigenvectors is posed

as a generalized eigenproblem

WΦ = AΦΛ ,

where Φ = (φ1, . . . , φK) is anN×K matrix containing the
first K eigenvectors, and Λ = diag(λ1, . . . , λK) is a diag-
onal matrix containing the corresponding eigenvalues. For
the anisotropic Laplacian, we compute a set of K eigenvec-
tors Φαθ and eigenvalues Λαθ for each θ and α. The AWFT
is computed as

(Sf)αθ = (f � Φαθ)
>AΦαθ(ĝαθ � Φ>αθ),

where the result is an N ×K-dimensional matrix for θ and
α; f is the input function represented as an N -dimensional
vector, and (a � B)ij = aibij denotes a K ×N matrix ob-
tained by element-wise multiplication of a K-dimensional
column vector replicated N times along the second dimen-
sion with a K ×N matrix.

5. Applications and Results α : 0.002
τ : 10

α : 0.002
τ : 300

α : 0.05
τ : 10

α : 0.05
τ : 300

In this section, we show the applica-
tion of AWFT to three standard prob-
lems in geometry processing: shape
segmentation, salient point detection
and design of local feature descriptors
for point to point matching. In each ap-
plication, one has the freedom to define
the four main ingredients of AWFT.
First, the function f to be analyzed,
which represents the information we wish to encode. Sec-
ond, the size of the window, determined by the parameter
τ . We typically use a set of different values τ1, . . . , τt to
perform a multi-scale analysis. Third, the window orien-
tations θ1 = 0, θ2 = π

h , . . . , θh = (h−1)π
h . Fourth, the

anisotropy parameter α. We typically use a set of different
values α1, . . . , αc to capture oriented structures of different
width (see inset figure).

Computation: We used up to K = 200 Laplacian eigen-
vectors and eigenvalues computed using MATLAB eigs
function. The computation of AWFT with the settings used
in our experiments takes on average less than 5 seconds on
a mesh with around 7000 vertices on a machine with 32GB
of RAM and an Intel 3,6 GHz Core i7 cpu1.

5.1. Shape Segmentation

Applying the AWFT to the constant function f(x) = 1
gives rise to a reweighted version of the GPS descriptor [26,
4] that is direction-aware. We apply on the squared AWFT
features (Sf)2ξαθi the segmentation method of Rodolà et al.
[24] (which takes the classical GPS as input) using the set-
tings proposed by the authors.

Settings. We use f = 1, single window with τ = 0.002,
two levels of anisotropy α1 = 100, α2 = 300, F =
f the constant function, and orientations θ1 = 0, θ2 =
π
4 , . . . , θ4 = 3π

4 . We use only the first K = 50 frequencies.

Data and Evaluation. We evaluate the segmentation re-
sults according to the Princeton Segmentation Benchmark

1Code is available at: http://profs.sci.univr.it/

˜castella/awft.xhtml.

http://profs.sci.univr.it/~castella/awft.xhtml
http://profs.sci.univr.it/~castella/awft.xhtml


HKS WKS GPS WFT AWFT

Figure 3. First row: segmentation of the hand shape obtained using (left to right) HKS, WKS, GPS, WFT and AWFT. Second row: a few
segmentation examples obtained with AWFT.

HKS WKS GPS WFT AWFT

airplane 0.41 / 0.82 0.38 / 0.84 0.47 / 0.80 0.42 / 0.85 0.48 / 0.91

ant 0.57 / 0.97 0.61 / 0.90 0.64 / 0.84 0.63 / 0.90 0.62 / 0.90

bird 0.44 / 0.84 0.45 / 0.89 0.52 / 0.86 0.44 / 0.86 0.52 / 0.89

fish 0.62 / 0.95 0.43 / 0.92 0.43 / 0.86 0.37 / 0.86 0.39 / 0.91

hand 0.52 / 0.91 0.55 / 0.92 0.61 / 0.88 0.61 / 0.88 0.75 / 0.94

octopus 0.35 / 0.98 0.35 / 0.95 0.44 / 0.87 0.32 / 0.90 0.40 / 0.95

plier 0.35 / 0.90 0.36 / 0.92 0.43 / 0.83 0.39 / 0.88 0.51 / 0.91

teddy 0.48 / 0.90 0.51 / 0.88 0.63 / 0.75 0.53 / 0.83 0.68 / 0.93

mean 0.47 / 0.91 0.46 / 0.90 0.52 / 0.84 0.46 / 0.87 0.54 / 0.92

Table 1. Performance in Fidelity / Goodness on 8 categories of the
Princeton Segmentation Benchmark. Best performance is in bold.

[7], consisting of 380 meshes from 19 object classes (20
shapes per class). A common meaningful segmentation is
given as ground truth for each category. The ground truth
assigns the same label to semantically similar segments
(e.g., the two arms of a man).

We use two different evaluation criteria, Fidelity and
Goodness. For every segment in the ground-truth, Fidelity
is the average ratio between the number of the maximum
subset of points that is segmented together by the method
and the number of points that compose that ground-truth
segment. Goodness is in some sense the inverse. For every
segment obtained by the method, it is defined as the aver-
age ratio between the maximum number of points that are
segmented together in the ground truth and the number of
points that compose that segment provided by the method.

Results. Table 1 summarizes the segmentation results in
terms of Goodness and Fidelity. For comparison, we show
segmentation results obtained with HKS, WKS, GPS and
isotropic WFT features. Our AWFT produces the best score
on average. Segmentation examples in Figure 3 show that
AWFT is able to perform a segmentation that is both seman-
tically meaningful and geometrically consistent.

5.2. Salient Point Detection

We use the AWFT to construct a saliency map that al-
lows to detect key points on surfaces. We use the logarithm
of the mean curvature as an input function (capturing large
curvature variations) and compute the TWP of the AWFT.
This way, we obtain a set of saliency maps for each value
of α, θ and τ . For every such saliency map, we compute lo-
cal maxima as follows: For each point ξ we take the corre-
sponding window Tξgαθ (computed using the same τ used
for the map) and locate its maximum. We then perform a
non-maximum suppression. Each map is then normalized
as proposed in [12]. A single saliency map is obtained by
summing up the maps for different α, θ and τ . Finally, the
maximum detection and non-maximum suppression is per-
formed again, producing the salient points.

Settings. We use f = log(H), various window sizes
τ = 0.0002, 0.0007, 0.001, 0.0015, 0.0055, a single level
of anisotropy α = 300, and angles θ1 = 0, θ2 =
π
12 , . . . , θ12 = 11π

12 .

Data and Evaluation. We follow the test proposed in [10]
on two different datasets. Dataset A consists of 24 objects
hand-marked by 23 human subjects. Dataset B contains 43
models marked by at least 16 subjects. The human anno-
tations are used as the ground-truth for both datasets. The
adopted evaluation criterion (WME) is based on importance
of the selected points, where importance is based on these
hand-marked selections.

Results. Figure 4 shows a few saliency maps and the cor-
responding selected salient points. Note how the saliency
maps identify semantically coherent parts among the ani-
mal and cup shape classes. Figure 5 evaluates the perfor-
mance of various feature detection methods. We use two
non-maximum suppression settings (denoted AWFT and
AWFT2) to tradeoff between false positives and negatives.
Table 2 shows the average area-under-the-curve (AUC) for
different methods. Our methods achieve performance in



Figure 4. Saliency maps computed with AWFT on some shapes from the evaluation benchmark. The areas considered as more salient are
in red while the less important ones tend to blue. The final selected points are highlighted by small pink spheres.
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Figure 5. The False Negative, False Positive and Weighted Miss error curves for the proposed methods (in warm colors) and the methods
presented in the used benchmark (in cold colors).

Mean Mesh
saliency

Salient
points

3D-
Harris

3D-
SIFT

SD-
corners

WFT AWFT AWFT2

0.59 0.57 0.59 0.57 0.63 0.59 0.59 0.59 0.59

Table 2. The mean AUC computed on the False Negative and the
False Positive error curves for all the comparable methods tested in
these curves (the proposed ones and all the others presented in the
benchmark, not HKS that is not compatible with other methods).

line with the state of the art.

5.3. Descriptors for Point to Point Matching

In order to obtain a concise and informative descriptor
for every point on the surface, we use the TWP to reduce
the dimension of the output of AWFT on some geometri-
cally meaningful functions. One of the key deficencies of
standard descriptors such as HKS, WKS or WFT is their in-
variance to intrinsic symmetries. This is visualized in Fig-
ure 6, where we show a bilaterally intrinsically symmet-
ric shape (cat). The WFT at symmetric points (leftmost
plot in solid and dotted) are nearly identical. On the other
hand, orientation is not preserved by the intrinsic symme-
try (in fact, if σ : X → X is a bilateral symmetry, then
(Sf)ξαθi = (Sf)σ(ξ)α,−θ,i). As a result, the AWFT de-
scriptor can distinguish intrinsically symmetric points, as
we experimentally show in the following.

Settings. We used five input features: f1, f2 are the third
and fourth geometry vectors [17] encoding some of the

spectral geometry of the shape; f3 = 1; f4 = φ1 is the
(isotropic) Fiedler vector providing a consistent ordering on
the mesh vertices [15]; and f5 is the ShapeIndex [14] encod-
ing the curvatures of the surface. We used τ = 0.002, 0.05,
α1 = 100, α2 = 300, and θ1 = 0, θ2 = π

4 , . . . , θ4 = 3π
4 .

Data and Evaluation. We used two public-domain datasets
of scanned human shapes in different poses: FAUST [3] and
CAESAR [23]. These datasets are considerably challenging
due to the presence of non-isometric deformations as well
as significant variability between different human subjects.
FAUST is composed of 10 poses of 10 subjects (100 shapes
in total), each having nearly 7K vertices. We select a ran-
dom set of 60 shapes from the fitted-meshes subset of CAE-
SAR, where each shape has ∼6K vertices. Ground truth
point-wise correspondence is available in both datasets. We
refer the reader to the supplementary material for tests on
larger meshes (∼28K vertices).

We evaluate descriptor performance using cumulative
match characteristic (CMC), receiver operator charac-
teristic (ROC) and correspondence quality characteristic
(CQC). The CMC estimates the probability of a correct
correspondence to be among the k nearest neighbors in
descriptor space. ROC measures the percentage of posi-
tives and negatives pairs falling below various thresholds
of their distance in descriptor space (true positive and neg-
ative rates, respectively). CQC exhibits the percentage of
nearest-neighbor matches that are at most r-geodesically
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Figure 6. Comparison between WFT (left) and AWFT (right) descriptor computed at three symmetric points of the cat shape (points and
corresponding curves are color-coded). Solid and dotted curves represent descriptors from the left and right side of the cat, respectively.
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Figure 7. Performance evaluation on FAUST dataset.
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Figure 8. Performance evaluation on CAESAR dataset.

distant from the ground truth correspondence.

Results. The evaluation results are summarized in Fig-
ures 7–8, which clearly demonstrate that AWFT outper-
forms the classical methods. In Figure 7, we also compare
to the descriptor proposed in [4] without the learning step
(referred to as BMM). We use the first 20 coefficients of the
WFT computed on 5 geometry vectors as in [4], with the
same two τ used in AWFT. Despite the double dimension-
ality BMM does not offer comparable performance without
the class-specific learning step. In Figure 9, we show the
distance between the descriptor at a point (indicated with

the white sphere on the first shape on the left) and the rest
of the points on the same shape as well as other shapes.
AWFT descriptors are the most localized and discrimina-
tive, and correctly disambiguate symmetries.

6. Conclusions

In this paper, we proposed an anisotropic windowed
Fourier transform on manifolds. The proposed tool en-
ables to perform local directional frequency analysis and
improve the study of geometry in several applications in
shape analysis. Its power and versatility were tested on
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Figure 9. Normalized Euclidean distance between the descriptor at a reference point on the leg (white sphere) and the descriptors computed
at the rest of the points for different transformations (from left to right: near isometric deformations, non-isometric deformations, subsam-
pling, smoothing and remeshing). Cold and hot colors represent small and large distances, respectively. For visualization clarity, distances
are saturated at 30% of the maximum.

classical datasets for different tasks as shape segmentation,
salient points detection and point to point matching. In fu-
ture work, we will study additional applications of AWFT,
as well as its computation on other types of data such as

point clouds.
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