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Supplementary Material

These pages contain proofs for Theorems 1 and 2 appearing in the main paper [2].

Proof of Theorem 1. Let W, µ⊥APk′ and µRAdiag(v) be real symmetric positive
semidefinite matrices of dimension n×n, and define Qv,k′ = W +µ⊥APk′ +µRAdiag(v).
Let 0 = λ1(W) ≤ . . . ≤ λn(W) be the eigenvalues for the generalized eigenvalue problem
of W and λ1(W + µ⊥APk′) ≤ . . . ≤ λn(W + µ⊥APk′) and λ1(Qv,k′) ≤ . . . ≤ λn(Qv,k′)
be the generalized eigenvalues of W + µ⊥APk′ and Qv,k′ respectively. We aim to prove
that

λk′(W) ≤ λ1(Qv,k′) , (1)

for some µ⊥, µR ∈ R and for every k′ ∈ {0, . . . , n− 1}.
We start by observing that

λk′(W) ≤ λk′+1(W) = λ1(W + µ⊥APk′) , (2)

where the first inequality is given by the non-decreasing ordering of the eigenvalues, and
the equality on the right follows from the fact that for some choice of µ⊥ > λk′+1(W), φk′+1

is the minimizer of x>(W +µ⊥APk′)x under the orthogonality conditions 〈x,x〉L2(X ) = 1
and 〈φl,x〉L2(X ) = 0, ∀l ∈ {1, . . . , k′}, i.e., (µ⊥APk′)x = 0.

Invoking a special case of Corollary 4.3.4b in [1] and using the fact that µRAdiag(v)
only has non-negative eigenvalues (being a diagonal matrix with non-negative entries),
we obtain the following inequality:

λ1(W + µ⊥APk′) ≤ λ1(W + µ⊥APk′) + µRAdiag(v)) = λ1(Qv,k′) . (3)

Furthermore, this inequality is an equality if and only if ∃x ∈ Rn s.t. x 6= 0 and the
following three conditions are satisfied:

1. (W + µ⊥APk′)x = λ1(W + µ⊥APk′)x;

2. (Qv,k′)x = λ1(Qv,k′)x;

3. (µRAdiag(v))x = 0.
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Putting together (2) and (3) we can conclude that:

λk′(W) ≤ λk′+1(W) ≤ λ1(W + µ⊥APk′) ≤ λ1(Qv,k′) . (4)

Note that the existence of a gap is given either by the violation of any of the three
conditions above, or in the presence of simple spectra, i.e., whenever λk′(W) 6= λk′+1(W).

Choice of µ⊥. We aim to prove that for every µ⊥ > γ for some γ ∈ R+ we have:

λ1(W + µ⊥APk′) ≥ λk′+1(W) . (5)

We can rewrite the two terms of this inequality as:

λ1(W + µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W + µ⊥APk′)x (6)

λk′+1(W) = min
〈x,x〉L2(X )=1

〈φi,x〉L2(X )
=0, ∀i=1,...,k′

x>Wx . (7)

The objective in (6) can be rewritten as:

x>(W + µ⊥APk′)x = x>Wx + x>(µ⊥APk′)x . (8)

We now express our vectors as the Fourier series x =
∑n

i=1 αiφi, where αi = 〈φi,x〉L2(X ).

Noting that 〈x,x〉L2(X ) = 1 implies
∑n

i=1 α
2
i = 1, we can write:

x>Wx = (
n∑
i=1

αiφi)
>W(

n∑
i=1

αiφi) = (
n∑
i=1

αiφi)
>(

n∑
i=1

λi(W)αiAφi) =
n∑
i=1

λi(W)α2
i .

(9)
Similarly, we can rewrite the second summand in (8) as:

x>(µ⊥APk′)x = (
n∑
i=1

αiφi)
>(µ⊥APk′)(

n∑
i=1

αiφi) (10)

= µ⊥(
n∑
i=1

αiφi)
>(AΦΦ>A)(

n∑
i=1

αiφi) (11)

= µ⊥

(
(
n∑
i=1

αiφi)
>AΦ

)(
Φ>A(

n∑
i=1

αiφi)
)

(12)

= µ⊥ [α1, . . . , αk′ ] [α1, . . . , αk′ ]
> (13)

= µ⊥

k′∑
i=1

α2
i . (14)

From (9) and (14) we can conclude:

x>(W + µ⊥APk′)x = x>Wx + x>(µ⊥APk′)x =
n∑
i=1

λi(W)α2
i + µ⊥

k′∑
i=1

α2
i . (15)

At this point we split the proof in three different cases:
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1. 〈φi,x〉L2(X ) = 0, ∀i = 1, . . . , k′, that is equivalent to ask that Pk′x = 0. In this case
we have:

λ1(W + µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W + µ⊥APk′)x (16)

= min
〈x,x〉L2(X )=1

〈φi,x〉L2(X )
=0, ∀i=1,...,k′

(x>(W + µ⊥APk′)x) (17)

= min
〈x,x〉L2(X )=1

〈φi,x〉L2(X )
=0, ∀i=1,...,k′

x>Wx = λk′+1(W) . (18)

2. x ∈ span(φ1, . . . ,φk′), implying that αi = 0 ∀i > k′ and hence x =
∑k′

i=1 αiφi. We
get:

x>(W + µ⊥APk′)x =
k′∑
i=1

λi(W)α2
i + µ⊥

k′∑
i=1

α2
i . (19)

Since we take the minimum over the x s.t. 〈x,x〉L2(X ) = 1 we have
∑k′

i=1 α
2
i = 1

and:

x>(W + µ⊥APk′)x =
k′∑
i=1

λi(W)α2
i + µ⊥ ≥ µ⊥ , (20)

where the equality is realized for x = φ1 since λ1(W) = 0, and all other cases yield
µ⊥ plus some non-negative quantity. We get to:

λ1(W + µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W + µ⊥APk′)x = µ⊥ . (21)

3. For the last case we have 〈φi,x〉L2(X ) 6= 0 for at least one i = 1, . . . , k′ and for at
least one i > k′ at the same time.

x>(W + µ⊥APk′)x =
n∑
i=1

λi(W)α2
i + µ⊥

k′∑
i=1

α2
i (22)

=
k′∑
i=1

λi(W)α2
i +

n∑
i=k′+1

λi(W)α2
i + µ⊥

k′∑
i=1

α2
i (23)

=
k′∑
i=1

(λi(W) + µ⊥)α2
i +

n∑
i=k′+1

λi(W)α2
i . (24)

Since λi(W) ≥ λk′+1(W), ∀i ≥ k′ + 1 we can write:

x>(W + µ⊥APk′)x =
k′∑
i=1

(λi(W) + µ⊥)α2
i +

n∑
i=k′+1

λi(W)α2
i (25)

≥
k′∑
i=1

(λi(W) + µ⊥)α2
i + λk′+1(W)

n∑
i=k′+1

α2
i (26)

≥
k′∑
i=1

µ⊥α
2
i + λk′+1(W)

n∑
i=k′+1

α2
i . (27)
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Figure 1: Plot of λ1(W + µ⊥APk′) at increasing µ⊥. Note how for every µ⊥ ≤ λk′+1(W)
the frequency (y-axis) increases, converging at µ⊥ > λk′+1(W). At convergence, the
orthogonality constraint (encoded in the penalty term E⊥(ψ) in the LMH formulation) is
satisfied.

If we take µ⊥ > λk′+1(W) in order to satisfy the condition imposed by case 2, we
get:

x>(W + µ⊥APk′)x ≥
k′∑
i=1

µ⊥α
2
i + λk′+1(W)

n∑
i=k′+1

α2
i (28)

> λk′+1(W)
k′∑
i=1

α2
i + λk′+1(W)

n∑
i=k′+1

α2
i (29)

= λk′+1(W)
n∑
i=1

α2
i (30)

= λk′+1(W) . (31)

We can therefore conclude that

λ1(W + µ⊥APk′) = min
〈x,x〉L2(X )=1

x>(W + µ⊥APk′)x > λk′+1(W) if µ⊥ > λk′+1(W) .

(32)

In Figure 1 we show an empirical evaluation across several choices of µ⊥.

Proof of Theorem 2. We want to show that ∀k ∈ {1, 2, . . . , n} we have the following
upper bound:

λi(Qv,k′) ≤ λi+k′(W
R) .

Similarly to Theorem 1, the proof follows directly from Corollary 4.3.4b in [1], which
specialized to our case reads:

λi(W
R + µ⊥APk′) ≤ λi+π(WR) , (33)

where π is the number of positive eigenvalues of µ⊥APk′ . Since Qv,k′ = WR + µ⊥APk′

and using the fact that µ⊥APk′ is a positive semidefinite matrix with rank k′, we have
π = k′, leading to:

λi(Qv,k′) = λi(W
R + µ⊥APk′) ≤ λi+π(WR) = λi+k′(W

R) . (34)
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