Localized Manifold Harmonics for Spectral Shape Analysis

S. Melzi ${ }^{1}$, E. Rodolà ${ }^{2,3}$, U. Castellani ${ }^{1}$, M. M. Bronstein ${ }^{2,4,5,6}$
${ }^{1}$ University of Verona, Italy
${ }^{2}$ USI Lugano, Switzerland
${ }^{3}$ Sapienza University of Rome, Italy
${ }^{4}$ Tel Aviv University, Israel
${ }^{5}$ Intel Perceptual Computing, Israel
${ }^{6}$ IAS, TU Munich, Germany

Supplementary Material

These pages contain proofs for Theorems 1 and 2 appearing in the main paper [2].

Proof of Theorem 1. Let $\mathbf{W}, \mu_{\perp} \mathbf{A P}_{k^{\prime}}$ and $\mu_{R} \mathbf{A} \operatorname{diag}(\mathbf{v})$ be real symmetric positive semidefinite matrices of dimension $n \times n$, and define $\mathbf{Q}_{v, k^{\prime}}=\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}+\mu_{R} \mathbf{A} \operatorname{diag}(\mathbf{v})$. Let $0=\lambda_{1}(\mathbf{W}) \leq \ldots \leq \lambda_{n}(\mathbf{W})$ be the eigenvalues for the generalized eigenvalue problem of \mathbf{W} and $\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \leq \ldots \leq \lambda_{n}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)$ and $\lambda_{1}\left(\mathbf{Q}_{v, k^{\prime}}\right) \leq \ldots \leq \lambda_{n}\left(\mathbf{Q}_{v, k^{\prime}}\right)$ be the generalized eigenvalues of $\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}$ and $\mathbf{Q}_{v, k^{\prime}}$ respectively. We aim to prove that

$$
\begin{equation*}
\lambda_{k^{\prime}}(\mathbf{W}) \leq \lambda_{1}\left(\mathbf{Q}_{v, k^{\prime}}\right), \tag{1}
\end{equation*}
$$

for some $\mu_{\perp}, \mu_{R} \in \mathbb{R}$ and for every $k^{\prime} \in\{0, \ldots, n-1\}$.
We start by observing that

$$
\begin{equation*}
\lambda_{k^{\prime}}(\mathbf{W}) \leq \lambda_{k^{\prime}+1}(\mathbf{W})=\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \tag{2}
\end{equation*}
$$

where the first inequality is given by the non-decreasing ordering of the eigenvalues, and the equality on the right follows from the fact that for some choice of $\mu_{\perp}>\lambda_{k^{\prime}+1}(\mathbf{W}), \boldsymbol{\phi}_{k^{\prime}+1}$ is the minimizer of $\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}$ under the orthogonality conditions $\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1$ and $\left\langle\boldsymbol{\phi}_{l}, \mathbf{x}\right\rangle_{L^{2}(\mathcal{X})}=0, \forall l \in\left\{1, \ldots, k^{\prime}\right\}$, i.e., $\left(\mu_{\perp} \mathbf{A P}_{k^{\prime}}\right) \mathbf{x}=\mathbf{0}$.

Invoking a special case of Corollary 4.3.4b in [1] and using the fact that $\mu_{R} \mathbf{A} \operatorname{diag}(\mathbf{v})$ only has non-negative eigenvalues (being a diagonal matrix with non-negative entries), we obtain the following inequality:

$$
\begin{equation*}
\left.\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \leq \lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)+\mu_{R} \mathbf{A} \operatorname{diag}(\mathbf{v})\right)=\lambda_{1}\left(\mathbf{Q}_{v, k^{\prime}}\right) \tag{3}
\end{equation*}
$$

Furthermore, this inequality is an equality if and only if $\exists \mathrm{x} \in \mathbb{R}^{n}$ s.t. $\mathrm{x} \neq 0$ and the following three conditions are satisfied:

1. $\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}=\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x} ;$
2. $\left(\mathbf{Q}_{v, k^{\prime}}\right) \mathbf{x}=\lambda_{1}\left(\mathbf{Q}_{v, k^{\prime}}\right) \mathbf{x}$;
3. $\left(\mu_{R} \mathbf{A} \operatorname{diag}(\mathbf{v})\right) \mathbf{x}=0$.

Putting together (2) and (3) we can conclude that:

$$
\begin{equation*}
\lambda_{k^{\prime}}(\mathbf{W}) \leq \lambda_{k^{\prime}+1}(\mathbf{W}) \leq \lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \leq \lambda_{1}\left(\mathbf{Q}_{v, k^{\prime}}\right) \tag{4}
\end{equation*}
$$

Note that the existence of a gap is given either by the violation of any of the three conditions above, or in the presence of simple spectra, i.e., whenever $\lambda_{k^{\prime}}(\mathbf{W}) \neq \lambda_{k^{\prime}+1}(\mathbf{W})$.

Choice of μ_{\perp}. We aim to prove that for every $\mu_{\perp}>\gamma$ for some $\gamma \in \mathbb{R}^{+}$we have:

$$
\begin{equation*}
\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A P}_{k^{\prime}}\right) \geq \lambda_{k^{\prime}+1}(\mathbf{W}) . \tag{5}
\end{equation*}
$$

We can rewrite the two terms of this inequality as:

$$
\begin{gather*}
\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)=\min _{\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1} \mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x} \tag{6}\\
\lambda_{k^{\prime}+1}(\mathbf{W})= \tag{7}\\
\min _{\substack{\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1 \\
\left\langle\phi_{i}, \mathbf{x}\right\rangle_{L^{2}(\mathcal{X})}=0, \forall=1, \ldots, k^{\prime}}} \mathbf{x}^{\top} \mathbf{W} \mathbf{x} .
\end{gather*}
$$

The objective in (6) can be rewritten as:

$$
\begin{equation*}
\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}=\mathbf{x}^{\top} \mathbf{W} \mathbf{x}+\mathbf{x}^{\top}\left(\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x} \tag{8}
\end{equation*}
$$

We now express our vectors as the Fourier series $\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}$, where $\alpha_{i}=\left\langle\boldsymbol{\phi}_{i}, \mathbf{x}\right\rangle_{L^{2}(\mathcal{X})}$. Noting that $\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1$ implies $\sum_{i=1}^{n} \alpha_{i}^{2}=1$, we can write:

$$
\begin{equation*}
\mathbf{x}^{\top} \mathbf{W} \mathbf{x}=\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right)^{\top} \mathbf{W}\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right)=\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right)^{\top}\left(\sum_{i=1}^{n} \lambda_{i}(\mathbf{W}) \alpha_{i} \mathbf{A} \boldsymbol{\phi}_{i}\right)=\sum_{i=1}^{n} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2} . \tag{9}
\end{equation*}
$$

Similarly, we can rewrite the second summand in (8) as:

$$
\begin{align*}
\mathbf{x}^{\top}\left(\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x} & =\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right)^{\top}\left(\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right) \tag{10}\\
& =\mu_{\perp}\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right)^{\top}\left(\mathbf{A} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \mathbf{A}\right)\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right) \tag{11}\\
& =\mu_{\perp}\left(\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right)^{\top} \mathbf{A} \boldsymbol{\Phi}\right)\left(\boldsymbol{\Phi}^{\top} \mathbf{A}\left(\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}\right)\right) \tag{12}\\
& =\mu_{\perp}\left[\alpha_{1}, \ldots, \alpha_{k^{\prime}}\right]\left[\alpha_{1}, \ldots, \alpha_{k^{\prime}}\right]^{\top} \tag{13}\\
& =\mu_{\perp} \sum_{i=1}^{k^{\prime}} \alpha_{i}^{2} . \tag{14}
\end{align*}
$$

From (9) and (14) we can conclude:

$$
\begin{equation*}
\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}=\mathbf{x}^{\top} \mathbf{W} \mathbf{x}+\mathbf{x}^{\top}\left(\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}=\sum_{i=1}^{n} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2}+\mu_{\perp} \sum_{i=1}^{k^{\prime}} \alpha_{i}^{2} . \tag{15}
\end{equation*}
$$

At this point we split the proof in three different cases:

1. $\left\langle\boldsymbol{\phi}_{i}, \mathbf{x}\right\rangle_{L^{2}(\mathcal{X})}=0, \forall i=1, \ldots, k^{\prime}$, that is equivalent to ask that $\mathbf{P}_{k^{\prime}} \mathbf{x}=\mathbf{0}$. In this case we have:

$$
\begin{align*}
\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)= & \min _{\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1} \mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x} \tag{16}\\
= & \min _{\substack{\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1 \\
\left\langle\phi_{i}, \mathbf{x}\right\rangle_{L^{2}(\mathcal{X})}=0, \forall i=1, \ldots, k^{\prime}}}\left(\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}\right) \tag{17}\\
= & \min _{\substack{\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1 \\
\left\langle\phi_{i}, \mathbf{x}\right\rangle_{L^{2}(\mathcal{X})}=0, \forall i=1, \ldots, k^{\prime}}} \mathbf{x}^{\top} \mathbf{W} \mathbf{x}=\lambda_{k^{\prime}+1}(\mathbf{W}) . \tag{18}
\end{align*}
$$

2. $\mathbf{x} \in \operatorname{span}\left(\boldsymbol{\phi}_{1}, \ldots, \boldsymbol{\phi}_{k^{\prime}}\right)$, implying that $\alpha_{i}=0 \forall i>k^{\prime}$ and hence $\mathbf{x}=\sum_{i=1}^{k^{\prime}} \alpha_{i} \phi_{i}$. We get:

$$
\begin{equation*}
\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A P}_{k^{\prime}}\right) \mathbf{x}=\sum_{i=1}^{k^{\prime}} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2}+\mu_{\perp} \sum_{i=1}^{k^{\prime}} \alpha_{i}^{2} \tag{19}
\end{equation*}
$$

Since we take the minimum over the \mathbf{x} s.t. $\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1$ we have $\sum_{i=1}^{k^{\prime}} \alpha_{i}^{2}=1$ and:

$$
\begin{equation*}
\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}=\sum_{i=1}^{k^{\prime}} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2}+\mu_{\perp} \geq \mu_{\perp} \tag{20}
\end{equation*}
$$

where the equality is realized for $\mathbf{x}=\boldsymbol{\phi}_{1}$ since $\lambda_{1}(\mathbf{W})=0$, and all other cases yield μ_{\perp} plus some non-negative quantity. We get to:

$$
\begin{equation*}
\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)=\min _{\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(x)}=1} \mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x}=\mu_{\perp} . \tag{21}
\end{equation*}
$$

3. For the last case we have $\left\langle\phi_{i}, \mathbf{x}\right\rangle_{L^{2}(\mathcal{X})} \neq 0$ for at least one $i=1, \ldots, k^{\prime}$ and for at least one $i>k^{\prime}$ at the same time.

$$
\begin{align*}
\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x} & =\sum_{i=1}^{n} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2}+\mu_{\perp} \sum_{i=1}^{k^{\prime}} \alpha_{i}^{2} \tag{22}\\
& =\sum_{i=1}^{k^{\prime}} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2}+\sum_{i=k^{\prime}+1}^{n} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2}+\mu_{\perp} \sum_{i=1}^{k^{\prime}} \alpha_{i}^{2} \tag{23}\\
& =\sum_{i=1}^{k^{\prime}}\left(\lambda_{i}(\mathbf{W})+\mu_{\perp}\right) \alpha_{i}^{2}+\sum_{i=k^{\prime}+1}^{n} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2} . \tag{24}
\end{align*}
$$

Since $\lambda_{i}(\mathbf{W}) \geq \lambda_{k^{\prime}+1}(\mathbf{W}), \forall i \geq k^{\prime}+1$ we can write:

$$
\begin{align*}
\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \mathbf{x} & =\sum_{i=1}^{k^{\prime}}\left(\lambda_{i}(\mathbf{W})+\mu_{\perp}\right) \alpha_{i}^{2}+\sum_{i=k^{\prime}+1}^{n} \lambda_{i}(\mathbf{W}) \alpha_{i}^{2} \tag{25}\\
& \geq \sum_{i=1}^{k^{\prime}}\left(\lambda_{i}(\mathbf{W})+\mu_{\perp}\right) \alpha_{i}^{2}+\lambda_{k^{\prime}+1}(\mathbf{W}) \sum_{i=k^{\prime}+1}^{n} \alpha_{i}^{2} \tag{26}\\
& \geq \sum_{i=1}^{k^{\prime}} \mu_{\perp} \alpha_{i}^{2}+\lambda_{k^{\prime}+1}(\mathbf{W}) \sum_{i=k^{\prime}+1}^{n} \alpha_{i}^{2} \tag{27}
\end{align*}
$$

Figure 1: Plot of $\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)$ at increasing μ_{\perp}. Note how for every $\mu_{\perp} \leq \lambda_{k^{\prime}+1}(\mathbf{W})$ the frequency (y-axis) increases, converging at $\mu_{\perp}>\lambda_{k^{\prime}+1}(\mathbf{W})$. At convergence, the orthogonality constraint (encoded in the penalty term $\mathcal{E}_{\perp}(\psi)$ in the LMH formulation) is satisfied.

If we take $\mu_{\perp}>\lambda_{k^{\prime}+1}(\mathbf{W})$ in order to satisfy the condition imposed by case 2 , we get:

$$
\begin{align*}
\mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A P}_{k^{\prime}}\right) \mathbf{x} & \geq \sum_{i=1}^{k^{\prime}} \mu_{\perp} \alpha_{i}^{2}+\lambda_{k^{\prime}+1}(\mathbf{W}) \sum_{i=k^{\prime}+1}^{n} \alpha_{i}^{2} \tag{28}\\
& >\lambda_{k^{\prime}+1}(\mathbf{W}) \sum_{i=1}^{k^{\prime}} \alpha_{i}^{2}+\lambda_{k^{\prime}+1}(\mathbf{W}) \sum_{i=k^{\prime}+1}^{n} \alpha_{i}^{2} \tag{29}\\
& =\lambda_{k^{\prime}+1}(\mathbf{W}) \sum_{i=1}^{n} \alpha_{i}^{2} \tag{30}\\
& =\lambda_{k^{\prime}+1}(\mathbf{W}) . \tag{31}
\end{align*}
$$

We can therefore conclude that

$$
\begin{equation*}
\lambda_{1}\left(\mathbf{W}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right)=\min _{\langle\mathbf{x}, \mathbf{x}\rangle_{L^{2}(\mathcal{X})}=1} \mathbf{x}^{\top}\left(\mathbf{W}+\mu_{\perp} \mathbf{A P}_{k^{\prime}}\right) \mathbf{x}>\lambda_{k^{\prime}+1}(\mathbf{W}) \text { if } \mu_{\perp}>\lambda_{k^{\prime}+1}(\mathbf{W}) \tag{32}
\end{equation*}
$$

In Figure 1 we show an empirical evaluation across several choices of μ_{\perp}.
Proof of Theorem 2. We want to show that $\forall k \in\{1,2, \ldots, n\}$ we have the following upper bound:

$$
\lambda_{i}\left(\mathbf{Q}_{v, k^{\prime}}\right) \leq \lambda_{i+k^{\prime}}\left(\mathbf{W}^{R}\right) .
$$

Similarly to Theorem 1, the proof follows directly from Corollary 4.3.4b in [1], which specialized to our case reads:

$$
\begin{equation*}
\lambda_{i}\left(\mathbf{W}^{R}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \leq \lambda_{i+\pi}\left(\mathbf{W}^{R}\right) \tag{33}
\end{equation*}
$$

where π is the number of positive eigenvalues of $\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}$. Since $\mathbf{Q}_{v, k^{\prime}}=\mathbf{W}^{R}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}$ and using the fact that $\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}$ is a positive semidefinite matrix with rank k^{\prime}, we have $\pi=k^{\prime}$, leading to:

$$
\begin{equation*}
\lambda_{i}\left(\mathbf{Q}_{v, k^{\prime}}\right)=\lambda_{i}\left(\mathbf{W}^{R}+\mu_{\perp} \mathbf{A} \mathbf{P}_{k^{\prime}}\right) \leq \lambda_{i+\pi}\left(\mathbf{W}^{R}\right)=\lambda_{i+k^{\prime}}\left(\mathbf{W}^{R}\right) . \tag{34}
\end{equation*}
$$

References

[1] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.
[2] S. Melzi, E. Rodolà, U. Castellani, and M. M. Bronstein. Localized manifold harmonics for spectral shape analysis. Computer Graphics Forum.

