Localized Manifold Harmonics for Spectral Shape Analysis

S. Melzi¹, E. Rodolà^{2,3}, U. Castellani¹, M. M. Bronstein^{2,4,5,6}

¹University of Verona, Italy
 ²USI Lugano, Switzerland
 ³Sapienza University of Rome, Italy
 ⁴Tel Aviv University, Israel
 ⁵Intel Perceptual Computing, Israel
 ⁶IAS, TU Munich, Germany

Supplementary Material

These pages contain proofs for Theorems 1 and 2 appearing in the main paper [2].

Proof of Theorem 1. Let \mathbf{W} , $\mu_{\perp}\mathbf{AP}_{k'}$ and $\mu_{R}\mathbf{A}\operatorname{diag}(\mathbf{v})$ be real symmetric positive semidefinite matrices of dimension $n \times n$, and define $\mathbf{Q}_{v,k'} = \mathbf{W} + \mu_{\perp}\mathbf{AP}_{k'} + \mu_{R}\mathbf{A}\operatorname{diag}(\mathbf{v})$. Let $0 = \lambda_{1}(\mathbf{W}) \leq \ldots \leq \lambda_{n}(\mathbf{W})$ be the eigenvalues for the generalized eigenvalue problem of \mathbf{W} and $\lambda_{1}(\mathbf{W} + \mu_{\perp}\mathbf{AP}_{k'}) \leq \ldots \leq \lambda_{n}(\mathbf{W} + \mu_{\perp}\mathbf{AP}_{k'})$ and $\lambda_{1}(\mathbf{Q}_{v,k'}) \leq \ldots \leq \lambda_{n}(\mathbf{Q}_{v,k'})$ be the generalized eigenvalues of $\mathbf{W} + \mu_{\perp}\mathbf{AP}_{k'}$ and $\mathbf{Q}_{v,k'}$ respectively. We aim to prove that

$$\lambda_{k'}(\mathbf{W}) \le \lambda_1(\mathbf{Q}_{v,k'}),\tag{1}$$

for some $\mu_{\perp}, \mu_R \in \mathbb{R}$ and for every $k' \in \{0, \ldots, n-1\}$.

We start by observing that

$$\lambda_{k'}(\mathbf{W}) \le \lambda_{k'+1}(\mathbf{W}) = \lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}), \qquad (2)$$

where the first inequality is given by the non-decreasing ordering of the eigenvalues, and the equality on the right follows from the fact that for some choice of $\mu_{\perp} > \lambda_{k'+1}(\mathbf{W})$, $\phi_{k'+1}$ is the minimizer of $\mathbf{x}^{\top}(\mathbf{W} + \mu_{\perp}\mathbf{AP}_{k'})\mathbf{x}$ under the orthogonality conditions $\langle \mathbf{x}, \mathbf{x} \rangle_{L^{2}(\mathcal{X})} = 1$ and $\langle \phi_{l}, \mathbf{x} \rangle_{L^{2}(\mathcal{X})} = 0$, $\forall l \in \{1, \ldots, k'\}$, i.e., $(\mu_{\perp}\mathbf{AP}_{k'})\mathbf{x} = \mathbf{0}$.

Invoking a special case of Corollary 4.3.4b in [1] and using the fact that $\mu_R \mathbf{A} \operatorname{diag}(\mathbf{v})$ only has non-negative eigenvalues (being a diagonal matrix with non-negative entries), we obtain the following inequality:

$$\lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \le \lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) + \mu_R \mathbf{A} \operatorname{diag}(\mathbf{v})) = \lambda_1(\mathbf{Q}_{v,k'}).$$
(3)

Furthermore, this inequality is an equality if and only if $\exists \mathbf{x} \in \mathbb{R}^n$ s.t. $\mathbf{x} \neq 0$ and the following three conditions are satisfied:

- 1. $(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'})\mathbf{x} = \lambda_1 (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'})\mathbf{x};$
- 2. $(\mathbf{Q}_{v,k'})\mathbf{x} = \lambda_1(\mathbf{Q}_{v,k'})\mathbf{x};$
- 3. $(\mu_R \operatorname{Adiag}(\mathbf{v}))\mathbf{x} = 0.$

Putting together (2) and (3) we can conclude that:

$$\lambda_{k'}(\mathbf{W}) \le \lambda_{k'+1}(\mathbf{W}) \le \lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \le \lambda_1(\mathbf{Q}_{v,k'}).$$
(4)

Note that the existence of a gap is given either by the violation of any of the three conditions above, or in the presence of simple spectra, i.e., whenever $\lambda_{k'}(\mathbf{W}) \neq \lambda_{k'+1}(\mathbf{W})$.

Choice of μ_{\perp} . We aim to prove that for every $\mu_{\perp} > \gamma$ for some $\gamma \in \mathbb{R}^+$ we have:

$$\lambda_1(\mathbf{W} + \mu_\perp \mathbf{A} \mathbf{P}_{k'}) \ge \lambda_{k'+1}(\mathbf{W}).$$
(5)

We can rewrite the two terms of this inequality as:

$$\lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) = \min_{\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1} \mathbf{x}^\top (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x}$$
(6)

$$\lambda_{k'+1}(\mathbf{W}) = \min_{\substack{\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1 \\ \langle \phi_i, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 0, \quad \forall i=1,\dots,k'}} \mathbf{x}^\top \mathbf{W} \mathbf{x} \,. \tag{7}$$

The objective in (6) can be rewritten as:

$$\mathbf{x}^{\top} (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} = \mathbf{x}^{\top} \mathbf{W} \mathbf{x} + \mathbf{x}^{\top} (\mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} \,. \tag{8}$$

We now express our vectors as the Fourier series $\mathbf{x} = \sum_{i=1}^{n} \alpha_i \phi_i$, where $\alpha_i = \langle \phi_i, \mathbf{x} \rangle_{L^2(\mathcal{X})}$. Noting that $\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1$ implies $\sum_{i=1}^{n} \alpha_i^2 = 1$, we can write:

$$\mathbf{x}^{\top}\mathbf{W}\mathbf{x} = (\sum_{i=1}^{n} \alpha_i \phi_i)^{\top} \mathbf{W} (\sum_{i=1}^{n} \alpha_i \phi_i) = (\sum_{i=1}^{n} \alpha_i \phi_i)^{\top} (\sum_{i=1}^{n} \lambda_i (\mathbf{W}) \alpha_i \mathbf{A} \phi_i) = \sum_{i=1}^{n} \lambda_i (\mathbf{W}) \alpha_i^2.$$
(9)

Similarly, we can rewrite the second summand in (8) as:

$$\mathbf{x}^{\top}(\mu_{\perp}\mathbf{A}\mathbf{P}_{k'})\mathbf{x} = (\sum_{i=1}^{n} \alpha_{i}\phi_{i})^{\top}(\mu_{\perp}\mathbf{A}\mathbf{P}_{k'})(\sum_{i=1}^{n} \alpha_{i}\phi_{i})$$
(10)

$$= \mu_{\perp} (\sum_{i=1}^{n} \alpha_i \phi_i)^{\top} (\mathbf{A} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \mathbf{A}) (\sum_{i=1}^{n} \alpha_i \phi_i)$$
(11)

$$= \mu_{\perp} \Big((\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i})^{\top} \mathbf{A} \boldsymbol{\Phi} \Big) \Big(\boldsymbol{\Phi}^{\top} \mathbf{A} (\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\phi}_{i}) \Big)$$
(12)

$$= \mu_{\perp} \left[\alpha_1, \dots, \alpha_{k'} \right] \left[\alpha_1, \dots, \alpha_{k'} \right]^{\top}$$
(13)

$$=\mu_{\perp}\sum_{i=1}^{\infty}\alpha_i^2.$$
(14)

From (9) and (14) we can conclude:

$$\mathbf{x}^{\top}(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'})\mathbf{x} = \mathbf{x}^{\top} \mathbf{W} \mathbf{x} + \mathbf{x}^{\top} (\mu_{\perp} \mathbf{A} \mathbf{P}_{k'})\mathbf{x} = \sum_{i=1}^{n} \lambda_{i}(\mathbf{W})\alpha_{i}^{2} + \mu_{\perp} \sum_{i=1}^{k'} \alpha_{i}^{2}.$$
 (15)

At this point we split the proof in three different cases:

1. $\langle \phi_i, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 0$, $\forall i = 1, ..., k'$, that is equivalent to ask that $\mathbf{P}_{k'}\mathbf{x} = \mathbf{0}$. In this case we have:

$$\lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) = \min_{\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1} \mathbf{x}^\top (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x}$$
(16)

$$= \min_{\substack{\langle \mathbf{x}, \mathbf{x} \rangle_{L^{2}(\mathcal{X})} = 1 \\ \langle \phi_{i}, \mathbf{x} \rangle_{L^{2}(\mathcal{X})} = 0, \forall i=1,\dots,k'}} (\mathbf{x}^{\top} (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x})$$
(17)

$$= \min_{\substack{\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1 \\ \langle \phi_i, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 0, \forall i = 1, \dots, k'}} \mathbf{x}^\top \mathbf{W} \mathbf{x} = \lambda_{k'+1}(\mathbf{W}).$$
(18)

2. $\mathbf{x} \in span(\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_{k'})$, implying that $\alpha_i = 0 \ \forall i > k'$ and hence $\mathbf{x} = \sum_{i=1}^{k'} \alpha_i \boldsymbol{\phi}_i$. We get:

$$\mathbf{x}^{\top} (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} = \sum_{i=1}^{k'} \lambda_i (\mathbf{W}) \alpha_i^2 + \mu_{\perp} \sum_{i=1}^{k'} \alpha_i^2.$$
(19)

Since we take the minimum over the **x** s.t. $\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1$ we have $\sum_{i=1}^{k'} \alpha_i^2 = 1$ and:

$$\mathbf{x}^{\top}(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} = \sum_{i=1}^{k'} \lambda_i(\mathbf{W}) \alpha_i^2 + \mu_{\perp} \ge \mu_{\perp} , \qquad (20)$$

where the equality is realized for $\mathbf{x} = \boldsymbol{\phi}_1$ since $\lambda_1(\mathbf{W}) = 0$, and all other cases yield μ_{\perp} plus some non-negative quantity. We get to:

$$\lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) = \min_{\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1} \mathbf{x}^\top (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} = \mu_{\perp}.$$
 (21)

3. For the last case we have $\langle \phi_i, \mathbf{x} \rangle_{L^2(\mathcal{X})} \neq 0$ for at least one $i = 1, \ldots, k'$ and for at least one i > k' at the same time.

$$\mathbf{x}^{\mathsf{T}}(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} = \sum_{i=1}^{n} \lambda_i(\mathbf{W}) \alpha_i^2 + \mu_{\perp} \sum_{i=1}^{k'} \alpha_i^2$$
(22)

$$=\sum_{i=1}^{k'}\lambda_i(\mathbf{W})\alpha_i^2 + \sum_{i=k'+1}^n\lambda_i(\mathbf{W})\alpha_i^2 + \mu_{\perp}\sum_{i=1}^{k'}\alpha_i^2 \qquad (23)$$

$$=\sum_{i=1}^{k'} (\lambda_i(\mathbf{W}) + \mu_\perp) \alpha_i^2 + \sum_{i=k'+1}^n \lambda_i(\mathbf{W}) \alpha_i^2.$$
(24)

Since $\lambda_i(\mathbf{W}) \ge \lambda_{k'+1}(\mathbf{W}), \forall i \ge k'+1$ we can write:

$$\mathbf{x}^{\top}(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} = \sum_{i=1}^{k'} (\lambda_i(\mathbf{W}) + \mu_{\perp}) \alpha_i^2 + \sum_{i=k'+1}^n \lambda_i(\mathbf{W}) \alpha_i^2$$
(25)

$$\geq \sum_{i=1}^{k'} (\lambda_i(\mathbf{W}) + \mu_\perp) \alpha_i^2 + \lambda_{k'+1}(\mathbf{W}) \sum_{i=k'+1}^n \alpha_i^2 \qquad (26)$$

$$\geq \sum_{i=1}^{k'} \mu_{\perp} \alpha_i^2 + \lambda_{k'+1}(\mathbf{W}) \sum_{i=k'+1}^n \alpha_i^2.$$
 (27)

Figure 1: Plot of $\lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{AP}_{k'})$ at increasing μ_{\perp} . Note how for every $\mu_{\perp} \leq \lambda_{k'+1}(\mathbf{W})$ the frequency (y-axis) increases, converging at $\mu_{\perp} > \lambda_{k'+1}(\mathbf{W})$. At convergence, the orthogonality constraint (encoded in the penalty term $\mathcal{E}_{\perp}(\psi)$ in the LMH formulation) is satisfied.

If we take $\mu_{\perp} > \lambda_{k'+1}(\mathbf{W})$ in order to satisfy the condition imposed by case 2, we get:

$$\mathbf{x}^{\top}(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} \ge \sum_{i=1}^{k'} \mu_{\perp} \alpha_i^2 + \lambda_{k'+1}(\mathbf{W}) \sum_{i=k'+1}^n \alpha_i^2$$
(28)

$$> \lambda_{k'+1}(\mathbf{W}) \sum_{i=1}^{k'} \alpha_i^2 + \lambda_{k'+1}(\mathbf{W}) \sum_{i=k'+1}^n \alpha_i^2$$
(29)

$$=\lambda_{k'+1}(\mathbf{W})\sum_{i=1}^{n}\alpha_i^2\tag{30}$$

$$=\lambda_{k'+1}(\mathbf{W}). \tag{31}$$

We can therefore conclude that

$$\lambda_1(\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) = \min_{\langle \mathbf{x}, \mathbf{x} \rangle_{L^2(\mathcal{X})} = 1} \mathbf{x}^\top (\mathbf{W} + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \mathbf{x} > \lambda_{k'+1}(\mathbf{W}) \text{ if } \mu_{\perp} > \lambda_{k'+1}(\mathbf{W}).$$
(32)

In Figure 1 we show an empirical evaluation across several choices of μ_{\perp} .

Proof of Theorem 2. We want to show that $\forall k \in \{1, 2, ..., n\}$ we have the following upper bound:

$$\lambda_i(\mathbf{Q}_{v,k'}) \le \lambda_{i+k'}(\mathbf{W}^R)$$

Similarly to Theorem 1, the proof follows directly from Corollary 4.3.4b in [1], which specialized to our case reads:

$$\lambda_i(\mathbf{W}^R + \mu_\perp \mathbf{A} \mathbf{P}_{k'}) \le \lambda_{i+\pi}(\mathbf{W}^R), \qquad (33)$$

where π is the number of positive eigenvalues of $\mu_{\perp} \mathbf{AP}_{k'}$. Since $\mathbf{Q}_{v,k'} = \mathbf{W}^R + \mu_{\perp} \mathbf{AP}_{k'}$ and using the fact that $\mu_{\perp} \mathbf{AP}_{k'}$ is a positive semidefinite matrix with rank k', we have $\pi = k'$, leading to:

$$\lambda_i(\mathbf{Q}_{v,k'}) = \lambda_i(\mathbf{W}^R + \mu_{\perp} \mathbf{A} \mathbf{P}_{k'}) \le \lambda_{i+\pi}(\mathbf{W}^R) = \lambda_{i+k'}(\mathbf{W}^R).$$
(34)

References

- [1] R. A. Horn and C. R. Johnson. *Matrix analysis*. Cambridge university press, 2012.
- [2] S. Melzi, E. Rodolà, U. Castellani, and M. M. Bronstein. Localized manifold harmonics for spectral shape analysis. *Computer Graphics Forum*.