
Scene Graph Generation for Better Image Captioning?

Maximilian Mozes1,3 Martin Schmitt2 Vladimir Golkov1

Hinrich Schütze2 Daniel Cremers1
1Computer Vision Group, Technical University of Munich

2Center for Information and Language Processing (CIS), LMU Munich
3University College London
maximilian.mozes@ucl.ac.uk

Abstract
We investigate the incorporation of visual re-
lationships into the task of supervised image
caption generation by proposing a model that
leverages detected objects and auto-generated
visual relationships to describe images in nat-
ural language. To do so, we first generate a
scene graph from raw image pixels by identify-
ing individual objects and visual relationships
between them. This scene graph then serves as
input to our graph-to-text model, which gener-
ates the final caption. In contrast to previous
approaches, our model thus explicitly models
the detection of objects and visual relation-
ships in the image. For our experiments we
construct a new dataset from the intersection
of Visual Genome and MS COCO, consist-
ing of images with both a corresponding gold
scene graph and human-authored caption. Our
results show that our methods outperform ex-
isting state-of-the-art end-to-end models that
generate image descriptions directly from raw
input pixels when compared in terms of the
BLEU and METEOR evaluation metrics.

1 Introduction

Recent works dealing with the generation of text
from data structures such as images (e.g., Karpathy
and Li, 2015; Vinyals et al., 2015), videos (e.g.,
Venugopalan et al., 2015) or audio (e.g., Graves
et al., 2013) have shown that supervised learning
algorithms are capable of aligning semantic con-
cepts across different modalities. In this work, we
focus on the task of automatic image captioning,
a widely-studied task at the intersection of vision
and language research. Most approaches to im-
age captioning operate by conditioning a decoder
model on an abstracted representation of the in-
put image instead of explicitly taking detected ob-
jects and visual relationships into account (e.g.,
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Karpathy and Li, 2015; Xu et al., 2015). How-
ever, natural language descriptions in general and
captions in particular are dominated by discrete
objects standing in discrete relations. By forcing
the generation process to go through a scene graph
consisting of objects and relations, we impose an
appropriate structural bias that is lacking in direct
pixel-to-caption generation. We therefore approach
the task of supervised image caption generation
by developing an architecture that makes explicit
use of detected visual objects and their semantic
relationships in a given input image to generate
an image description in natural language. More
specifically, our method consists of a two-step ap-
proach that first extracts a scene graph (i.e., objects
and their visual relationships) from an input image
and then utilizes this representation to generate an
image description in natural language. In doing so,
we incorporate an existing method for supervised
scene graph generation, i.e., MOTIFNET (Zellers
et al., 2018), to extract visual semantic concepts
from images and represent them in form of scene
graphs.

Scene graphs have been utilized in a variety of
tasks such as image retrieval (e.g., Johnson et al.,
2015) and image generation (Johnson et al., 2018)
and are of particular interest for tasks dealing with
the alignment of visual and textual concepts, since
the representations utilize words to describe phe-
nomena that are present in visual scenarios. While
numerous approaches for image-to-graph genera-
tion and visual relationship detection have been pro-
posed in recent years (e.g., Lu et al., 2016; Newell
and Deng, 2017; Li et al., 2017; Yang et al., 2018a;
Zellers et al., 2018; Zhang et al., 2019), little atten-
tion has thus far been paid to the problem of graph-
to-text generation. We hence propose a variety of
methods utilizing recurrent neural network mecha-
nisms operating on scene graphs for the generation
of natural language and show that the presence of
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visual objects and their relationships is beneficial
for the automatic description of images.

Our work thus presents the following main con-
tributions:

1. We propose a two-step supervised learning
approach that generates scene graphs from
raw input pixels and utilizes these graph rep-
resentations to generate image descriptions in
natural language.

2. We show that such a simple two-step approach
outperforms conventional CNN-LSTM image
captioning architectures.

2 Related work

The problem of end-to-end image caption genera-
tion has been studied widely in the context of deep
learning in recent years. Pioneering approaches
to this problem utilize a combination of convolu-
tional and recurrent neural networks processing
the visual and textual data representations, respec-
tively. Multiple encoder-decoder approaches have
been proposed that employ a CNN transforming a
raw input image to a dense vector representation
which is then used to condition a neural language
model generating a descriptive sequence in natural
language (e.g., Chen and Zitnick, 2015; Donahue
et al., 2015; Vinyals et al., 2015; Karpathy and Li,
2015; Wang et al., 2016).

Building upon this idea, Xu et al. (2015) propose
the first approach to incorporate an additional atten-
tion mechanism into the model’s decoder, enabling
it to refer back to the abstracted image representa-
tion at each time step during the generation of an
image caption. Subsequent approaches extend the
incorporation of attention mechanisms for image
captioning (e.g., Yang et al., 2016; Lu et al., 2017;
Khademi and Schulte, 2018). For instance, Lu et al.
(2017) extend the idea of incorporating visual atten-
tion to the image caption generation task by intro-
ducing an adaptive attention mechanism allowing
the model to decide to what extent it should rely on
the visual and linguistic features when generating
an image caption.

2.1 Generating image captions from visual
relationships

Although comparatively little attention has been
paid to the generation of image captions via vi-
sual relationships, there exists a variety of works

employing these characteristics to generate image
captions.

Yao et al. (2018) propose an architecture that uti-
lizes region-based visual relationships to generate
an image caption for a given image. Specifically,
their method uses the Faster R-CNN (Ren et al.,
2015) object detector to identify a set of objects
present in an input image. Afterwards, a classifica-
tion method is applied on pairs of detected objects
to identify their most probable semantic relation-
ship. The resulting graph representation is then
forwarded to two Graph Convolutional Neural Net-
works (CGN) that generate relation-aware region
features for all the detected regions based on their
predicted visual relationships. Finally, a two-layer
LSTM is conditioned on the region-level features
generated by the CGN module, and generates the
image caption based on this representation. Yao
et al. (2018) additionally install an attention mech-
anism in the LSTM decoder that operates over the
region features at each time step when generating
the output predictions.

Moreover, Yang et al. (2018b) propose the in-
corporation of scene graphs into image captioning
by utilizing them to model language inductive bias
during the task, and Kim et al. (2019) propose a
dense captioning mechanism that produces multi-
ple individual captions per image. Their approach
initially uses a bounding box object detector that
identifies object regions present in an input image.
Afterwards, a recurrent neural network is trained
to generate a caption for each relational pair of
identified objects.

Two recent works published by Li and Jiang
(2019) and Hou et al. (2019) present approaches
that are similar to our work. Li and Jiang (2019)
combine scene graphs for image captioning in
conjunction with a hierarchical attention network.
Their approach first uses a Region Proposal Net-
work (Girshick, 2015) to compute object propos-
als for an input image. These proposals are then
used to generate both a visual feature representation
and semantic relationship features, which are for-
warded to an LSTM decoder with a hierarchical at-
tention module generating the image caption. Hou
et al. (2019) provide a different method for incor-
porating scene graphs into the image captioning
pipeline by utilizing scene graphs sourced from the
Visual Genome dataset as external prior knowledge
graphs.



Figure 1: Illustration and comparison of the Pixel2Caption+att (described in a)) and our G-LSTM+att (shown in
b)) methods. Pixel2Caption+att processes the input image by computing a dense numerical representation using
a CNN which is then used to condition an LSTM that generates the image caption. G-LSTM+att, in contrast,
utilizes MOTIFNET to craft a scene graph from the input image, which is then processed by an LSTM to generate
the final caption.

3 Method

The proposed approach for generating image cap-
tions via visual relationships is divided into two
parts. Our model tackles the image-to-text genera-
tion task by first generating an intermediate scene
graph representation of the input image and then
decodes an image caption from this representation.
Hence, our method conducts image-to-graph-to-
text generation by approaching the subtasks of
image-to-graph and graph-to-text in an isolated
fashion. To achieve this, we use two neural net-
work architectures that focus on each task indepen-
dently, and stack both architectures together once
they have been trained.

3.1 Scene graph generation

We initially aim to solve the problem of image-to-
graph generation, i.e., generating a scene graph
consisting of objects and visual relationships
present in a given input image. Formally, our scene
graph generator crafts a scene graph GI = (V,E)
for an input image I that consists of a set of nodes
V and corresponding directed edges E ⊆ V × V .
Each node v is associated with a label κ(v), rep-
resenting an object in an image (e.g., car, person,
building). Likewise, each edge e = (vi, vj) ∈ E
is assigned a label κ(e) denoting a relationship be-
tween the two objects κ(vi) and κ(vj) (e.g., above,
on).

In order to generate a graph GI from raw in-
put pixels I , we make use of an existing scene
graph generation model called MOTIFNET (Zellers
et al., 2018). This method represents a scene
graph as a triplet GM = (B,O,R), with

B = {b1, . . . , bn}, bi ∈ R4 a set of bound-
ing boxes, O = {o1, . . . , on} a set of objects
where each oi corresponds to a bounding box
bi, and R = {r1, . . . , rm} a set of relation-
ships where each relationship rk is a triplet rk =
((bi, oi), (bj , oj), xi→j). Here, (bi, oi), (bj , oj) ∈
B × O represent the start and end node of the re-
lationship and xi→j ∈ R denotes the relationship
between both nodes from all possible relationships
R. Based on this scene graph representation, MO-
TIFNET computes the probability P (GM | I) of ob-
serving graph GM given image I by decomposing
it into three parts:

P (GM | I) = P (B | I)·P (O |B, I)·P (R |B,O, I)

Zellers et al. (2018) model P (B | I) with the
Faster R-CNN (Ren et al., 2015) bounding box
detection model. They then employ two LSTM
networks (Hochreiter and Schmidhuber, 1997)
to estimate the bounding box labels P (O |B, I).
Subsequently, the authors employ a bidirectional
LSTM to compute the relationships between ob-
jects identified by the object detector as denoted by
P (R |B,O, I). To do so, all possible pairs of de-
tected objects are taken into account and the LSTM
computes a probability distribution over all poten-
tial relationships inR for each pair of objects.

3.2 Graph-to-text generation

Once we have generated a graph representation
GI = (V,E) for an input image I , we utilize an
LSTM decoder with an additional attention mecha-
nism over the graph to generate an output sequence
in natural language. Our architecture receives a



set of graph nodes V and maps each node v ∈ V
to an embedding representation v ∈ RD corre-
sponding to its node label κ(v). Hence, in order
to represent visual relationships in this setup, we
first transform our graph GI to a new representa-
tion G′I = (V ′, E′) that differs from GI in that
each edge label is now assigned an individual node
in the graph, i.e., for each e = (vi, vj) ∈ E we
create a new node v′ such that κ(e) = κ(v′) and
add edges e′i = (vi, v

′), e′j = (v′, vj) to E′ with
κ(e′i) = κ(e′j) = None.

Our method then applies an LSTM to the matrix
V = [v1, . . . ,vn] ∈ RD×n of each node’s embed-
ding representation. To do so, we follow Xu et al.
(2015) and first initialize the LSTM’s hidden and
cell states as

h0 = ψh

(
1

n

n∑
i=1

vi

)
c0 = ψc

(
1

n

n∑
i=1

vi

)
,

where ψh and ψc are two independent multilayer
perceptrons. Based on this initial conditioning, we
then decode the image caption by sampling from

p(yt |yt−1,V) ∝ exp(Po tanh(EWyt−1+Phht))

at each time step t, thereby also following Xu
et al. (2015). Here, EW ∈ RD×V represents our
word embedding matrix (V is the vocabulary size),
yt−1 ∈ {0, 1}V is a one-hot representation of the
model’s prediction at time step t− 1 (or a special
start token at t = 0), ht is the LSTM’s hidden state
at time step t and Po,Ph are trainable parameter
matrices. In the remainder of this work, we refer
to the combination of our graph encoder and this
type of decoder as G-LSTM.

Our second model variant incorporates an ad-
ditional attention mechanism operating over the
latent graph representation V at each time step t of
the LSTM. We adapt Xu et al. (2015)’s approach
for image captioning with visual attention and re-
place the latent image representation with our graph
nodes, thus enabling our model to refer back to the
graph representation and identify the most salient
nodes at each time step during the generation of the
output sequence. We call this extended approach
G-LSTMA.

3.3 Encoding visual relationships
The aforementioned G-LSTM+att does not explic-
itly incorporate the visual relationships between
objects as represented in the scene graph, but in-
stead only processes all object and relationship

nodes to generate an image caption. We thus ex-
periment with the incorporation of an additional
graph encoder that maps the initial graph represen-
tation V = {v1, . . . ,vn} to an output representa-
tion V′ = {v′1, . . . ,v′n}. The task of this graph
encoder is to encode relational information for each
graph node into its corresponding graph embedding
to provide the decoder with semantic dependencies
between individual nodes in the graph. Addition-
ally, the encoder has the ability to process indirect
connections between entities in order to contex-
tualize global relationships between entities that
are indirectly connected through multiple edges.
Graph Attention Networks (GAT; Veličković et al.
(2018)) represent a gradient-based approach that
transforms an input graph by individually attending
over each node’s neighborhood to encode relational
information into the resulting node representations.
For a given input graphG = (V,E), we then define
a graph representation G = (V,E), where

E = {{vi,vj} | (vi, vj) ∈ E ∨ (vj , vi) ∈ E}

represents the set of undirected edges in G corre-
sponding to E.

GAT layers transform the node representations
by computing attention over their neighborhoods.
Formally, letNi denote the neighborhood of a node
embedding vi ∈ V. A GAT layer φ : RD → RD′

then transforms each vi to v′i by computing

v′i = φ(vi) = σ

 ∑
vj∈Ni

αijWvj

 .

Here, σ represents the sigmoid function and αij is
an attention coefficient with respect to the nodes vi

and vj . We follow Veličković et al. (2018) and set

αij =
exp(LR(aT [Wvi||Wvj ]))∑

vk ∈Ni

exp(LR(aT [Wvi||Wvk]))

where W ∈ RD′×D,a ∈ R2D′
are trainable

weight matrices, || represents vector concatenation
and LR(·) denotes the LeakyReLU activation func-
tion. In our experiments, we define Ni := {v ∈
V | {vi,v} ∈ E} ∪ {vi} to ensure a direct connec-
tion between an input node vi and its transforma-
tion φ(vi) in each GAT layer.

Our final graph encoder then consists of multi-
ple GAT layers that are executed sequentially to
transform the node embedding representations with
respect to their relationships in the graph. Once



our encoder has processed the initial graph embed-
ding representation, we then feed our G-LSTM
models with this representation and train the en-
tire model in an end-to-end fashion. We denote
both model variants with G-LSTM+enc and G-
LSTM+enc+att.

3.4 Conventional image captioning baselines

To provide a comparison between our approach
and the conventional CNN-LSTM image caption-
ing, we adapt Xu et al. (2015)’s method. We pre-
process each input image using the VGG19 net-
work (Simonyan and Zisserman, 2015) pre-trained
on ImageNet, and condition our LSTM language
model on the 14 × 14 × 512 feature representa-
tion emitted by the fifth layer of VGG19 before
applying max-pooling. Analogously to the graph-
to-text models, we furthermore experiment with
an additional visual attention mechanism operating
over the input image (see Xu et al. (2015)). We
denote both approaches with Pixel2Caption and
Pixel2Caption+att.

Figure 1 provides an overview and comparison
of both the G-LSTM+att and Pixel2Caption+att
models. Both follow a similar technique of firstly
encoding an input image by transforming it to a
latent representation. This latent representation is
then used to decode the corresponding image cap-
tion using an attention mechanism. However, a
major difference between Pixel2Caption+att and
G-LSTM+att is that the latent representation of the
latter (i.e., the scene graph) allows humans to ex-
plicitly observe which visual and contextual infor-
mation have been extracted from the image. This
property is not given for the Pixel2Caption+att
approach, since the latent representation emitted
by the CNN is highly abstracted and hence less
interpretable.

4 Experiments

We conduct a series of experiments on a subset
of the Visual Genome (Krishna et al., 2017) and
MS COCO (Lin et al., 2014) datasets consisting
of images accompanied by bounding boxes, scene
graphs and individual image captions.

We use the BLEU (Papineni et al., 2002) and
METEOR (Denkowski and Lavie, 2014) evalua-
tion metrics to measure the performance of our pro-
posed approaches and to be able to compare them
to existing methods for image caption generation.
Both metrics have been used in a variety of studies

related to image caption generation (e.g., Xu et al.,
2015; Vinyals et al., 2015; Lu et al., 2017).

1. a clock tower is in the gray sky.

2. clock tower ascending into overcast sky from
buildings below.

3. a church tower that has a clock for the public.

4. brick building with clock tower in urban
setting.

5. a tall clock tower near a building.

Figure 2: An example triplet of our generated dataset.
The image is present in both the Visual Genome and
MS COCO datasets. The scene graph is taken from a
modified set of scene graphs from Visual Genome (Xu
et al., 2017) and the five image captions are taken from
MS COCO.

4.1 Datasets

Our dataset consists of a subset of all 51,498 im-
ages at the intersection of the Visual Genome and
MS COCO datasets. First, we split the 51,498 im-
ages into a test set of 5,000 images, a validation set
of 1,000 images and a training set of 45,498 sam-
ples. Operating on the intersection of VG and MS
COCO allows us to craft triplet samples consisting
of an image, a corresponding scene graph and a list
of captions describing the image. In order to be as
consistent as possible with the existing literature on
scene graph generation, we then match all dataset
samples with a modified Visual Genome dataset
as explained in Xu et al. (2017), considering only
the 150 most common object categories and 50
most common relationships. As each image in the
training set is on average accompanied by 5.002
captions sourced from MS COCO, the graph-to-
text generation module can be trained with a total
amount of 221,792 (scene graph, caption) pairs.



Model B-1 B-2 B-3 B-4 METEOR

Pixel2Caption 65.58 43.93 29.58 20.40 22.90
Pixel2Caption+att 66.09 44.04 29.32 19.96 22.65

G-LSTM 67.29 45.47 30.48 20.85 23.79
G-LSTM+att 67.71 45.95 30.63 20.70 23.87
G-LSTM+enc 66.30 43.56 28.33 18.82 22.75
G-LSTM+enc+att 65.63 43.69 28.81 19.48 23.33

Table 1: BLEU and METEOR scores for all trained
models when evaluated on the test set. The
Pixel2Caption and Pixel2Caption+att models were
evaluated on the VGG image representations, and all G-
LSTM models were evaluated on the scene graphs gen-
erated by MOTIFNET (trained and tuned on our train-
ing and validation sets, respectively). Bold values in-
dicate best performances for each evaluation criterion
across all models.

An example for a single element from our gener-
ated dataset (image, scene graph and captions) can
be found in Figure 2.

During validation and testing, we evaluated our
model’s predictions using all available captions for
a given image.

4.2 Implementation details and training

We trained the individual submodules responsible
for the image-to-graph and graph-to-text generation
independently on the aforementioned datasets.

The scene graph generator was trained by strictly
following Zellers et al. (2018)’s approach to train
their proposed model.1 This approach consists of
three phases. First, a Faster R-CNN object detector
with a VGG backbone is pre-trained in isolation to
learn the extraction of objects and corresponding
bounding boxes from images. We adhered to the ar-
chitecture and parameter setup as explained in their
work, and trained the detector for 50 epochs. After
training the object detector, we trained the MO-
TIFNET module for 26 epochs without modifying
the authors’ implementation setup (this includes the
adaptation to scene graph detection as explained
in Zellers et al. (2018), Section 5.2). For the graph-
to-text models, we tokenized all sequences used
during training using the NLTK tokenize pack-
age (Loper and Bird, 2002). We did not exclude
infrequent vocabulary tokens during our analysis.
All reported models were trained using the Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 1 · 10−4. In terms of model regularization,
we used dropout (Srivastava et al., 2014) in both

1We followed the authors’ instructions on https://
github.com/rowanz/neural-motifs.

the encoder and the decoder during training. In
the encoder, we added a dropout mechanism with
a rate of 0.25 at each GAT layer directly before
computing the weighted sum of the transformer
graph inputs. In the decoder, we adhered to the use
of dropout as realized by Xu et al. (2015) and used
a dropout rate of 0.5. Moreover, we use batch nor-
malization (Ioffe and Szegedy, 2015) in the LSTM
decoder by normalizing the encoder outputs before
transforming them to the LSTM’s initial hidden
and cell states. Our graph encoder consists of two
consecutive GAT layers that are operating on a di-
mension of D = 512. We set the dimension of the
trainable graph and word embeddings to the same
size and utilize a single-layer LSTM with 1024
hidden units as decoder.

We trained our two conventional image
captioning baselines Pixel2Caption and
Pixel2Caption+att with the same hyperparameter
settings.

4.3 Tuning MOTIFNET on the validation set

For a given input image, the trained MOTIFNET

generates both a list of detected bounding boxes
along with their predicted labels as well as a list of
relationship predictions between the identified ob-
jects. In detail, it outputs a probability distribution
over all possible 50 relationship predicates for each
pair of predicted objects. However, the Faster R-
CNN object detector predicts certain bounding box
labels with low confidence values which might re-
sult in scene graph representations with high model
uncertainty. To account for this problem, and to
limit the size (i.e., number of nodes) of the gen-
erated scene graphs, we experimented with vari-
ous confidence threshold values representing lower
bounds for the confidence values of the object de-
tector to be considered a valid object of an image.
Specifically, we considered the confidence thresh-
olds 0.2, 0.4, 0.6, and 0.8 for our trained models.
For each of the four G-LSTM model variants, we
thus evaluated to what extent these different confi-
dence thresholds affected the overall model perfor-
mances (in terms of METEOR) by experimenting
how the model variants perform on the validation
set with each of the parameter values. Our results
suggest that the G-LSTM, G-LSTM+enc+att and
G-LSTM+enc models exhibit their best perfor-
mance with a confidence threshold of 0.4, while
the G-LSTM+att variant performs best with a con-
fidence threshold of 0.2.

https://github.com/rowanz/neural-motifs
https://github.com/rowanz/neural-motifs


Model B-1 B-2 B-3 B-4 METEOR

G-LSTM 69.09 47.85 32.76 22.77 24.80
G-LSTM+att 69.48 48.31 33.16 22.91 24.81
G-LSTM+enc 67.65 45.74 30.51 20.77 23.79
G-LSTM+enc+att 68.06 46.87 31.79 21.90 24.56

Table 2: BLEU and METEOR scores for all graph-
based models when evaluated on the ground-truth
scene graphs in the test set. Bold values indicate best
performances for each evaluation criterion across all
models.

Once we have identified all valid predicted ob-
jects present in the image, we selected the graph’s
relationships by considering all relationships be-
tween valid objects suggested by MOTIFNET and
assigned the predicate with highest probability as
the relationship label.

Finally, we removed all duplicate nodes and iden-
tical relationships from the crafted scene graph. If
a generated scene graph exceeds the maximum size
(i.e., number of nodes) of the graphs used during
training, we limit the graph’s size to this maxi-
mum size by removing the object nodes exhibiting
the lowest prediction confidences. Moreover, if
a scene graph consists of less than two predicted
object nodes, we ignore the sample during testing.

Image Generated graph

G-LSTM+att: a bird is perched on a rock in the
water.
Pixel2Caption+att: a bird is flying in the air on a
beach.

Figure 3: Comparison of generated image cap-
tions from both the G-LSTM+att and the
Pixel2Caption+att models. The graph shown on
the right-hand side has been generated from the input
image (left-hand side) using the trained MOTIFNET.
The sequences below the image and graph represent
the predicted captions for both systems.

4.4 Results

Quantitative results of all our models can be found
in Table 1. The results of all graph-based mod-
els are based on the scene graphs generated by

MOTIFNET, which we trained before on our new
dataset. The results in Table 1 show that both the
G-LSTM+att and the G-LSTM outperform both
the Pixel2Caption and Pixel2Caption+att in ev-
ery metric, indicating that our proposed models
represent a suitable alternative to the conventional
image captioning approaches. Figure 3 shows
qualitative results of the Pixel2Caption+att and
G-LSTM+att approaches in comparison, showing
that our model is able to produce accurate captions
even in the presence of imperfect auto-generated
scene graphs. Furthermore, it is interesting to ob-
serve that the additional graph encoder operating
over the input scene graph leads to performance de-
creases of our G-LSTM model. In addition to that,
for both the conventional and the captioning model
based on scene graphs, the attention mechanism
operating on the decoding LSTM only slightly im-
proves the overall model performance across our
evaluation metrics.

To further assess the performance of our mod-
els when operating on generated scene graphs, we
provide metrics for all model variants when eval-
uated on the ground-truth gold scene graphs as
provided in the Visual Genome dataset in Table 2.
Our models exhibit even higher performances when
evaluated on the gold scene graphs, indicating that
our method has the potential to benefit from future
progress in the field of scene graph generation.

4.5 Limitations

The presented method imposes a number of limita-
tions that we would like to address in the following
paragraph. First, our image-to-graph-to-text model
utilizes a scene graph generation model that is re-
stricted to predicting only 150 different object la-
bels and 50 different edge labels. This represents a
notable limitation to the model since it is explicitly
trained to predict diverse English sentences from
only a small subset of semantic concepts. Never-
theless, the fact that our proposed methods outper-
form conventional image captioning approaches
(which do not have this additional constraint) sug-
gests that the model still learns to predict semantic
concepts outside of the 200 given ones in context,
and achieves to reasonably generate other concepts
that are likely to occur in the context of certain ob-
jects and relationships as represented by the scene
graph.

Moreover, it is worth mentioning that our pro-
posed approach arguably requires a larger amount



of computational resources to be trained properly
when compared to conventional image captioning
methods. In addition to that, the current study does
not investigate the potential of our proposed ar-
chitecture when trained in an end-to-end fashion,
i.e., by developing a single pipeline that processes
an input image, generates a scene graph represen-
tation and then uses this representation to create
a corresponding image caption. At this point we
would like to encourage other researchers focusing
on image captioning to further explore the poten-
tial of explicitly incorporating visual objects and
relationships with respect to this problem.

5 Conclusion

In this work, we proposed a supervised learning
approach to generate image captions by explicitly
leveraging detected objects and visual relationships.
Our suggested model consists of a simple two-step
procedure that first generates a scene graph repre-
sentation from a given image and then uses this
representation to generate an image description in
natural language. Empirical results on a newly-
generated dataset consisting of samples from the
intersection of Visual Genome and MS COCO
demonstrate the superiority of our model when
compared to conventional image captioning ap-
proaches, indicating that our method provides a
fruitful ground to further advance the task of image
captioning.
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