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Abstract

This thesis investigates machine learning approaches for perception tasks in robotics and
computer vision applications. The main focus of the developed techniques are the aspects
of efficiency and autonomy, where the latter refers to the amount of interaction with a hu-
man user that is required to perform the learning task. Starting from empirical evaluations
of standard supervised offline learning methods for classification in robot perception tasks,
we extend and modify these approaches to unsupervised and online learning techniques.
This reduces the number of user interactions in terms of queries for ground truth class
labels and increases the efficiency with respect to computational ressources, as we show
experimentally. Furthermore, it enables the learning algorithms to adapt to new, unseen
situations, which is a key requirement for systems that are designed to learn continuously,
such as life-long learning robot systems.

Beyond that, we especially investigate supervised classification techniques that are able
to provide reliable estimates of confidence in addition to the class label predictions they
generate. We argue that classifiers which tend to make false predictions with a high con-
fidence can cause severe effects, even if they generally perform well in classical measures
such as precision and recall. In our analysis of such methods based on a notion of over-
confidence, we conclude that the use of less overconfident methods such as the Gaussian
Process Classifier (GPC) should be prefered over standard methods such as Support Vector
Machines (SVM) if the confidence estimates are critical for further processing. Concretely,
we demonstrate these effects for the task of Active Learning, where the learning algorithm
itself chooses new training data to learn from. In that setting, an overconfident classifier
has the major disadvantage that it can not improve on the samples where it produced a
wrong prediction, as is shown in experiments, because it has no possibility to detect such
misclassifications. Finally, an alternative learning method based on Boosting is developed
and shown to reduce overconfidence over standard methods, resulting in an efficient ac-
tive online learning framework with significantly steeper learning curves compared to the
state of the art.

The approaches and techniques developed in the thesis are all backed up and motivated
by practical applications in robotics and computer vision. Concretely, we investigate the
tasks of the detection of cars, pedestrians, and traffic lights in urban environments, as well
as the classification of road signs and objects in 3D indoor and outdoor environments.
Specifically, we show that the developed Active Learning techniques are very effective
methods for semantic mapping, 3D object classification and interactive image segmenta-
tion.
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Zusammenfassung

Diese Arbeit befasst sich mit Ansätzen des maschinellen Lernens für Aufgaben der au-
tomatischen Wahrnehmung in Robotik und Computersehen. Der Hauptaugenmerk der
entwickelten Techniken sind die Aspekte der Effizienz und der Autonomie, wobei sich let-
ztere auf den Grad der Interaktion mit einem menschlichen Benutzer bezieht, welche nötig
ist, um die Lernaufgabe zu erfüllen. Ausgehend von empirischen Auswertungen anhand
von häufg verwendeten, überwachten offline Lernmethoden zur Lösung von Klassifika-
tionsaufgaben in der Roboterwahrnehmung, erweitern und verändern wir diese Ansätze
in Richtung unüberwachtes und online Lernen. Dies verringert die Anzahl von Benutzer-
interaktionen bezüglich der Anfragen nach Klassenbezeichnern aus der Grundwahrheit
und erhöht die Effizienz im Sinne der Rechenintensität, wie wir experimentell zeigen.
Weiterhin ermöglicht es dem Lernalgorithmmus sich an neue, noch nicht beobachtete Situ-
ationen anzupassen, was eine besondere Voraussetzung für Systeme ist, die für andauern-
dens Lernen konzipiert sind, wie zum Beispiel lebenslang lernende Robotersysteme.

Darüber hinaus untersuchen wir speziell überwachte Klassifikationsmethoden, die in
der Lage sind, eine zuverlässige Abschätzung der Konfidenz zu liefern, zusätzlich zu den
vorhergesagten Klassenbezeichnern, die sie erzeugen. Wir arguentieren, dass Klassifika-
toren, die dazu neigen falsche Vorhersagen mit hoher Konfidenz zu machen, ernsthafte
Effekte hervorrufen können, sogar wenn sie generell sehr leistungsfähig sind gemessen an
klassischen Kriterien wie Genauigkeit und Trefferquote. In unserer Untersuchung von
solchen Methoden basierend auf dem Begriff der Hyperkonfidenz schließen wir, dass
die Verwendung von weniger hyperkonfidenten Methoden wie zum Beispiel dem Gauß-
Prozess Klassifikator (GPC) der von üblicherweise eingesetzten Verfahren wie der Support-
Vektor Maschine (SVM) vorgezogen werden sollte, wenn die Konfidenzabschätzung kri-
tisch für die weitere Verarbeitung ist. Konkrete zeigen wir diese Effekte am Beispiel des
Aktiven Lernens, bei dem der Lernalgorithmus selbst entscheidet, aus welchen Trainings-
daten er lernt. In diesem Szenario hat ein hyperkonfidenter Klassifikator den großen
Nachteil, dass er sich nicht auf den Datenstichproben verbessern kann, für die er eine
falsche Vorhersage getroffen hat, wie wir in Experimenten zeigen, da er keine Möglichkeit
hat, diese Fehlklassifikationen zu erkennen. Schließlich entwickeln wir eine alternative
Lernmethode basierend auf dem Boosting-Schema, von welcher gezeigt wird, dass sie die
Hyperkonfidenz im Vergleich mit Standardmethoden reduziert und zu einem effizienten
aktiven online Lernverfahren führt, welches signifikant steilere Lernkurven erzeugt ver-
glichen mit aktuellen Methoden.

Die Ansätze und Techniken, die in dieser Arbeit entwickelt werden, sind alle unterstützt
und motiviert durch praktische Anwendungen in der Robotik und dem Computersehen.
Konkret behandlen wir Aufgaben der Erkennung von Autos, Fußgängern und Ampeln in
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Stadtumgebungen, sowie die Klassifikation von Straßenschildern und dreidimensionalen
Objekten im Innen- und Außenbereich. Speziell zeigen wir, dass die entwickelten Aktiven
Lernmethoden sehr effektiv sind für semantische Kartenerstellung, 3D Objektklassifika-
tion und interaktive Bildsegmentierung.
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1. Introduction

Machine learning algorithms have received an immensely growing interest in the areas of
computer vision and robotics. Many problems in fields such as machine perception, robot
navigation, control and others, which until recently seemed hard to solve, have been and
are being addressed using techniques that were originally developed in the machine learn-
ing community. The success and the growing applicability and efficiency of these methods
have convinced researchers and developers in computer vision and robotics of their ben-
efit. However, a lot of challenges still remain. In particular, there are two objectives to be
considered for machine learning techniques that are to be applied in a robotics or computer
vision context: efficiency and autonomy. While the first objective is classically measured
in terms of run time and memory requirements, the second is somewhat harder to mea-
sure. Also, compared to the goal of efficiency, the investigation of autonomous learning
methods is a much more recent field, which makes questions such as comparability harder
to address. Nevertheless, autonomy is a very attractive feature, in particular (although
not exclusively) for machine perception tasks such as the ones we will investigate in this
thesis. The reason for this is that in perception the aim is often to automatically associate
an observation received from sensor input to some semantic interpretation, for example an
object label (“chair”, “table”, etc.). However, the only reliable source of information, from
which such semantics can be learned is a human supervisor, and providing such “ground
truth” information to a learning algorithm is for most humans a tedious and annoying
task. Therefore, in this thesis we will measure autonomy by the required amount of user
interaction during the learning process. This means that in terms of our notion of auton-
omy the best learning algorithms are those that do not require any human user input, and
we dedicate one significant part of the thesis to these unsupervised learning methods. We
will show how certain features in the data such as regularity or similarity of constellations
can be used to achieve segmentations that come very close to labelings that humans would
do. Still, these methods can of course not provide any human description of the observa-
tions and should rather be considered as an attempt to group the data into meaningful
clusters, so that a human annotation can be made on a higher, cluster-based level, and not
per data sample. One example of such a method will be presented. Ultimately, however,
our goal is to only reduce the amount of human interaction as much as possible while still
retrieving enough information from the user to perform reliable predictions of class labels
for newly observed data. This leads us to the field of active learning, which in a way com-
bines the idea of autonomy with that of efficiency, because it requires less human input by
querying selectively the data from which better learning can be expected, and it favours
classification algorithms that learn fast and online. We will give concrete examples were
active learning is used to achieve high classification rates with a comparably small amount
of human data annotation.
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1. Introduction

Figure 1.1.: Overview of the learning methods developed in this thesis. Each colored box cor-
responds to a chapter, with the exception of supervised online learning and combined online
learning. The former is mentioned here as a natural extension of standard supervised offline
learning, but it is only applied within the context of active learning and not separately. The lat-
ter is generally considered to be too extensive to fit into the scope of this thesis. However, we
mentioned it here as a motivation for our work, and we present some preliminary result on it.

1.1. Overview of this Thesis

To be able to develop the unsupervised and active learning techniques presented in this
thesis, we first need to investigate and understand thoroughly the well-known standard
supervised learning methods. There are at least two obvious reasons for that: first, by
applying and refining the standard methods to concrete, relevant problems we obtain a
notion of how well they perform for these tasks and where their drawbacks may be. And
second, the development of novel learning algorithms will be easier and more reliable
when we can rely on the established standard methods, for example by refining these
rather than formulating new methods completely from scratch. Therefore, Part I of this
thesis is mainly concerned with supervised learning methods such as Support Vector Ma-
chines, AdaBoost, and Conditional Random Fields, and how they can be used effectively
to address the important problem of detecting cars and pedestrians from camera and laser
range data in crowded urban environments. Then, in Chapter 4 we motivate the concept of
confidence-aware supervised classification. This differs from the other learning techniques
in that it also takes into account the uncertainty associated with a classification. Concretely,
we investigate the use of a Gaussian Process classifier (GPC) to the problems of semanti-
cally segmenting 3D outdoor environments and for traffic light detection in urban traffic
situations. As we will see, classification confidence can help to reduce false classifications,
but more importantly, it will lay the foundation for an effective active learning approach
later on.

2



1.2. Main Contributions

In Part II, we then extend and modify some of the supervised methods so that they are
either completely unsupervised or self-supervised, i.e. they relate data obtained from an-
other source to the observations, so that predictions can be made for new observations. As
an example for the former, we present in Chapter 5 a part-based segmentation and object
discovery algorithm for 3D range data, which is based on the design of two inter-related
undirected graphical models. With respect to self-supervised learning, we describe an ap-
proach to interpret the semantics of direction signs from previously recorded motion that
is associated to input images containing the signs. Both ideas, the unsupervised and the
self-supervised approach are then extended in Chapter 6 for online learning. This means,
the algorithms are modified or redesigned so that they can make predictions before having
observed the entire data set. Thus, they can be applied as filters, where new observations
are used to incrementally refine an underlying model rather than completely recomputing
it. This makes them much more efficient than the offline methods, which is – as mentioned
– the other objective for this thesis apart from the autonomy.

Finally, in Part III we investigate active learning approaches and apply them to seman-
tic mapping, interactive image segmentation, and 3D object recognition. Here, we make
use of the findings from Chapter 4 and evaluate experimentally the benefits of confidence-
aware classifiers such as the GPC over others that tend to be overconfident, i.e. they as-
sociate wrong classifications often with a high confidence. Here, in the context of active
learning, overconfidence has the severe effect that it prevents the learning algorithm from
improving its classification performance, because misclassified samples can often not be
detected. Furthermore, we present a novel learning method that modifies a standard algo-
rithm, namely GradientBoost, which also tends to overconfidence, in such a way that it is
less overconfident. Again, this leads to a better performance in active learning, however
with the additional advantage that the boosting method is much faster than the GPC.

1.2. Main Contributions

A total number of 20 scientific publications in robotics and computer vision has evolved
from this thesis, and we refer to the Appendix on page 86 for a full list. Here, we name the
most influencial works from each chapter of this thesis:

• Detection of Pedestrians and Cars from Camera and Laser Range Data (Chapter 3):
L. Spinello, R. Triebel, R. Siegwart: “Multiclass Multimodal Detection and Tracking in Urban
Environments” in: The International Journal of Robotics Research (IJRR) 29 (12): 1498-1515,
2010 (see page 124)

• Confidence-Aware Classification of Outdoor Environments from 3D Laser Range
Data (Chapter 4):
R. Paul, R. Triebel, D. Rus, P. Newman: “Semantic Categorization of Outdoor Scenes with
Uncertainty Estimates using Multi-Class Gaussian Process Classification” in: Proc. of the
International Conference on Intelligent Robots and Systems (IROS) 2012 (see page 159)

• Unsupervised Segmentation and Object Discovery from 3D Point Clouds (Chap-
ter 5):
R. Triebel, J. Shin, R. Siegwart: “Segmentation and Unsupervised Part-based Discovery of
Repetitive Objects” in: Robotics: Science and Systems (RSS) 2010 (see page 204)

3



1. Introduction

• Unsupervised Online Learning for Segmentation of 3D Outdoor Environments (Chap-
ter 6):
R. Triebel, R. Paul, D. Rus, P. Newman: “Parsing Outdoor Scenes from Streamed 3D Laser
Data Using Online Clustering and Incremental Belief Updates” in: Proc. of the Conference
on Artificial Intelligence (AAAI) 2012 (see page 249)

• Active Learning for Semantic Mapping (Chapter 7):
R. Triebel, H. Grimmett, R. Paul, I. Posner “Driven Learning for Driving: How Introspec-
tion Improves Semantic Mapping” in: Proc. of the International Symposium on Robotics
Research (ISRR) 2013 (see page 257)
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Supervised Offline Learning
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2. A Short Summary of Common Supervised
Learning Methods

In this chapter, we briefly review some of the most important supervised learning meth-
ods commonly used for classification tasks in robotics and computer vision. Throughout
this thesis, these methods, along with some others, will be an important reference, be it
for comparison with novel techniques or for application and adaptation to other contexts.
In particular, we discuss Support Vector Machines (SVMs), Boosting methods, and Con-
ditional Random Fields (CRFs). While the first two are typical classification methods, the
latter is not usually denoted a classifier. Still, it requires labeled training data for param-
eter learning, and, if we consider node potentials as “local” classifiers, then CRFs can be
used for collective classification. We will give more details below. Note that our description
of these standard supervised learning methods is meant to be short, given that there is
already a large literature available on these topics. Two very popular examples of com-
prehensive text books are those of Bishop [2006] and Murphy [2012], to which we refer for
any further details on these topics.

2.1. Support Vector Machines

The most popular supervised learning method used for classification tasks in computer
vision and robotics are Support Vector Machines (SVMs). This popularity mainly stems
from their good performance in terms of classification rates and run time, but also from
the availability of easy-to-use software packages. The literature available on SVMs is abun-
dant, and a particularly detailed reference is the work of Schölkopf and Smola [2002]. Here,
we only sketch the main principles of the SVM learning method, separated into the train-
ing phase, where a model is learned for a given training data set, and the inference phase,
where a class label prediction is made based on a new test data point and the learned
model.

2.1.1. Training an SVM

Suppose we are given a set ofN input training data points {x1, . . . ,xN}, along with known
ground truth labels y1, . . . , yN , where yn ∈ {−1, 1}, i.e. we consider a binary classification
problem. Our aim is to find model parameters (w, b) so that the function

f(x) = wTφ(x) + b (2.1)

separates the two classes, i.e. f(xn) > 0 if yn = 1 and f(xn) < 0 if yn = −1, where φ is a fea-
ture function that maps the data into a feature space. This problem is equivalent to finding
a hyper plane that separates all training data points in feature space. If such a hyperplane
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2. A Short Summary of Common Supervised Learning Methods

exists, it may not be unique, and the idea is to find the hyperplane that maximizes the mar-
gin, i.e. the one that has the largest distance to any of the training data points. If there
is no such hyperplane, then the problem can be relaxed so that the hyperplane at least
separates a fraction of the training set correctly, but we will not consider this case here.
The maximum-margin solution to Eq. (2.1) can be obtained from the following quadratic
program formulation:

arg min
w,b

1

2
‖w‖2 s.t. yn(wTφ(xn) + b) ≥ 1, n = 1, . . . , N. (2.2)

By introducing Lagrange multipliers an for each constraint and eliminating w and b from
the resulting Lagrangian, we obtain the dual formulation of the problem:

arg max
a

{
N∑

n=1

an −
1

2

N∑

n=1

N∑

m=1

anamynymk(xn,xm)

}

s.t. an ≥ 0, n = 1, . . . , N (2.3)
N∑

n=1

anyn = 0.

Here, the function k(xn,xm) = φ(xn)Tφ(xm) defines the kernel function. Thus training an
SVM involves solving for the Lagrange multipliers a in Eq. (2.3). This is again an instance
of a quadratic program, for which there are several standard techniques in the literature.
The most common one in the context of SVMs is the sequential minimal optimization (SMO)
algorithm by Platt [1998]. Once a solution to (2.3) is found, it can be used to compute the
threshold parameter b in (2.2).

The major benefit of the dual formulation (2.3) over Eq. 2.2 is that it is expressed only in
terms of the kernel function k, and the feature function φ has disappeared. This enables the
applicability of the kernel trick, i.e. k can be replaced by any symmetric, positive-definite
function (i.e. a so-called Mercer kernel), including cases where a corresponding feature
function φ can only be infinite-dimensional. The kernel trick makes the SVM a very pow-
erful classifier, because it extends the notion of a linearly separating hyperplane into highly
non-linear, and even infinite-dimensional feature spaces. In practice, very often the mostly
used Gaussian kernel function is sufficient to obtain good classification results.

2.1.2. Inference with an SVM

After the model parameters (a, b) are obtained from the training phase, class labels for
new test data points x∗ are predicted in the inference phase. This is done by evaluating the
decision function

f(x∗) =

N∑

n=1

antnk(x∗,xn) + b (2.4)

and assigning a positive label to x∗ whenever f(x∗) > 0. From a computational point of
view, this means that for every new prediction step, all N training data points need to be
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2.2. Boosting

considered. Fortunately, it turns out that this is not necessary: It can be shown that for
all training data points xn it either holds an = 0 or ynf(xn) = 1. In the former case, the
corresponding term does not contribute to the sum in Eq. (2.4). Thus, the sum needs to
be evaluated only for the latter case, i.e. when the corresponding training point lies on
the boundaries of the margin. These points are called the support vectors. The fact that for
prediction only the support vectors are needed makes the SVM classification method very
efficient: usually the number of support vectors is much smaller thanN , leading to a sparse
formulation of the problem.

2.1.3. Relevance in the Context of this Thesis

Despite their broad use and their obvious benefits in terms of classification performance
and run time efficiency, Support Vector Machines have at least one important drawback:
they can not return a probabilistic prediction in terms of a class label probability for a new
test point x∗. However, this is often necessary, particularly if an estimate of uncertainty is
required. Although there have been attempts to mitigate this problem, probabilistic esti-
mates obtained from an SVM classifier are often not reliable enough for applications that
require them. More details of this will be given in Chapters 4 and 7. Here, we summarize
the two main statements regarding SVMs that will be backed up with experiments in later
chapters of this thesis:

1. SVMs yield very good classification rates. As we will show in Chapter 3, SVMs are
a very useful tool for important applications in mobile robotics, and we consider the
classification of pedestrians and cars in an urban environment.

2. SVMs are overconfident. In situations where a probabilistic estimate of the classifi-
cation is needed, SVMs perform poorly in the sense that they tend to return wrong
class label predictions with low uncertainty. In Chapter 4, we will show examples
of this. As a consequence, SVMs are not very useful in applications such as Active
Learning, and we give experimental evidence of this in Chapter 7.

2.2. Boosting

Another very popular supervised learning framework for classification tasks are boosting
methods, and in particular the AdaBoost algorithm by Freund and Schapire [1997]. This
method recieved major attention in the computer vision community when it was very
successfully employed to face detection by Viola and Jones [2002]. Since then, it has been
used for many different problems in computer vision and robotics, and a large variety of
extensions and improvements have been developed. A good overview and many detailed
explanations are given by Schapire and Freund [2012]. Here, we will only give a summary
on the standard AdaBoost algorithm. Again, we distinguish between the training and the
inference phase of the learning algorithm.

2.2.1. AdaBoost Training

As above, we assume we are given a training data set X = {x1, . . . ,xN}with ground truth
labels t = (y1, . . . , yN ), and again we consider only the binary case, i.e. yn ∈ {−1, 1}. The
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2. A Short Summary of Common Supervised Learning Methods

Algorithm 1: AdaBoost for binary classification
Data: training data (X ,y) consisting of N labeled feature vectors, where

yn ∈ {−1, 1}
Input: Number M of training rounds
Output: weak classifiers(f1, . . . , fM ), coefficients (α1, . . . , αM )

1 w(1) ← (1/N, . . . , 1/N)
2 for m← 1 to M do
3 fm ← LearnWeakClassifier (w,X ,y)

4 εm ←
∑N

n=1 w
(m)
n I(fm(xn)6=yn)∑N
n=1 w

(m)
n

5 αm ← ln
(
1−εm
εm

)

6 for n← 1 to N do
7 w

(m+1)
n ← w

(m)
n exp(αmI(fm(xn) 6= yn))

8 end
9 end

main idea of all boosting methods is to run a given number M of training rounds through
the data, where in each training round a weak classifier is trained that particularly focusses
on the misclassified samples from the previous rounds. To achieve this, weights w1, . . . , wN
are assigned to the training data, and those wi that correspond to misclassified training
samples are increased after each training round. As a result, the next weak classifier to
be trained will attach more importance to these misclassified samples. Important to note
here is that a weak classifier is per definition only required to yield a training error that is
better than a random “classifier” would give. This means for the two-class problem that
we need to guarantee that the training error for any possible training set is always smaller
than 0.5. A very simple and commonly used weak classifier is the decision stump, and Fig.
2.1 shows an illustration of this. Now, the main point of boosting algorithms is the fact
that the overall training error decreases during training even though the underlying weak
classifiers may be quite bad in performance (but at least better than random guessing). This
behaviour justifies the name “Boosting Algorithms” for these kind of supervised learning
methods.

A more explicit description of AdaBoost is given in Algorithm 1. In the first step (line 1)
all training weights are equally initialized with 1/N . Then, in each round a weak classifier
fm : R → {−1, 1} is learned from the weighted training data, and its weighted training
error εi is computed (line 4). Here, I() denotes the indicator function, which is 1 if the ar-
gument is true and 0 otherwise. From the training error εm the coefficient αm is computed.
This value is later used to weight the weak classifier fm trained in round m within the
ensemble. The intuition is that if fm has a small training error, αm will be large and fm will
contribute more to the ensemble. Then, in the last steps, the data weights are updated so
that the misclassified points obtain a higher weight while the weights of the other points
remain unchanged (lines 6 – 8).
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2.2. Boosting

(a) Example data (b) Decision stump 1 (c) Decision stump 2

Figure 2.1.: Decision stump as a weak classifier for AdaBoost. a) A simple 2D example data set with
two classes. b) Projection of the data onto the first feature dimension. To learn a decision stump,
we find the (hyper-) plane that separates the data into two classes with the smallest number of
outliers. Here, we have three outliers (see boxes). These will recieve a higher weight compared
to the other data points in the next training round. c) Projection of the same data onto the second
data dimension. Again, the dashed line shows the optimal hyper-plane separating the data.
However, here the training error is higher. Therefore, AdaBoost selects the first decision stump
from b) as a next weak classifier.

2.2.2. AdaBoost Inference

As soon as the weak classifiers f1, . . . , fM and their coefficients α1, . . . , αM are obtained
from the training process, new test data points x∗ can be classified. To do this, AdaBoost
evaluates the function

f(x∗) =
M∑

m=1

αmfm(x∗) (2.5)

and tests it for its sign. If the sign is positive, the predicted class label y∗ is 1, otherwise
it is −1. Usually, this operation can be done very quickly, which is also one reason why
AdaBoost is often used in real-time applications.

2.2.3. Relevance in the Context of this Thesis

Boosting algorithms will be a topic of special relevance in later chapters of this thesis.
However, in addition to the mere application and performance evaluation of the algo-
rithms, we will present an extension that particularly aims at reducing the overconfidence of
the classifier. This will be shown to be very useful in an active learning framework, where
a reliable uncertainty estimate of the classifier is crucial. Thus, we will investigate these
two statements regarding Boosting:

1. Boosting is a very effective and flexible classification framework. In Chapter 3 we
give several examples of succesful applications of AdaBoost to pedestrian and car
detection, including a technique where AdaBoost was combined with an SVM.
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2. A Short Summary of Common Supervised Learning Methods

2. Boosting can be extended to reduce overconfidence. Similar to SVMs, Boosting
tends to be overconfident when used as a classifier with probabilistic output. We give
experimental evidence of this in Chapter 4. However, in contrast to SVMs, Boosting
can be modified such that it returns class label predictions with less overconfidence.
This is denoted Confidence Boosting, and will be presented in Chapters 4 and 7.

2.3. Conditional Random Fields

In contrast to SVMs and Boosting methods, Conditional Random Fields (CRFs) belong to
the class of probabilistic reasoning methods. This means that the approach is formulated
in terms of probability theory, and data points and class labels are modeled as random
variables. As we will see later, this has major benefits when dealing with data that comes
from noisy observations of a sensor such as a camera or a 2D laser scanner. Although the
literature on CRFs is not as ample as it is for the other two classification methods in this
chapter, there is a very detailed, recent article by Sutton and McCallum [2012], which we
recommend for further reading on this topic. Again, we only present the principles of the
method here to build the foundation for further references to the method within this thesis.

2.3.1. Probabilistic Formulation

As above, we start with a training data set which consists of observationsX = {x1, . . . ,xN}
and corresponding ground truth labels y = (y1, . . . , yN ). We note that there are at least two
major differences to the formulation used above: First, all elements – except the model pa-
rameters w – are modeled as collections of random variables, i.e. there is an underlying
random distribution assumed for them. And second, the class labels yn are elements of a
set {1, . . . ,K}, K ∈ N and not just 1 or −1. This allows classification into many classes
instead of just two. With this notation, the conditional distribution modeled by a CRF can
be formulated as:

p(y | X ,w) =
1

Z(X ,w)

∏

c∈C
ϕc(yc | X ,w), (2.6)

where Z(X ,w) =
∑

y′
∏
c∈C ϕc(yc | X ,w) is a normalizer, which turns the right hand side

into a proper distribution. In the literature, Z is known as the partition function. The func-
tion ϕc is a non-negative potential, which is interpreted as an unnormalized probability.
Furthermore, in Eq. (2.6), the symbol c denotes the index of a clique yc of random vari-
ables, i.e. a subset of y, in which all pairs of variables directly depend on each other. The
set of all cliques is denoted as C. The concept of cliques becomes clearer when the CRF is
represented as a probabilistic graphical model, in which each random variable corresponds
to a node, and dependencies are modeled as edges (see Fig. 2.2 for an example). Here,
a clique is determined as a fully connected subgraph. Usually, working with cliques of
arbitrary size makes the formulation overly complex. Therefore, most often a maximum
clique size of two is assumed, which leads to the so-called pairwise CRFs. The formulation
of a pairwise CRF is somewhat simpler:
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2.3. Conditional Random Fields

Figure 2.2.: Example of a CRF on a 2D grid. This model can be used for image segmentation in
computer vision, where each pixel of an image is modelled as an observed feature xij , and the
true label or segment identifier of a pixel is a hidden (unobserved) variable yij . According to
the notation used by Bishop [2006], we denote observed variables with filled circles and hidden
variables with open circles. The deterministic model parameters w are depicted as a small point.

p(y | X ,w) =
1

Z(X ,w)

N∏

n=1

ϕ(yn | xn,w)
∏

(n,m)∈E
ψ(yn, ym | xn,xm,w), (2.7)

where E denotes the set of all edges in the graph, i.e. all pairs of indices of connected
hidden nodes. This means, that there are node potentials ϕ and edge potentials ψ. Although
these potentials are not specified further in the general setting, most authors use the so-
called log-linear model. In this model the potentials are defined as

ϕ(yn | xn,w) = exp(wT
η fη(yn,xn)), n = 1, . . . , N (2.8)

ψ(yn, ym | xn,xm,w) = exp(wT
ε fε(yn, ym,xn,xm)) n,m = 1, . . . , N, (2.9)

where the parameters w are split into a vector of node weights wη and a vector of edge
weights wε. Under this model, a CRF is then fully specified by a node feature function fη
and an edge feature function fε. If the CRF is used for classification, as we do in this work,
then we can think of the node feature function as the application of a classifier that only
considers the local evidence, i.e. it is not influenced by the (labels of the) neighboring data
points. If we denote such a classifier as ζ, then we have

fη(yn,xn) ∝ p(yn = ζ(xn) | xn). (2.10)

The role of the edge feature function is to relate class labels of neighboring data points
with each other. A commonly used edge feature function is defined as

fε(yn, ym,xn,xm) =

{
c if yn = ym
0 otherwise

, where c > 0. (2.11)
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2. A Short Summary of Common Supervised Learning Methods

This is often referred to as the generalized Potts model (see Potts [1952]).

2.3.2. Training

In the training phase, we are given a set of ground truth labels (y1, . . . , yN ) with the train-
ing data, and our aim is to find node and edge weights wη and wε so that the data is
best explained by the model. This is usually done using a maximum-likelihood approach,
where the likelihood p(y | X ,w) is maximized by w. To simplify the notation, we actually
maximize the log of the likelihood, which is given by

log p(y | X ,w) =
N∑

n=1

wT
η fη(yn,xn) +

∑

(n,m)∈E
wT
ε fε(yn, ym,xn,xm)− logZ(X ,w). (2.12)

To maximize this we first need to compute the derivative with respect to the node and
edge weights. If we do this for the last term in (2.12), we obtain

∂ logZ(X ,w)

∂wη
= Z−1(X ,w)

∑

y′

φ′(y′ | x,wη)
∏

(n,m)∈E
ψ(y′n, y

′
m | xn,xm,wε), (2.13)

where the first term is the partition function, the second term is the derivative of all node
potentials with respect to wη, and the last term represents the edge potentials, which re-
main unchanged by the partial derivative. To compute φ′ we need to apply the product
rule, which results in

φ′(y′ | x,wη) =

N∏

n=1

exp(wT
η fη(y

′
n,xn))

N∑

n=1

fη(y
′
n,xn). (2.14)

Pluggin this back into (2.13) gives

∂ logZ(X ,w)

∂wη
=
∑

y′

N∑

n=1

fη(y
′
n,xn)p(y′ | X ,w), (2.15)

where we have used our definition of the pairwise CRF from Eq. (2.6). This means that, in
order to compute the gradient of the log-likelihood (2.12) we need to compute p(y′ | X ,w),
and this is done in the inference step, i.e. training includes inference. However, besides
running an inference step, in training we also need to compute the partition function Z,
but this is intractable in general. Therefore, we need to employ an approximation. One
common way to approximate the likelihood (2.12) is by means of the pseudo-likelihood `PL,
which is defined as

`PL =
N∏

n=1

p(yn | yN (n),X ), (2.16)

where N (n) are all neighbors of node n. If we denote y−n as the vector of all labels with
the exception of yn, then we can say that the pseudo-likelihood is the product of all local
likelihoods p(yn | y−n,X ). To see this we note that, according to the structure of the CRF,
yn is conditionally independent of all other nodes given the Markov blanket yN (n). Thus,
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2.3. Conditional Random Fields

Figure 2.3.: Message passing in the Belief Propagation algorithm. A message from node j to node
i is the marginal of the subgraph at node i. It can be computed recursively from the potential at
node i, the edge potential ψij , and all messages sent from neighbors of node i except node j.

maximizing the pseudo-likelihood can be considered as matching the local likelihoods to
the training data. Both the pseudo-likelihood and its derivative with respect to w can be
computed very efficiently, because they only involve the node potential of node yn and the
edge potentials of all adjacent edges. Normalization is done by summing over all possible
labelings of node yn. To optimize for w, standard gradient descent methods can be used
such as the L-BFGS method (see Liu and Nocedal [1989]).

2.3.3. Inference

As mentioned before, the inference step computes the conditional distribution p(y | X ,w)
for given (learned) model parameters w. Depending on the application, there are two
different variants of inference algorithms. If we are interested in the distribution itself,
then we need to compute all node and edge marginals p(yn | xn) and p(yn, ym | xn,xm).
In contrast, if we want to find the most likely labeling y∗ for a test data set X ∗, and we
obtained w already from training, then we need to compute y∗ = arg maxy p(y | X ∗,w). It
turns out that both inference problems are very closely related, and the algorithms used to
compute them only differ in one operation. Therefore, we only present the algorithm for
the maximization problem, as it is more relevant for our purpose.

If we assume for a moment that the structure of the CRF is a tree, i.e. there are no loops
in the graph, then we can compute the node marginals p(yn | xn) from the marginals that
only correspond to each subgraph connected to yn. These subgraph marginals are often
interpreted as messages from the subgraph to node yn. To simplify the notation, we will
use the symbol mij for the message that is sent to node yj from the subgraph that starts at
node yi, which is connected to yj . A visualization is shown in Fig. 2.3. This means that mij

is a distribution over all possible labels lj at node yj , and the probability mij(lj) of each
such label can be computed recursively using the update rule
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2. A Short Summary of Common Supervised Learning Methods

mij(lj)←
∑

li

ϕiψij
∏

k∈N (i)\j
mki(li), (2.17)

where we used the short hand notation ϕi = ϕ(yi = li) and ψij = ψ(yi = li, yj = lj).
Equation (2.17) is usually called the sum-product rule. However, as mentioned we are only
interested in the most likely label, therefore it is sufficient to turn the summation in Equa-
tion (2.17) into a maximization. Also, for numerical reasons it is much better to perform
the computation in log-space. Therefore, the resulting update rule is

mij(lj)← max
li



logϕi + logψij +

∑

k∈N (i)\j
mki(li)



 . (2.18)

This is called the max-sum rule. For trees, the recursion always terminates and the mes-
sages are computed exactly. If there are loops in the graph, there are no guarantees that
the algorithm converges, however, in practice convergence is mostly reached. The result-
ing inference algorithm is called loopy belief propagation. From the converged messages, the
most likely label l∗j at node yj can then be computed as

l∗j ← arg max
lj



ν


logϕj

∑

i∈N (j)

mij(lj)





 , (2.19)

where ν is the normalizer that ensures that the node marginal sums up to 1.

2.3.4. Relevance in the Context of this Thesis

Later in this thesis we will apply CRFs to the problem of collective classification, where a
class prediction is made not only based on local characteristics of a data point, but also on
its relationship to neighboring data points. Here, “neighboring” can refer to closeness in
physical space, or in some feature space, where it can be interpreted as a similarity between
data samples. This will prove useful when classifying objects in 2D and 3D laser range
data. However, we will also show how this supervised, offline classification framework
can be extended to unsupervised and online learning. In summary, we make the following
two statements:

1. CRFs are very useful for collective classification. This will be shown in chapter 3,
where we use a CRF to classify pedestrians and cars in 2D laser range scans. Here, the
information obtained from the neighboring data samples is used to obtain smoother
class label assignments.

2. CRFs can be extended for unsupervised and online learning. In chapter 6, we will
present an algorithm for online, unsupervised segmentation of 3D point clouds. The
method updates its internal representation incrementally with every new observed
point cloud. It uses a combination of an online clustering algorithm to find similar-
ities between 3D mesh segments, and a CRF that can grow incrementally, i.e. nodes
and edges are added subsequently, and the inference step only considers those mes-
sages that are directly related to the newly added nodes and edges.
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3. Learning to Detect Cars and Pedestrians

In this chapter, we present concrete applications of the supervised learning methods men-
tioned in chapter 2 to the concrete problem of detecting cars and pedestrians in an urban
environment1. This is a very important task in mobile robotics, and in particular in the
context of autonomous driving, which is one of the most studied topics currently in mo-
bile robotics. For any autonomous or semi-autonomous driving system, the reliable de-
tection of vehicles, pedestrians and moving objects from the surrounding traffic is crucial.
Therefore, we investigate supervised learning techniques that are capable to robustly clas-
sify input data from different sensor modalities into classes such as “pedestrian” or “car”.
Note that the purpose here is mainly to explore and apply existing learning techniques
that use standard, offline supervised learning for a concrete and highly relevant problem,
rather than investigating new learning methods. The latter will be the topic of later chap-
ters, but the methods investigated here will serve as important foundations for these new
techniques. In total, six scientific publications have evolved from these investigations, and
we give a summary of them here. Further details can be found in the original works in the
appendix (pages 88 ff.).

3.1. Multi-modal Detection of Cars and Pedestrians

The detection of cars and pedestrians is a very challenging task, particularly because it
requires very reliable and informative input data. A single sensor modality is often not
enough to obtain the required robustness for this task. For example, a single standard
RGB camera can provide very detailed information about the environment at a compa-
rably high resolution. However, the range at which moving objects can be detected is
often not enough, especially when the camera itself moves at high speed. 2D laser range
scanners have proved very useful here, because they yield measurements at very large
distances and with a very wide angular field of view. However, their resolution is sig-
nificantly lower compared to the camera, and important information such as color and
texture are not available. Therefore, we consider a hybrid system that consists of these two
modalities, i.e. a 2D laser scanner and a camera. This has the advantage that, given a good
extrinsic calibration between these sensors, we can obtain accurate depth information and
corresponding color information. We use this in our multi-modal detection framework
(see Spinello et al. [2010b] on page 124), which is shown schematically in Fig. 3.1. In the
following, we give more details about the appearance-based detection method, i.e. the one
that operates on the camera images, and we present the range based detector.

1Note that in the publications on this topic (see appendix) we also addressed the tracking problem. However,
this is of little relevance in the learning context, which is the major focus of this thesis.
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3. Learning to Detect Cars and Pedestrians

Figure 3.1.: Schematic overview of the multimodal detection and tracking framework. We obtain
data streams from two different sensors, namely the laser range scanner and the camera. For the
range data, we apply a boosted Conditional Random Field, which was trained on a hand-labeled
training set beforehand. The obtained detections additionally serve as regions of interest for the
image-based detector by mapping them into the camera frame (“early fusion”). There, we use
an improved version of the Implicit Shape Model (ISM) to detect pedestrians and cars, where
the ISM was also trained on a labeled set of camera images. The detection results from both
modalities are then fused in the tracking module.

3.1.1. Appearance-Based Detector

Our vision-based people detector is mostly inspired by the work of Leibe et al. [2005] on
scale-invariant Implicit Shape Models (ISM). In summary, an ISM consists in a set I of local
region descriptors called codebook, and a set V of displacements and scale factors, usually
named votes, for each descriptor. The idea is that each descriptor can be found at different
positions inside an object and at different scales. Thus, a vote points from the position of
the descriptor to the center of the object as it was found in the training data. To obtain
an ISM from labeled training data, the descriptors are computed at interest point posi-
tions and then clustered, usually using agglomerative clustering with a maximal distance
threshold ϑd. Then, the votes are obtained by computing the scale and the displacement of
the objects’ center to the descriptors. A training dataset consists in a collection of images
and binary image masks defining the area and the position of the objects in each image.
For the detection, new descriptors are computed on a test image and matched against the
descriptors in the codebook. The votes that are cast by each matched descriptor are col-
lected in a 3D voting space, and a maximum density estimator is used to find the most likely
position and scale of an object.

In the publications relevant to this chapter (see appendix, page 88 ff.), several improve-
ments to the ISM have been developed. However, for the development of unsupervised
and online learning techniques presented later in this thesis, these methods are of little rel-
evance. Therefore, we will at this point not focus further on them and refer the interested
reader instead to the mentioned publications.

3.1.2. Range-Based Detector

To detect cars and pedestrians from 2D laser range data (see Fig. 3.2-left), we propose
a supervised learning method based on a Conditional Random Field (CRF) (see Lafferty
et al. [2001]). The motivation of this is the fact that CRFs can handle dependencies between
labels of neighboring data segments (see Section 2.3), which leads to a smoother and more
natural assignment of labels. To formalize the problem, we use a discrete label li that
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3.1. Multi-modal Detection of Cars and Pedestrians

Figure 3.2.: An urban environment with cars, pedestrian and other objects as it is perceived by
a 2D laser. Left: Laser beams are shown in red, circles represents the measured points. Gray
beams indicate out of range data due to material reflections, sun related effects and particular
object poses. Center: Resulting Jump-Distance Clustering of the scene. Orange lines depicts
consecutive points segmented in the same cluster. Right: A Delaunay triangulation is computed
on the centroids of the segments. This defines graph structure used for the CRF.

ranges over the 3 different classes “pedestrian”, “car” and “background”, as well as a
feature vector si that is extracted from a 2D data segment Si of the laser scan. We create
these segments in a preprocessing step, which consists of a clustering technique to group
nearby points, called Jump Distance Clustering (JDC). It is fast and simple to implement:
if the Euclidean distance between two adjacent data points exceeds a given threshold, a
new cluster is generated otherwise the point is added to the current cluster (see Fig. 3.2-
center). Each cluster, or segment, is defined as the set of points Si. Then we compute a
Delaunay triangulation between the centroids of each segment Si to obtain a graph that
connects clusters (see Fig. 3.2-right). With this notation the conditional probability of the
labels l given the observations s for a pairwise CRF (see Eq (2.7)) is

p(l | s) =
1

Z(s)

N∏

i=1

ϕ(si, li)
∏

(i,j)∈E
ψ(si, sj , li, lj), (3.1)

As mentioned in Section 2.3, we use the log-linear model for the potentials and minimize
the pseudo-likelihood to find the node and edge weights from training data. We use a
set of statistical and geometrical features si such as width, circularity, standard deviation,
kurtosis, etc. (for a full list see Spinello and Siegwart [2008]). However, the features si
are not used directly within the node and edge feature functions fn and fe. Instead, we
use AdaBoost to account for non-linear relations between observations and labels (see also
the work of Ramos et al. [2007]). For our particular classification problem with multiple
classes, we train one binary AdaBoost classifier for each class against the others. As a
result, we obtain for each class c a set ofM weak classifiers hci (in our case decision stumps)
and corresponding weight coefficients αci so that the sum

gc(si) :=

M∑

i=1

αcih
c
i (si) (3.2)
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is positive for observations assigned with the class label c and negative otherwise. To ob-
tain a classification likelihood, we apply the logistic function σ(x) = (1 + e−x)−1 to gc. This
results in values between 0 and 1, which can be interpreted as the likelihood of correspon-
dence to class c. We apply the same technique also for the edge features, i.e. the resulting
potentials are comparable. Thus, the node feature function fn of the segment features si
and the label li is computed as

fn(si, li) = σ(gli(si)). (3.3)

For the edge features fe we compute two values, namely the Euclidean distance between
the centroids ci and cj of the segments Si and Sj , along with a value gij defined as

gij(si, sj) = sign(gi(si)gj(sj)) · (|gi(si)|+ |gj(sj)|). (3.4)

Thus, the value of gij has a positive sign if AdaBoost classifies si and sj into the same
class, and otherwise it is negative. The absolute value of gij is the sum of the classification
qualities of AdaBoost. If gi(si) and gj(sj) are far from 0 then gij has a high value, and
viceversa. To summarize, we define the edge features as

fe(si, sj , li, lj) =

{ (
σ(‖ci − cj‖) σ(gi,j(si, sj))

)T if li = lj
(0 0)T otherwise.

(3.5)

The intuition behind equation (3.5) is that edges that connect segments with equal labels
have a non-zero feature value and thus yield a higher potential.

3.1.3. Results

We evaluated our technique on a challenging urban scenario dataset collected in Zurich,
Switzerland. It consists in a loop of about 1km length with cars and pedestrians in a busy
urban environment. To obtain trainig data, the images were manually labeled with boxes
indicating pedestrians and cars. Annotations in images are marked if at least half of an ob-
ject is shown or the object width in the image is greater than 80 pixels. The laser range data
was manually labeled using associated image frames as reference for the ground truth.

Fig. 3.3 shows an example for some qualitative results of our multi-modal pedestrian
and car detector. Note that despite the challenging data due to low contrast, partial oc-
clusions and clutter, the system manages to detect and track the objects in the scene. A
quantitative analysis showed that the classification performance in terms of precision and
recall is better than standard methods such as the one of Dalal and Triggs [2005], which
is based on histogram of oriented gradients (HOG) computed on the camera images, or
the AdaBoost classifier of Arras et al. [2007] for the laser data. The equal error rate (EER),
i.e. the point were precision equals recall, is reached at 60.01% for our image-based pedes-
trian detector, while HOG reaches 52.21%. For the class “car” we obtained 72.54% EER.
The laser-based classifier using our boosted CRF resulted in 64.23% EER on the pedestrian
class, while standard AdaBoost yielded 57.09%. When applied to the class “car”, we ob-
tained 74.89% compared to 70.58% with standard AdaBoost. More detailed analyses of
our method can be found in Spinello et al. [2010b] on page 124.
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Figure 3.3.: Cars and pedestrian detected and tracked under occlusion, clutter and partial views. In
the camera images (upper row), blue boxes indicate car detections and orange boxes pedestrian
detections. The colored circles on the upper left corner of each box is the track identifier. Tracks
are shown in color in the lower row and plotted with respect to the robot reference frame. Green
vectors show the direction of motion for cars.

3.2. Improvements using Ground Plane Extraction

One problem with the ISM-based detection algorithm, which we use on the camera im-
ages, is that it tends to produce a large amount of false positive detections. Therefore, it
is necessary to find appropriate criteria to discard candidates that are unlikely to corre-
spond to foreground objects (i.e. cars or pedestrians). In the previous section, we used
an “early fusion” step, in which the detection result from the 2D laser scanner is used to
create a region of interest in the camera image. Concretely, the 2D laser segments that cor-
respond to foreground are mapped into the camera frame using a previously performed
extrinsic calibration between both sensor modalities. Then, a 3D region of interest (ROI) is
created, where the width is defined by the segment width, and height and depth are cho-
sen according to the object class (see Spinello et al. [2010b]). This turned out to reduce the
number of false positives substantially. However, the vertical position of the ROI is often
not very accurate due to the residual error in the calibration and the fact that the ground
plane is slightly inclined in the presence of small slopes. This is particularly evident at far
distances, which makes the detection of pedestrians there more challenging. Therefore, in
Spinello et al. [2008] on page 94 we compute an estimate of the ground plane for alignment
of the ROIs as described next.

3.2.1. Ground Plane Computation from 3D Range Data

To obtain a better estimate of the 3D ROIs, we use a third sensor modality, namely a 3D
scanning device that produces point clouds from a laser scanner which rotates around the
vertical axis. The advantage of this sensor is that it produces highly accurate 3D measure-
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3. Learning to Detect Cars and Pedestrians

Figure 3.4.: Pedestrian detection with explicit ground plane estimation. Left: 3D point cloud of the
environment, where the extracted ground plane is highlighted in a mesh representation. Center:
3D point cloud mapped into the camera frame. Right: Example result of pedestrian detection
using ground plane estimation.

ments, which we exploit to obtain good estimates of the ground plane. An example of a
point cloud produced by the 3D scanner is shown in Fig. 3.4 (left). To extract the ground
plane from that data, we are mainly interested in a fast algorithm, because our application
has to deal with a stream of input data in a quickly changing environment. Therefore, we
decided to use a simple but time efficient region growing technique to detect the ground
plane. The criterion we use for a scan point to belong to the ground plane is that its cor-
responding normal vector deviates only slightly (in our implementation by maximal 25◦)
from the upright vector (0 0 1)T and that it is not farther away from its closest neighbor
than a given threshold (we use 1 m). The region growing is initiated always at the same
fixed point right in front of the vehicle at the ground level. To efficiently compute the nor-
mal vectors, we exploit the fact that the point clouds are structured in slices, i.e. each scan
line of the vertically mounted rotating laser scanner accounts for one slice. This facilitates a
fast and simple mesh triangulation performed by connecting two consecutive points from
one slice with one point of the consecutive slice. From this triangulation the normal vectors
are easily computed using the normalized cross product of difference vectors. An exam-
ple result of the ground plane extraction is shown in Figure 3.4 (center). This estimated
plane is then used to align the 3D ROIs obtained from the 2D laser data vertically with the
ground.

3.2.2. Results

We evaluated the pedestrian detector with ground plane estimation on a similar data set
as used in the previous section. An example result is shown in Fig. 3.4 (right). As can
be seen, the detection result is very accurate even for pedestrians that are comparably far
away. We observed that also in general for this data set. Quantitatively, we found that the
multi-modal detection was about 10− 20% better than detection using 2D laser alone. For
further details on the experimental evaluation we refer to Spinello et al. [2008] (page 94).

3.3. Pedestrian Detection at Small Scales

Despite the improvements obtained from the ground plane estimation, the pedestrian de-
tection method described so far still requires a certain minimal size at which the pedestri-
ans have to be visible in the data. Thus, pedestrians that are far away, as well as children,
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Prediction
GT P N
P 71.8% 28.2%
N 17.17% 82.9%

Figure 3.5.: Detecting pedestrians at very small scales. Left: Pedestrians in a walk way that are
too far away for standard detection methods. The yellow boxes show the detection results from
our algorithm. The yellow dots are the estimated object centers. Center: Graphical explanation
of our descriptor. From a given set of edge segments (here colored inside the black box) we
compute a histogram of gradient orientations (here shown in orange) on all edge pixels. Right:
Confusion matrix of our detector for pedestrians at the size of 16 × 20 pixels, evaluated on the
NICTA data set provided by Overett et al. [2008]. Here, GT stands for “ground truth”.

can not be detected reliably. According to the rule of thumb from theoretical traffic lessons,
a car that moves with 50km per hour needs 40m to come to a full stop. This is still far from
the maximal distance at which pedestrians can be detected, using a lens that provides still
an acceptable opening angle (above 90 degrees). Therefore, we investigate an approach
to detect pedestrians that are up to 50m away while the lens still provides a wide field of
view (see, e.g Fig. 3.5, left). To do this, we use descriptors that are particularly suited for
objects in small scales, as described next.

3.3.1. Descriptors Designed for Small Objects

We designed two different descriptors that are particularly suited for the detection of
objects at small scales. The first one is inspired by the HOG descriptor from Dalal and
Triggs [2005], however applied to edge segments, i.e. consistent chunks of object edges (see
Spinello et al. [2009] for more details). Along each edge segment, the local gradient ori-
entations are computed and collected in a histogram, where each bin counts the number
of edge points at which the image gradient has a certain orientation (see Fig. 3.5, center).
For the second descriptor we compute for each edge segment a polyline approximation.
Then, we collect all angles between the line segments and the horizontal axis in a vector.
The final descriptor used is then a concatenation of both presented descriptors.

For classification we use a combination of AdaBoost and a voting method. First, the
descriptors obtained from a test image are classified using AdaBoost. Then, those that are
classified as foreground (i.e. “pedestrian”) are used for voting, i.e. they are matched to a
previously generated codebook of descriptors with displacements from the object centers.
The generated votes are then clustered using the mean-shift algorithm of Comaniciu et al.
[2001]. Thus, the training phase consists of an AdaBoost training step and the collection
of the codebook, as it is done in the original ISM approach, while in the inference phase
positively classified descriptors vote for the occurence of a pedestrian at a far distance.
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3.3.2. Results

We evaluated our method on the NICTA large pedestrian image dataset (see Overett et al.
[2008]), which contains pictures with pedestrians taken in a typical urban environment.
The pedestrians appear either alone or in crowded scenes whith partial occlusions, in
different poses (walking, standing, sitting) and in a broad range of lighting variations.
Negative examples are represented by random crops of images from indoor and outdoor
environments. We randomly selected 10000 positive images and 50000 negative images for
each scale. In total we trained our algorithm with 120000 image samples. In each image we
encountered between 10 and 20 edge segments, i.e. several million descriptors were used
for training. We used 5 times more negative training examples to provide a large variety
of background. To assess the quality of the AdaBoost training we used a leave-one-out
cross validation, in which data is partitioned into subsets such that the analysis is initially
performed on a single subset, while the other subsets are retained for confirming and val-
idating the initial results. The test set is composed of 24000 images with 4000 and 20000
negative examples. Our results on images of size 16 × 20 are shown in table 3.5 (right).
As we can see, the approach is comparably robust. Compared to the approach of Kruppa
et al. [2003], which uses AdaBoost on Haar features, we obtain a precision and recall of
about 70%, while the latter resulted in 28% precision and 18% recall.

3.4. Detecting Pedestrians in 3D Range Data

In Sec. 3.2 we saw how additional data obtained from a 3D range sensor can be used to
further constrain the regions of interest, in which pedestrians are detected. The benefit of
this method mainly stems from the ability of 3D range sensors to determine the correct
scale of an object, because the sensor returns very accurate depth measurements. This
raises the question whether we can use 3D range data directly to detect pedestrians instead
of using a combination of different 2D sensor modalities. To answer this question we
have to take into account that cameras still have the major advantage over laser sensors
that their data is much denser and that color and texture is often much more informative
that shape. However, the development of sensor systems for 3D perception has advanced
very quickly in recent yeras, and modern 3D laser devices can already produce millions of
data points at very high frame rates. This data density results in a very high resolution at
which objects can be scanned even at distances of about 10m, which somehow reduces the
advantage of standard color cameras over these 3D scanners. Therefore, we develop in this
section a pedestrian detection algorithm that only relies on such dense 3D point clouds. To
do this, we first observe that 3D scanners which rotate around the vertical z- axis produce
data that can be interpreted as a vertical collection of 2D scan lines. This means that we
can subdivide the 3D data vertically and apply similar techniques as we did for the 2D
case. The details of this are given in Spinello et al. [2010a] on page 118, here we present the
main idea and the results.

3.4.1. Classification by Splitting into Parts

In general, classification of humans in 3D data is very difficult, because the appearance
of people is highly variable: Humans have different sizes and body shapes, wear clothes,
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Figure 3.6.: Left: Learning a 3D pedestrian model. Objects are vertically divided into M parts. For
each subpart an independent AdaBoost classifier is learned: all the segmented points contained
on each layer are considered as positive samples for theM AdaBoost classifiers. Right: Detection
result on a 3D point cloud. A person pushing a buggy, a child and a walking pedestrian are
correctly identified in the point cloud.

carry bags, backpacks, or umbrellas, pull suitcases, or push buggies, making it hard to
predefine models for their appearance. To simplify the problem, we therefore use a sub-
division into M different height layers called parts (see Fig. 3.6, left). The subdivision is
defined beforehand and does not follow any anatomical semantics such as legs, trunk, or
head. Then, to learn a 3D person model, we create M different and independent classi-
fiers, one for each part. We use AdaBoost as a classification algorithm, as it has shown to
perform very well on similar data from 2D sensors [Arras et al., 2007]. To train the clas-
sifier, we first compute a set of descriptors on the previously segmented horizontal scan
lines, where the descriptors include features such as width, mean curvature, or radius of a
segment (the full list is given in Spinello et al. [2010a] on page 119). Then, from a given 3D
data set of pedestrians where the parts are labeled, a classifier is trained for each part. Fur-
thermore, displacement vectors pointing to the object center are stored for the parts. Then,
in the inference step, scan lines are first classified into the parts, and the correponding
displacement vectors are used as votes for the position of the pedestrian.

3.4.2. Results

We evaluated our algorithm on two outdoor data sets collected with a Velodyne HDL
64E S2 laser scanner. The first data set, named Polyterrasse, has been collected in a large
area in the front of the ETH Zurich main building, accessible only to people and bicycles.
The second data set, named Tannenstrasse, has been collected on a busy street crossing
in downtown Zurich with trams, cars, pedestrians, or bicycles. Training was done using
2592 background segments and 7075 people segments from the Polyterrasse data set with
203 subjects, which were standing still or walking. A qualitative result is shown in Fig. 3.7.
Quantitatively we obtained for Polyterrasse an equal error rate (i.e. precison and recall) of
96%, 71%, and 65% where pedestrians were up to 10, 15, and 20m away from the sensor,
respectively. For Tannenstrasse, these values were 95%, 76%, and 63%.
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Figure 3.7.: Two example frames showing detection results as red boxes. Left: A frame of the
Polyterrasse data set. Closely walking people and a partly visible individual standing close to
the sensor are correctly found. Right: A frame of the Tannenstrasse data set showing a cluttered
urban street crossing with people, pillars, street signs, and a tram just entering the scene. People
are correctly detected while crossing the street and walking at a large distance to the sensor.
There are two false positives in the lower left part of the picture caused by a glass window with
vertical steel poles.
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As we have seen in the previous chapter, standard supervised learning methods such as
AdaBoost and Support Vector Machines are very powerful methods for challenging tasks
such as the detection of pedestrians and cars in camera and laser range data. In particular,
we saw that by using informative data descriptors and an appropriate application of the
learning methods, very high classification rates can be achieved. Thus, we could argue
that these classifiers are the methods of choice for the kind of problems we are consider-
ing. Unfortunately, it turns out that these methods have some severe drawback, and this
drawback is particularly evident in applications where safety-critical decisions depend on
the return values obtained from the classifier. An example of this is the decision to stop
an autonomous car when the classifier returns a detected pedestrian in front of the car.
As we will argue in Sec. 4.1, standard classifiers can in this case lead to catastrophic sit-
uations, because their measure of confidence is unreliable. Therefore, we investigate alter-
native classifiers in this chapter, which provide better confidence estimates. In particular,
in Sec. 4.2 we will briefly describe the Gaussian Process classifier (GPC) and present an
example application. Then, in Sec. 4.3 we apply the GPC to traffic light detection and road
sign classification, which are further examples of safety-critical problems. Finally, in Sec.
4.4 we develop a novel classification method, that is more efficient than the GPC but not
much worse in terms of its confidence estimation.

4.1. Motivation

Consider again the scenario where an autonomous car operates in a busy urban environ-
ment. One of the main challenges in this scenario is the reliable detection of other road users
such as cars, cyclists, and pedestrians. By reliable we mean that the detection method we
use should return wrong detections only very rarely. However, it is clear that even the best
detection method will always fail in some situations, even though this might happen in
very few cases. Unfortunately, only one such failure case can already lead to disastrous
situations, for example if a pedestrian is not detected and hit by the autonomous car. In
contrast, if the detection method reports a pedestrian, where in fact there is free space, this
is less serious, because although the car might decide to stop unnecessarily, it does at least
not harm anyone. This means, that in principle there are two different kinds of failure
cases with different levels of severity: the false positive and the false negative detections,
while the latter are by far the more critical ones. Thus, the question is how the number
of false negative detections can be reduced. To answer this, we first note that classifiers
generally make wrong predictions particularly when they are presented with a test datum
which is unlike anything they saw during training. In these cases, we argue that the ap-
propriate response for a classifier is to respond with high uncertainty, or equivalently with
low confidence. This means that we need to provide uncertainty estimates in addition to

27



4. Confidence-aware Classification

the class label predictions produced by the classifier. For the case of the Support Vector
machine (SVM), Platt [1999] proposed a method to compute probabilistic outputs, as will
be described next.

4.1.1. Obtaining Uncertainty from an SVM

As explained in Sec. 2.1.2 on page 8 the standard SVM inference algorithm computes for a
new test datum x∗ the decision function f(x∗) from Eq. (2.4) and returns the label y∗ = 1
if the sign of f is positive. To convert this binary output into a probabilistic formulation,
Platt [1999] uses the formulation

p(y∗ = 1 | f(x∗)) =
1

1 + exp(af(x∗) + b)
. (4.1)

This corresponds to a parametric sigmoid model that is fit directly to the class posterior.
The parameters a and b of this sigmoid function are obtained by maximizing the likeli-
hood of the training data using three-fold cross-validation. To further reduce the risk of
overfitting, the training labels y1, . . . , yN are converted into target probabilities t1, . . . , tN as

ti =

{
N++1
N++2 if yi = 1

1
N−+2 if yi = −1

, (4.2)

which follows from Bayes’ rule applied to an out-of-sample data model with a uniform
prior over the labels.

As we will see later, the problem with this method is that class likelihoods are derived
using only a single estimate of the discriminative boundary obtained from training the
classifier. No other feasible solutions are considered. In particular, the predictive variance
of the discriminant f(x) is not taken into account while determining probabilistic output
(see Sec. 6.4.1 on page 145 of Rasmussen and Williams [2006]). Furthermore, there are no
guarantees that the optimisation itself is well-behaved.

4.1.2. Under- and Overconfidence

A crucial point with the uncertainty estimates obtained from a classifier is the question,
how much one can rely on these estimates. Intuitively, the uncertainty estimated for a
classification output is reliable if it correlates with the incorrectness of the classifier. This
means that an ideal classifier should be uncertain only if its predictions are wrong and
certain only if it is correct. This intuition is used in Triebel et al. [2013b] on page 174, where
the point-biserial correlation coefficient (PBCC) was used to quantify the relation between
incorrect and uncertain classifications. Based on this measure, an algorithm was devel-
oped to reduce the number of wrong, but certain classifications (see Sec. 4.4 for details).
However, it turns out that the PBCC is not very useful in cases where the number of cor-
rectly and incorrectly classified samples is unbalanced. Therefore, we propose a different
approach. First, we define the total average confidence c̄ of a classifier f on a test set X ∗ of
size K as

c̄(f,X ∗) := 1− 1

K

∑

x∗∈X ∗
h(f(x∗)), (4.3)
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where h is the uncertainty of the prediction f(x∗), which can for example be defined as the
normalized entropy

h(y) = −
C∑

i=1

p(y = ci | x) logC p(y = ci | x), (4.4)

where C is the number of classes and ci are the class labels. Thus, c̄ is a value that is 1 iff
all prediction uncertainties are 0 and vice-versa. Next, we define two functions u and o as
follows:

u(f,X ∗, Ŷ) :=

∑
x∗∈X ∗ I(y∗ = ŷ)h(f(x∗))

Kcc̄(f,X ∗)
(4.5)

o(f,X ∗, Ŷ) :=

∑
x∗∈X ∗ I(y∗ 6= ŷ)(1− h(f(x∗)))

Kf (1− c̄(f,X ∗)) , (4.6)

where I is the indicator function, Ŷ are the ground truth labels, and Kf and Kc are the
number of incorrectly and correctly classified test samples, i.e. Kf + Kc = K. The inter-
pretation of these functions is that u rates the average uncertainty of the correct classified
samples over the total average confidence. Similarly, o sets the average confidence of the
incorrectly classified samples in relation to the total average uncertainty. We will denote
u as the normalized underconfidence and o as the normalized overconfidence of the classifier.
Intuitively, if all incorrect classified samples have the maximum confidence of 1 assigned,
then the overconfidence is very high. The other extreme case is that of maximal under-
confidence u. Here, all uncertainty values h for correctly classified samples are 1, i.e. the
classifier is always fully uncertain, although its predictions are correct. We note that with
this definition under- and overconfidence are decoupled, as there may be cases where a
classifier is under- and overconfident at the same time, namely when it is uncertain on the
correct predictions and certain on the wrong ones. Based on this intuition of under- and
overconfidence, we now turn to a classifier that performs better in this sense.

4.2. A Less Overconfident Classifier

One group of machine learning techniques that have particularly attracted the interest of
researches in robotics are probabilistic reasoning techniques. They are used very often and
with great success in all kinds of robotics applications, because they tend to allow for a
more precise modelling. Conditional Random Fields are one example, and another very
successful technique are Gaussian Processes (GP). Originally, GPs are used for regression
problems, where the predictions made by the algorithm are real numbers rather than in-
dices of class labels as in classification. However, there is also a classification framework
based on GPs, which we will use here. Before, we give a brief explanation of the Gaus-
sian Process Classifier. For more details on this topic we refer to Rasmussen and Williams
[2006].

4.2.1. The Formulation of the Gaussian Process Classifier (GPC)

According to Rasmussen and Williams [2006], a Gaussian Process (GP) is defined as a col-
lection of random variables, any finite number of which are jointly Gaussian distributed.
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One can think of a GP as a distribution over functions rather than vectors, and to specify a
GP we need to name a mean function m, which is unary, and a binary covariance function k.
Then, we can write the distribution over functions f as

f(x) ∼ GP(m(x), k(x,x′)). (4.7)

Most often, and also in our case, the mean function is assumed to be the zero function,
which means that the covariance function alone specifies the GP. Many different covari-
ance functions have been proposed, but by far the most used one is the squared exponen-
tial function defined as

k(xp,xq) = σ2f exp
(
(xp − xq)

TD(xp − xq)
)

+ σ2nδpq p, q = 1, . . . , N, (4.8)

where D is a d× d diagonal matrix, d is the dimension of the feature vectors x, and δ is the
Kronecker delta. The parameters D, σf , and σn are known as the hyper-parameters of the
model.

To use GPs for prediction, we assume we are given a set of training inputs {x1, . . . ,xN}
and outputs f1, . . . , fN , where for now we consider fi ∈ R. Then, given a test sample
(xi, fi) we consider the joint distribution of all training and test samples, which is a multi-
variate Gaussian:

[
f
f∗

]
∼ N

(
0,

[
K k∗
kT∗ k(x∗,x∗)

])
. (4.9)

Here, K is the covariance matrix of all training inputs, i.e. theN×N entries ofK are equal
to k(xi,xj), i, j = 1, . . . , N . Similarly, the vector k∗ corresponds to the covariance func-
tion applied to all training samples and the test sample x∗. Using this joint distribution,
the predictive distribution for a test output f∗ can now be obtained by conditioning on the
observations, i.e.

p(f∗ | f , X,x∗) = N (k∗K−1f , k(x∗,x∗)− kT∗K
−1k∗). (4.10)

This formulation assumes that we know the exact values f of the training output, which
is, however, most often not the case. In fact, we usually only know a noisy version y of f ,
but we can assume that we know the noise model p(y | f). For example, in the standard
case of regression, this noise model is a zero-mean multivariate Gaussian. Noting that the
prior p(f | X) is specified by the GP, we can compute the posterior as

p(f | X,y) =
p(y | f)p(f | X)

p(y | X)
, (4.11)

which is another multivariate Gaussian that can be computed in closed form. To perform
predictions over new values y∗, we first need to marginalize over all f using (4.10) and
(4.11), and we obtain

p(f∗ | X,y,x∗) =

∫
p(f∗ | f , X,x∗)p(f | X, y)df . (4.12)

This can again be done in closed form due to the nature of the multivariate Gaussians.
Then, we need to marginalize over the (unknown) f∗, which results in

p(y∗ | X,y,x∗) =

∫
p(y∗ | f∗)p(f∗ | X,y,x∗)df∗, (4.13)
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where we again made use of the Gaussian noise model p(y∗ | f∗). Now, to switch from the
regression to the classification case, the only modification we make is that we assume y to
be from the interval [0, 1], and the noise model is a sigmoid function rather than a Gaussian.
This has the drawback that (4.11) can not be computed in closed form. However, there
are good approximation techniques such as the expectation-propagation (EP) algorithm
by Minka [2001] that can be used to find mean and covariance matrix of a Gaussian that
approximates (4.11). If EP is used in combination with a probit sigmoid function for the
noise term, i.e.

p(y | f) = Φ(yf) where Φ(z) =

∫ z

−∞
N (x | 0, 1)dx, (4.14)

then the prediction (4.13) can be computed in closed form and does not need to be approx-
imated.

The training phase of the GPC consists of maximizing the marginal likelihood p(y | X)
with respect to the hyperparameters of the covariance function (see (4.8)). This can be
done by standard gradient-based optimization methods. For more details we refer again
to Rasmussen and Williams [2006].

4.2.2. The GPC for Multiple Classes

In the standard case, the Gaussian Process classifier is used for binary classification, i.e.
the prediction (4.13) is interpreted as the probability for class 1 (or foreground). In gen-
eral, however we have classification problems involving multiple classes. To do this with
a GPC, several approaches have been proposed, and we use the one proposed by Giro-
lami and Rogers [2006]. Again, we denote the d-dimensional feature vectors used for
training with x1, . . . ,xN and the corresponding class labels with y1, . . . , yN , however now
yi ∈ {1, . . . , C} and C is the number of classes. Furthermore, a latent function fj(x) is
introduced for each class along with the probit regression model. Thus, the probability of a
class label yi for a given feature vector xi is defined as:

p(yi = j | xi) = Φ(fj(xi)) i = 1, . . . , n, j = 1, . . . , k. (4.15)

Unfortunately, the EP approximation used in the binary case can not be applied in a
straightforward way to the multi-class case. Therefore, Girolami and Rogers [2006] pro-
pose a variational Bayes formulation. Then, during training the hyperparameters are
learned by gradient ascent on the estimated marginal likelihood. Once the hyperparam-
eters and the latent posterior are obtained from training data, inference is performed on
new test input by applying Equation (4.13), as in the binary case.

In terms of computation time, the full GP classification procedure scales as O(kN3)
where k is the number of classes and N is the total number of sample points. The scaling
is dominated by the cubic dependence onN due to the matrix inversion required to obtain
the posterior mean for the GP variables. The variational Bayes multi-class GP formula-
tion [Girolami and Rogers, 2006] is amenable to a sparse approximation by constraining
the maximum number of samples s included in the model. This results in an O(kns2)
scaling where s� n. The informative points are picked according to the posterior predic-
tive probability of the target value, intuitively picking points from class boundary regions
which are most influential in updating the approximation of the target posteriors.
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(a) ground truth
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Figure 4.1.: Classification result after 9 point clouds. Left: Ground truth. Note that even in the
ground truth some areas are not labeled correctly, e.g. on the ground close to the building. This
is due to the fact that the mesh segmentation is not perfect and a correct manual labeling of
segments that actually correspond to more than one class is not possible. In our evaluation
we abstract from such segmentation errors. Right: Classification result. Only minor errors are
visible. Note the hedge in the front, but also on some cars.

4.2.3. Application to 3D Point Cloud Classification

In Paul et al. [2012] on page 159, we applied the multi-class GPC to the problem of seg-
menting 3D point cloud data into classes such as building, tree, hedge, etc. The data was
acquired with a rotating laser scanner device. In a preprocessing step, we first produce
a triangular mesh from a 3D point cloud by connecting neighboring data points if they
are closer than a given threshold. We then compute normal vectors for all triangles and
apply a segmentation algorithm based on the work of Felzenszwalb and Huttenlocher
[2004], where the similarity of two adjacent triangles is defined by the angles of their nor-
mal vectors. Each resulting mesh segment consists of a single connected component and
is consistent with respect to the orientation of the triangles it contains. Thus, segments are
consistently shaped, e.g. all triangles are all mostly co-planar or they are all similarly dis-
tributed in orientation. In the next step, we compute feature vectors for all mesh segments.
We use similar features as in Triebel et al. [2010] (see page 204), namely shape factors, shape
distributions based on Euclidean distance, on angles between normal vectors and on the
elevation of the normal vectors, and finally spin images, where the latter are computed per
data point and then an average is computed per mesh segment. As a result, we obtain a
113 dimensional feature vector for each mesh segment, where 50 account for the 5×10 spin
image, 20 for each shape distribution and 3 for the shape factors. These feature vectors,
together with a set of ground truth class labels are then fed into the training algorithm of
the GP multiclass classifier.

Figure 4.1 shows the classification result of 9 consecutive meshes in one common image.
Note that there are slight labeling errors even in the ground truth (Fig. 4.1a). This is caused
by imperfections during segmentation, which lead to under-segmentation. For example,
few segments contain 3D points from the building and the ground. As it is impossible to
determine a single true label for these segments, we decided to assign the ground truth
label based on a majority voting. From Fig. 4.1b we can see that the classification is very
good, only the under-represented classes such as car and hedge are classified slightly worse.
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Figure 4.2.: Classification result and normalized entropy for one example mesh. (a) Classification
result using multi-class GP classification. Note the classification error of the hedge in the front,
which is classified as car. (b) Uncertainty in terms of normalized entropy of the class label dis-
tributions for each mesh segment. For most segments the classifier is very confident. For some,
such as the (wrong classified) hedge in the front, the normalized entropy is high and the classifi-
cation confidence low.

Fig. 4.2 shows an example of the classification result for one triangle mesh from our data
set. Fig. 4.2a depicts our classification result using the multi-class GP classifier. One can
clearly see that there are only minor classification errors. The most obvious ones are in
the front on the hedge surrounding the car park. Here, the classifier generated the label
car. However, the labels in that area are not very certain, which can be seen from the Fig.
4.2b. Here, the uncertainty in terms of the normalized entropy (see Eq. (4.4)) is visualized
with color values between green (no entropy) and red (entropy equal to 1). We can see that
the class label distributions of the segments in the front have a much higher entropy than
others such as those on the ground. This shows evidence that the GP classifier tends to be
uncertain on the wrong classifications and certain on the correct ones.

We compared the generative GP classifier with a discriminative SVM classifier using the
LIBSVM implementation of Chang and Lin [2011]. In all cases, we employed the squared
exponential kernel to facilitate comparison. Evaluated in terms of the F0.5-measure, the
performance for the GP and SVM classifiers was very similar, even with a sparser repre-
sentation used for the GP. Then, we compared the uncertainty estimates of the probabilistic
classification output of the two classifiers to new object classes not used in training. We
trained the GP and SVM classifiers only on segments from two classes (randomly picked):
building and ground. Data from the remaining un-modeled classes was presented to both
classifiers for inference, resulting in a classification distribution over binary labels. The
normalized entropy values measuring uncertainty in the classification decision were com-
puted for each label distribution.

Fig. 4.3 presents the normalized entropy histograms for the inference set. The SVM clas-
sifier commits a large majority of the un-modeled points to one of the modeled classes with
high certainty, resulting in a peaked distribution over one of the two labels. As a result, for
a majority of the data points, the label distribution has lower normalized entropy. In con-
trast, the GP classifier assigns higher normalized entropy for a majority of the test points.
The same pattern was found consistent for other choices of training and testing classes.
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(a) SVM uncertainty
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Figure 4.3.: Histogram of normalized entropy values of the label distribution for SVM and GP
classifiers. Both classifiers were trained explicitly on two classes. The data from the remain-
ing classes was presented for inference. (a) SVM classifier assigns a majority of the points to a
particular class with high certainty. (b) As a contrast, GP classifier assigns greater classification
uncertainty to a majority of the points, providing evidence for a potential new class. Note the
scale on y-axis.

The classifier uncertainty for the test points from new classes is expressed as a more uncer-
tain (uniform) distribution over labels, indicating the presence of one or more potentially
un-modeled classes.

4.3. The Importance of Confidence in Mission-Critical
Classification

As mentioned above, the use of a confidence-aware classifier is particular important in
situations were decisions depend on the outcome of the classification, which can have
catastrophic consequences. A classifier that performs well in terms of precision and recall
might return only few misclassifications, but if these few mistakes are made with high
confidence, then it is not possible to mitigate them. Therefore, it could be advantageous to
use a classifier that is slightly worse in terms of precision and recall, but that at least returns
a low confidence on the wrong classified samples. This idea was followed in Grimmett
et al. [2013] on page 166, where a binary GPC was used to detect traffic lights and classify
road signs in camera images. We briefly explain the approach here.

4.3.1. Traffic Light Detection and Road Sign Classification

Our aim is to address traffic light detection and road sign classification with different clas-
sification frameworks and to compare them in terms of their tendencies for overconfi-
dence. In investigating both classification and detection we aim to address the full spec-
trum of applications commonly encountered in robotics. The two are distinct in that clas-
sification addresses the case where a decision is made between two, well-defined classes
(e.g. two types of traffic signs) and investigates classifier performance as a third, previ-
ously unseen class is presented. The detection case is arguably the more common one in
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semantic mapping where a single class is separated from a broad background class. Here,
the concept of a previously unseen class does not exist but the inherent assumption is that
the data representing the background class are sufficiently representative to capture any
non-class object likely to be encountered. In practice, this is often not the case, leading to
a significant number of misclassifications. While it could be argued that this problem is
ameliorated somewhat by expanding the dataset used for training, we propose that the
complexity of the workspaces encountered during persistent, long-term autonomy will
keep perplexing even the most rigorously trained classifier.

For feature computation, we use the approach proposed by Torralba et al. [2007b], in
which a dictionary of partial templates is constructed, against which test instances are
matched. A single feature consists of an image patch (ranging in size from 8× 8 to 14× 14
pixels) and its location within the object as indicated by a binary mask (32×32 pixels). For
any given test instance, the normalised cross-correlation is computed for each feature in
the dictionary. Therefore, per instance (or window, in the detection case) a feature vector of
length d is obtained, where d is the size of the dictionary. We found empirically that d > 200
leads to negligible performance increase in classification. Throughout our experiments we
therefore set d = 200.

4.3.2. Results

We evaluated the performance for six different classifiers, both in terms of classification
rate and with respect to their overconfidence. The classifiers used were a GPC with a linear
covariance function (kernel), a GPC with a squared-exponential (SE) kernel, an SVM also
with a linear and an SE kernel, the LogitBoost [Friedman et al., 1998] algorithm, and an
Informative Vector Machine [Lawrence et al., 2002], which is a sparse version of the GPC.
We applied these classifiers to a subset of the German Traffic Sign Benchmark (GTSRB)
dataset [Stallkamp et al., 2012], which comprises over 50, 000 loosely-cropped images of 42
classes of road signs, with associated bounding boxes and class labels. From this dataset
we specifically focus on the seven classes roadworks ahead, right ahead, stop, keep left, lorries
prohibited, speed limit, and yield. First we evaluated the standard classification performance
in terms of precison and recall. For that, we trained all classifiers on 400 samples of the two
classes stop and lorries prohibited, 200 per class. Classifier performance was evaluated using
precision and recall on a hold-out set of another 400 class instances (200 of each class) of
the same two classes. The results for all classifiers where values of precision and recall of
almost 1, from which we conclude that all classifiers are able to reach a high classification
rate when they are tested on known classes.

Then, we performed an experiment similar to the one described in Fig. 4.3: we trained
all classifiers on the two classes stop and lorries prohibited, and tested them on the other five
classes. The result is shown in Table 4.1. We can see that the three GP classifiers always
return a higher uncertainty in terms of normalized entropy than the other classifiers. This
result further supports the findings from Sec. 4.2.3, namely the apparent ability of the GPC
to associate incorrect classifications with a higher uncertainty. Later, in Chapter 7 we will
exploit this ability when we use the GPC in an Active Learning framework.
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Test Class Classifier Normalised Entropy
µ± std. err. σ± std. err.

IVM 0.776 ± 0.081 0.145 ± 0.030
Non-linear GPC 0.751 ± 0.087 0.152 ± 0.029
Linear GPC 0.776 ± 0.108 0.150 ± 0.041
Non-linear SVM 0.476 ± 0.101 0.089 ± 0.056
Linear SVM 0.664 ± 0.122 0.250 ± 0.041
LogitBoost 0.019 ± 0.025 0.041 ± 0.073
IVM 0.794 ± 0.117 0.106 ± 0.026
Non-linear GPC 0.779 ± 0.124 0.107 ± 0.024
Linear GPC 0.777 ± 0.202 0.124 ± 0.058
Non-linear SVM 0.537 ± 0.126 0.028 ± 0.036
Linear SVM 0.494 ± 0.239 0.222 ± 0.049
LogitBoost 0.016 ± 0.022 0.031 ± 0.059
IVM 0.539 ± 0.140 0.173 ± 0.023
Non-linear GPC 0.546 ± 0.144 0.168 ± 0.023
Linear GPC 0.569 ± 0.166 0.177 ± 0.026
Non-linear SVM 0.407 ± 0.077 0.076 ± 0.053
Linear SVM 0.315 ± 0.195 0.197 ± 0.058
LogitBoost 0.008 ± 0.004 0.012 ± 0.026
IVM 0.579 ± 0.133 0.137 ± 0.020
Non-linear GPC 0.577 ± 0.130 0.136 ± 0.019
Linear GPC 0.585 ± 0.188 0.151 ± 0.029
Non-linear SVM 0.488 ± 0.111 0.039 ± 0.034
Linear SVM 0.177 ± 0.127 0.155 ± 0.056
LogitBoost 0.014 ± 0.019 0.030 ± 0.056
IVM 0.931 ± 0.025 0.080 ± 0.026
Non-linear GPC 0.934 ± 0.021 0.079 ± 0.023
Linear GPC 0.925 ± 0.031 0.085 ± 0.027
Non-linear SVM 0.641 ± 0.168 0.100 ± 0.047
Linear SVM 0.705 ± 0.142 0.212 ± 0.049
LogitBoost 0.059 ± 0.103 0.077 ± 0.127

Table 4.1.: Mean and standard deviation of normalised entropies (including standard errors) from
40 iterations of classifier training and testing, each with a randomly created dictionary and both
training and test datasets resampled. Results are presented for classifiers trained on the road
sign classes stop and lorries prohibited and tested on five different unseen classes as shown.
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Algorithm 2: Online Multi-class Gradient Boost [Saffari et al., 2010]
Data: training data (X ,y) with C classes
Input: number of weak learners M , loss function `, agreement function a
Output: weak learners f1, . . . , fM

1 Initialize(f1, . . . , fM)
2 for n = 1, . . . , N do
3 wn ← 1
4 gn ← 0
5 for m = 1, . . . ,M do
6 fm ← UpdateWeakLearner(fm,xn, yn, wn)
7 pnm ← fm(xn)
8 αnm ← a(pnm, yn)
9 gn ← gn + αnm

10 wn ← −∇`(gn)

11 end
12 end

4.4. An Alternative to the GPC

From the experiments shown in the previous section, we conclude that the Gaussian Pro-
cess classifier is well suited for applications where a reliable estimate of the classification
confidence is required. However, one major problem with the GPC is its huge demand in
run time and memory. Therefore, in this section, we investigate a classification framework
that is known to be efficient and effective, but at the same time can be modified so that it
is less overconfident. A recently developed method with these requirements is the Online
Multi-Class Gradient Boost (OMCGB) algorithm of Saffari et al. [2010] (see Algorithm 2),
which we describe next, before we develop our modification of the algorithm denoted as
Confidence Boosting.

4.4.1. Online Multi-Class Gradient Boost (OMCGB)

We start again with a training data set X = {x1, . . . ,xN}, for which we are given ground
truth labels y = (y1, . . . , yN ). As in Sec. 4.2.2, we will consider the multi-class case, i.e.
yi ∈ 1, . . . , C, where C is the number of classes. Then, in addition to the training data, the
OMCGB algorithm requires three further input parameters: a fixed number M of weak
learners, a loss function ` : R → R, and an agreement function a : RC × N → R, which
quantifies the amount of agreement between a class label prediction f(xn) and the corre-
sponding ground truth label yn. After initialization of the weak classifiers, the algorithm
loops over all training data points and updates all weak classifiers for every new training
sample (xn, yn). This online behaviour of the algorithm will be particularly attractive for
our Active Learning framework developed in Chapter 7, because it avoids a recomputa-
tion of the underlying representation whenever a new ground truth label is queried from
the user and added to the existing training set. As in offline boosting methods, every train-
ing sample xn has an assigned weight wn, which is first initialized to 1. Then, every weak
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4. Confidence-aware Classification

classifier is updated with the new sample, its weightwn and its ground truth label yn. Note
that the weak learner itself also must be an online algorithm, because otherwise the overall
boosting method would not be online. In our experiments we used online random forests
as weak classifiers.

The next step (line 7) is to obtain a label prediction pnm for the new training sample,
which we represent as a distribution over the class labels. Then, the agreement with the
ground truth label is computed. In standard OMCGB, this is defined as

ag(pnm, yn) = p(yn)nm − 1/C, (4.16)

i.e. it is directly related to the prediction for class yn, here denoted as an upper index into
the prediction vector pnm. The resulting agreement αnm is then accumulated, and a new
weight wn is computed for the sample from the negative gradient of the loss function of
the sum of agreements. In Saffari et al. [2010], two different loss functions are investigated,
but with little performance difference, so we decided to use the standard exponential loss
`(g) = exp(−g) known from AdaBoost. Concretely, the computation in line 10 results in
higher weights for samples that disagree with the ground truth and lower weights for
those that do agree.

4.4.2. Confidence Boosting

As can be seen from Eq. (4.16), the agreement ag used by standard gradient boost is only
related to the prediction itself, but not to the confidence of the prediction. To build a
classifier that takes both prediction and confidence into account, we propose to use this
agreement function:

ac(pnm, yn) = (−1)ξ
(

1− h(pnm)

(C − 1)ξ

)
, (4.17)

where ξ = I(arg max
i

p(i)
nm 6= yn). (4.18)

This means, that we measure agreement by the amount of confidence, which is equal to
one minus the uncertainty h. In case of a correct classification, i.e. when ξ = 0, the agree-
ment simply amounts to the confidence of the current weak classifier fm. However, if the
classification is incorrect, we actually have a disagreement, and we express this with the
– slightly modified – negative confidence. Our modification is the term (C − 1), by which
we divide the uncertainty. This has empirically shown to improve the classification results
substantially. To summarize, our agreement function is high if the classification is correct
and certain, and it is low if we have an incorrect, but certain classification. Also note that if
the uncertainty is zero, i.e. when we completely trust the classification, then the agreement
is 1 for correct and −1 for incorrectly classified samples. Thus, in this case, our agreement
function is even simpler than the original one given in Eq. (4.16).

4.4.3. Results

To evaluate our algorithm, we performed experiments on six different data sets, where the
aim was to show how much Confidence Boosting actually reduces the overconfidence in
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(a) confidence histograms
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(b) trade-off and run time

Figure 4.4.: (a) Confidence histograms of gradient boosting and Confidence Boosting on the ’DNA’
dataset. The left plots show the histograms for the correctly classified samples, the right ones
those for the incorrect samples. Confidence Boosting shifts all histograms to the left, resulting in
an overall decreased confidence. Note, however that the false samples are shifted even further,
which leads to a lower normalized overconfidence. (b) Top: Trade-off curves for gradient boost-
ing, Confidence Boosting, and GPC on the ’Pendigits’ data set. Higher curves correspond to less
overconfident classifiers, curves that are further to the right represent a lower underconfidence.
We see that Confidence Boosting generally improves over- and underconfidence compared to
gradient boosting, and it is even less underconfident than the GPC. Bottom: Average run times
of Confidence Boosting (blue) and the GPC (red) for each epoch (note the log scale).

the class label predictions. We used four data sets from the UCI machine learning repos-
itory, and two sets from robotics. The UCI data sets are ’USPS’, ’Pendigits’, ’Letter’, and
’DNA’. We used these because they were also used for evaluation by Saffari et al. [2010],
and our aim is to compare Confidence Boosting with gradient boosting. The robotics data
sets we used were an RGB-D set provided by Lai et al. [2011], and the 3D point cloud data
from Paul et al. [2012] (see page 159). From the first one, for which we use the identifier
’RGBD’, we extracted 89 pre-segmented objects of 17 object classes, resulting in a total of
58372 RGB-D images. Then, we computed Hierarchical Matching Pursuit (HMP) descrip-
tors [Bo et al., 2011] on the depth channel. The dictionary needed for the HMP features
was learned on 5 classes out of 17, mainly for memory reasons. Then, the data was split
into a training set of 90% of the data and an evaluation set of the remaining 10 %. The
other robotics data set, which we denote as ’Begbroke’, consists of 3D point clouds from
a car park with 6 classes. The data was segmented automatically, and features were com-
puted for each segment. In total, there were 1496 segments, out of which we took 1000
for training and the rest for evaluation. We used this data to be able to compare with the
multi-class GP classifier used in Paul et al. [2012], both in terms of run-time and classifica-
tion performance.

To measure how much Confidence Boosting actually reduces overconfidence, we com-
puted histograms over the confidences for correctly and incorrectly classified samples,
both for gradient boosting and for Confidence Boosting. Fig. 4.4a shows the resulting his-
tograms for gradient boosting (GB) and Confidence Boosting (CB) on the ’DNA’ data set.
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RGBD Begbroke USPS Letter Pendigits DNA
GradientBoost 0.1969 0.3899 0.2964 0.2611 0.3878 0.1988

Confidence Boosting 0.1125 0.2246 0.2308 0.1995 0.2462 0.1136

Table 4.2.: Normalized overconfidence averaged over 100 runs.

The plots on the left show the confidence histograms for the correct classified samples,
the right ones for the incorrect samples (red bars depict either over- or underconfident
regions). As we can see, Confidence Boosting tends to shift both histograms to the left,
which means that in general classification is more uncertain. This implies that more false
classifications are uncertain as well. Thus, if we measured overconfidence only by the false
classified samples, then increasing the uncertainty in general would already reduce over-
confidence. This underlines our definition of the normalized overconfidence, which also
takes the overall confidence into account. To quantify this on the data sets used, we show
the normalized overconfidences in Table 4.2. We see that Confidence Boosting reduces the
normalized overconfidence on all six data sets.

To visualize the trade-off between over- and underconfidence, we use a plot type sim-
ilar to a precision-recall curve. On the x-axis, we plot for a given number of different
confidence thresholds θ1, θ2, . . . the fraction of false classified samples that have a confi-
dence below the thresholds. On the y-axis, we plot for the same thresholds the fraction of
correct classified samples for which the classification was more confident than θi. Ideally,
this curve stays close towards the upper right corner of the plot. Fig. 4.4b (top) shows an
example of such a plot for the ’Pendigits’ data set, both for gradient boosting and for Con-
fidence Boosting. We see that Confidence Boosting gives the opportunity to ’detect’ more
false classifications while at the same time not loosing too many correct classifications. The
bottom part of Fig. 4.4b shows the average run times of Confidence Bosting and GPC, here
for each epoch of Active Learning (see Chapter 7). As we can see, Confidence Boosting is
orders of magnitude faster while not being more overconfident than the GPC.
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Unsupervised and Online Learning
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5. Unsupervised Offline Learning

So far, we have only used learning methods that require ground truth information from a
supervisor for the training data. For many applications, particularly when the task is to
predict semantic information such as class labels for a given input data set, this ground
truth information is indispensable, because without it a correct prediction is impossible.
However, the process to obtain this ground truth labeling often signifies a huge effort
for the human supervisor. Therefore, there is a growing interesting in unsupervised ma-
chine learning methods, which rely on different sources of information than a hand-labeled
training data set. In this chapter, we investigate such methods. In particular, we present al-
gorithms that group the input data into meaningful clusters based on different criteria. In
Sec. 5.1, we present a method that automatically discovers regular patterns as they occur
for example in facades of buildings. In Sec. 5.2 we use data from motion commands and
relate them with observed direction signs for semantic interpretation of the signs. And
in Sec. 5.3 we use information about similarity and physical closeness of data segments
to reason about their correspondence to potential object classes. Note that in all these
purely unsupervised learning methods a semantic annotation that could be understood
by a human can not be obtained. However, as we will see in Sec. 7.1, an unsupervised
learning step can reduce the amount of required user interaction in a later supervised or
semi-supervised learning step.

5.1. Learning from Repetition by Discovering Regular Patterns

As mentioned above, unsupervised learning methods can not rely on hand-labeled data
to perform classification tasks. However, there are other sources of information that can
be exploited, and one idea is to find repetitive patterns in the data (e.g. a camera image)
and to infer from these patterns the existence of object instances. In Spinello et al. [2010c]
(page 178), this idea is used to find, for example, windows in a facade of a building. As
this approach is completely unsupervised, no human label such as “window” is returned
by the algorithm. Instead, cluster ids are obtained along with correspondences of data
segments to clusters. We give some more details in the following.

5.1.1. Individual Steps of the Algorithm

Fig. 5.1 shows a flow chart of our unsupervised object discovery algorithm algorithm. The
first step is to compute a set of descriptors and closed contours as candidates for repetitive
objects (e.g. windows or pillars). The idea is to obtain evidence of object occurrence by ex-
tracting similarities directly from the given scene. Apart from not requiring training data,
this has the advantage that we can filter out outlier categories for which no repetitive pat-
tern can be found. Our similarity measure is based on the ISM approach (see Leibe et al.
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Figure 5.1.: Schematic overview of the unsupervised object discovery algorithm. The initial object
discovery step consists of matching descriptors inside pairs of closed contours using the ISM ap-
proach of Leibe et al. [2005]. Then, the repetitive structure of the objects in the scene is analysed.
Finally, this structure is used to reason on the existence and location of further object instances
in the scene.

[2005]). An example result of this first step is shown in Fig. 5.2a. Then, we analyze repeti-
tive patterns inside each category by looking at the Euclidean distances between elements
in the image accumulated in a frequency map. These relative positions are represented as
edges in a lattice graph, in which nodes represent objects positions (see Fig. 5.2b). The
most dominant edges by which all nodes in this graph can be connected are found us-
ing a Minimum Spanning Tree algorithm and grouped into a set, which we call a latticelet
(Fig. 5.2c). To reason on higher-level repetitions we first find cycles of repetitions of object
candidates in the lattice graph, which can consist of simple polygonal structures such as
triangles, quadrangles or pentagons (see Fig. 5.2d). Then, we extrapolate the graph struc-
ture by repeating the cycles at the graph boundaries. A probabilistic inference method
using a CRF (see Sec. 2.3) is then used to determine if the occurrence of an object instance
at a predicted position is likely or not. These last two steps will be explained next.

5.1.2. Structure Learning and Reasoning Using the CRF

To reason about the existence of repetitive objects we use a probabilistic model: each pos-
sible location of an object of a given category τ is represented as a binary random variable
lτ (x) which is true if an object of category τ occurs at position x and false otherwise. In
general, the state of these random variables can not be observed, i.e. they are hidden, but
we can observe a set of features z(x) at the given position x, which in this case correspond
to the detection quality q of the objects. Now we need to find states of all binary variables
lτ = {lτ (x) | x ∈ X} so that the likelihood p(lτ | z) is maximized, taking into account
the conditional dependence between variables labels lτ (x1) and lτ (x2)of neighbors x1 and x2.
This is modeled using a CRF, where the node features are fn(qi, lτ,i) = 1− lτ,i+ (2lτ,i−1)qi,
and the edge features are based on the detection quality of the neighboring nodes (see
Spinello et al. [2010c], page 185).

To learn node and edge weights wn and we, we observe that they do not depend on the
network geometry but only on its topology, thus we can artificially generate training in-
stances by setting up networks with a given topology and assigning combinations of low
and high detection qualities qi to the nodes. This way we can create a higher variability
of possible situations than seen in real data and thus obtain a higher generalization of the
algorithm. The topology we use for training has a girth of 3 but other topologies can be
used, e.g. using squared or hexagonal cycles, although from our experiments these topolo-
gies do not increase the classification result. We also found that the number of outgoing
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5.1. Learning from Repetition by Discovering Regular Patterns

(a) discovered objects (b) graph structure (c) a latticelet (d) finding cycles

Figure 5.2.: Analysing the structure of the repetitive pattern. From the initial object detections in
(a), we build a graph structure and find the minimum spannig tree (b). From this, we create a set
of edges called a latticelet (c) and find circular structures (d), which are then used to extrapolate
latticelets at the borders of the network.

edges per node, i.e. the connectivity, has a strong influence on the learned weights. Thus,
we use a training instance where all possible connectivities from 2 to 6 are considered.

In the inference phase, we create a CRF by growing an initial network. From the analysis
of repetitive patterns described above, we obtain the set of cycles G for each category, the
topology and edge lengths of the lattice. By subsequently adding cycles from G to the
network we grow it beyond its current borders. After each growing step, we run loopy
belief propagation to infer the occurrence of objects with low detection quality. The growth
of the network is stopped as soon as no new objects are detected in any of the 4 directions
from the last inference steps.

5.1.3. Results

Fig. 5.3 shows some results of our method on typical input images. In the upper row of the
figure, we see the results of the object discovery step before applying structure learning
and the CRF inference. Thus, this is the result of a standard similarity based clustering
step where similarity is measured by the number of descriptor matches inside two object
candidates. As we can see, many object instances are clustered correctly, but some further
occurences of objects (here mostly windows) have been missed. This is due to a too low
detection score obtained for these instances. However, if we apply our structure learning
method and run CRF inference on the obtained graph structure, we can infer the existence
of further object instances in the scene. This is shown in the lower row of the figure, where
additional red boxes are shown at locations where the CRF predicts an object instance.
Note that this prediction is based only on the structure of the regular pattern and that it
returns no object occurence at locations where there is a too low local evidence for it.
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Figure 5.3.: Results of the unsupervised object discovery algorithm. The first row shows the dis-
covered object candidates as they are obtained from clustering based on similarities. Note that
not all instances of a true class are retrieved due to occlusions or low detection scores. However,
using our structure learning approach we can reason abot the existence of further instances of
each class, as shown in the lower row. Here, the pink dots depict nodes of the CRF, while the yel-
low lines are the edges. Note how some nodes have not enough local evidence for the existence
of an object instance.

5.2. Learning from Other Sources by Relating Image with Motion
Data

Apart from the information we get from the relations of samples within a given data set,
e.g. regular patterns, we can also use other sources of information, for example from differ-
ent kinds of data. This is sometimes called self-supervised learning and particularly relevant
in mobile robotics. For example, one can relate the data obtained from a camera or a laser
with that of a proprioceptive sensor, such as an inertial measurement unit (IMU) or a lo-
calization sensor such as a GPS receiver. This idea is used in Maye et al. [2010] (page 192)
to automatically interpret the semantics of direction signs by relating it with an associated
motion and finding similarities in the observed data. The idea of this approach is to first
learn a model for direction signs, which consist of text strings and arrows, and then find
similar models in observations that are all related to a similar motion. This way, the algo-
rithm finds for all images related to, say, a right turn, the similar elements, which turn out
to be an arrow to the right. We will give more details and examples in the following.

5.2.1. A Model for Direction Signs

The first step of our algorithm is to learn a model for a direction sign without supervision.
To do this, it first performs a low-level segmentation and computes descriptors for each
segment. Then it collects the descriptors along with displacement vectors towards the
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(a) learned hierarchical model
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Figure 5.4.: (a) From a given input sign (here “Check-in 3”) we build a hierarchical model of parts
called tokens (green boxes). Each token consists of a segment with descriptors and displacements
pointing to the token center. In addition, all tokens and their associated displacements to the sign
center (black lines) are collected in the model. (b) Precision-recall graph for our sign and arrow
detection method. The hierarchical approach (HISM, blue curve) is significantly better than the
standard ISM method (green curve).

segment center in a codebook in the same way as is done in the ISM approach (see Leibe
et al. [2005]). The segment and the codebook together are denoted a token. These tokens
are later used for matching with other signs, but they are too local and do not contain
enough information. Therefore, we use a second codebook of tokens which consists of
displacement vectors between a token center and the center of the sign. An example of this
is shown in Fig. 5.4a. The benefit of this hierarchical approach is that it is more expressive
because the model contains more global information. In addition to this, each token has
an assigned weight, which resembles it distinctiveness within a larger set of signs. These
weights are learned from occurence frequencies in a given data set. For example, in a set
where signs of Check-in 1 through Check-in 3 are present, the token corresponding
to the last digit is very distinctive and threfore receives a higher weight.

5.2.2. Sign Detection and Arrow Learning

Using our hierarchical model for direction signs, new images can be used to find oc-
curences of a given target sign S . For example, in a mobile robot application the user
can present the sign S to the robot, which then matches S with all newly observed im-
ages. This matching is done hierarchically: first descriptors are computed for a new image
I. Then, the descriptors are matched against those in S and votes are computed to find
the occurrence of matching tokens, just as in standard ISM. Finally, the tokens themselves
cast votes for the occurence of the sign. An example result of this technique is shown in
Fig. 5.5a, where the Check-in 3 sign of Fig. 5.4a is detected in six different images.

Using this sign detector, we can now formulate a self-supervised learning method to
infer the semantics of distinctive parts of the signs. We do this by assigning one or more
motion directions to each input image. These motion directions can for example be ob-
tained from proprioceptive sensors while a robot observes an image and performs a given
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(a) sign detection (b) arrow learning

Figure 5.5.: Unsupervised sign detection and arrow learning. (a) six examples of detected matches
between the sign shown in Fig. 5.4a and new input images. (b)

motion at the same time. Thus, information is not given by human hand-labeling but by
steering the robot around within its environment. We note that, although this was not
explicitly done for the evaluations in this section, a concrete application to such a self-
supervised learning problem is straightforward, and we show a more explicit example in
the next chapter. Here, we show how the information given by the associated motion di-
rections can be used to learn the shape of an arrow. Fig. 5.5b shows an example of three
images that are associated with a right turn. By matching these images with the described
technique, we can distinguish the parts that match across all images, which in this case is
the right arrow.

5.2.3. Quantitative Results

To quantify the results of our approach, we used a data set of signs from the airport of
Zurich. Example images are already shown in Fig. 5.5. We hand-labeled these images to
obtain ground truth information for evaluation. Then, we matched the Check-in 3 sign
with all 124 images of the data base where 57 actually contained the Check-in 3 sign.
The resulting precision-recall curve is shown in Fig. 5.4b. As we can see the hierarchical
approach performs much better than the standard ISM method, reaching an equal error
rate of 90% as opposed to 60.25% for the ISM. For arrow detection, we matched 23 im-
ages with an associated right turn to each other. Then, the resulting common token was
matched to all images from the data base where 35 actually contained right arrows. The
resulting PR-curve in Fig. 5.4b shows that the approach is fairly robust, reaching an equal
error rate of 83.33%.
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Figure 5.6.: Flowchart of our unsupervised object discovery algorithm. First, the input data is
segmented and 3D features are computed for each segment. Then, the segments are clustered in
feature space and in geometrical space. Next, the likelihood of correspondence to the same class
is modeled using two graph structures, one connects physical neighbors (the scene graph) and
one clusters of features (the parts graph). Probabilistic inference is then run on both graphs to
find part and object labels for each segment.

5.3. Learning from Similarity and Physical Closeness

In this section, we return again to unsupervised learning methods that rely only on the
data obtained from exterioceptive sensors such as cameras or laser scanners. In Sec. 5.1,
we already saw how regular structures in the data can be used to group segments into
clusters, and how these clusters can give evidence for the existence of objects of a given
class. Here, we will handle the more general case where similar object instances appear
within the same scene, but they are not aligned according to any regular pattern. Thus, we
can not infer the existence or the location of other objects of the same kind by extrapolating
a pattern. However, we can reason on the correspondence of data segments to clusters
representing similar objects. Furthermore, in additon to the similarity, we will also use the
physical closeness of segments to each other to find meaningful cluster assignments for a
given data segment. The latter is used in a part-based approach where segments actually
correspond to object parts rather than an entire object. We mainly present concepts and
results from Triebel et al. [2010] on page 204 and Shin et al. [2011] on page 212, while some
ideas are also taken from Shin et al. [2010] (page 198).

5.3.1. Clustering by Hierarchical Probabilistic Inference

Our aim is to derive a part-based algorithm to discover instances of object classes from
3D point cloud data. Conceptually, this can be stated as the problem of counting unknown
objects, i.e. that despite the fact that we have no semantic labels given for the observed
data, we can find evidence of the existence of an object class by associating instances with
each other. We do this not only based on their similarities, but also using the ocurrence of
similar constellations of object instances, which leads to a reasoning on a higher semantic
level.

A flowchart of our algorithm is given in Fig. 5.6. Given an input 3D point cloud, the first
step is a low-level segmentation based on the superpixel algorithm by Felzenszwalb and
Huttenlocher [2004], where we use the dot product of the normal vectors of two 3D points
(sometimes denoted the cosine distance) as a similarity criterion. Then, for each resulting
segment we compute a set of 3D features, in particular these are spin images [Johnson,
1997], shape distributions [Osada et al., 2002], and shape factors [Westin et al., 1997]. In
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Algorithm 3: Segmentation and smoothed clustering in geometric and feature space
(SSCGF).

Data: Point Cloud P = {p1, . . . ,pN}
Input:
• Segmentation parameters κ and τ
• Cluster parameters ϑf and ϑg

Output:
• low-level segmentation S = {s1, . . . , sM}, si ⊂ P
• feature-space clusters of segments F1, . . . ,FC
• geometric clusters of segments G1, . . . ,GK
• class label distributions d1, . . . ,dM , di ∈ [0, 1]K

S ← SuperPixelSegmentation(P, κ, τ)
f1, . . . , fM ← FeatureExtraction(S)
F1, . . . ,FC ← ClusterInFeatureSpace(S, ϑf , {fi})
G1, . . . ,GK ← ClusterInGeometricSpace(S, ϑg)
P← MakePartsGraph({Fi}, {Gi},S)
P← SmoothPartsGraph(P,K)
S← MakeSceneGraph(P, {Gi},S)
S← SmoothSceneGraph(S,K)
d1, . . . ,dM ← ReadFromGraphNodes(S)

the next step, we cluster the segments both in feature space and in the geometric space,
where for the former we use affinity propagation [Frey and Dueck, 2007] and for the latter
a nearest-neighbor approach with a distance threshold ϑg. Next, we create two graph
structures, one is denoted the scene graph connecting physically close segments with each
other, while the other is the parts graph, which draws edges between feature space clusters.
Both graphs are explained in more detail in the next section. Then, probabilistic reasoning
is done on the parts represented by feature clusters and on the actual part instances in the
geometric space. The result is a distribution of cluster labels for each segment, from which
the most likely part labels and object labels can be obtained. Note that both the part labels
and the object labels consist of natural numbers rather than human-like annotations such
as “chair” or “table”, as we do not have such annotations available in the data.

A more formal description of our method, which also denotes the required parameters
explicitly, is shown in Alg. 3. Note that the number of segmentsM , as well as the numbers
C and K of clusters are computed inside the particular subroutines.

5.3.2. The Scene Graph and the Parts Graph

The key component of our method are two probabilistic graph structures, and we refer
to them as the scene graph S and the parts graph P. While S is used to model depen-
dencies between physically close segments, P expresses a general dependency of types of
segments. Concretely, the nodes of P are defined by clusters F of segments in feature
space, and two nodes Fi and Fj are connected whenever there exists a pair of segments
(sk, sl) so that sk ∈ Fi and sl ∈ Fj . This means that each such pair raises the evidence that
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Figure 5.7.: Two example scenes observed with a “nodding SICK” laser scanner. Objects that are
discovered by the algorithm are colored, where points that correspond to the same object class
are assigned to the same color. In addition, the discovered class label identifiers are also shown.

there exists an object class, in which these two types of potential object parts are close to
each other. We express this in the edge feature function of P, which yields a high poten-
tial if there are many such pairs, while the node features model the relation between the
centers of the clusters Fi and their potential class labels yi (see Triebel et al. [2010] on page
209 for more details).

Once inference is done in the parts graph, the result is used to define the node potentials
in the scene graph. As for the parts graph, the edge potentials are designed so that a
common label for two connected nodes is preferred over different labels. The motivation
behind this two-step inference procedure is that the parts graph only returns general label
distributions for all segments of a given type, but the scene graph also takes the local
geometric neighborhood into account. Expressing this with a concrete example, one can
say that the parts graph reasons that, say chair legs and chair seats are often observed
together, which raises the evidence that they have the same class label, however when
considering a concrete instance of a chair leg, it could be observed very close to a table top,
which increases the probability that it is actually a leg of a table.

5.3.3. Results

We tested the algorithm on data acquired from real-world scenes using a nodding SICK
laser scanner with a horizontal opening angle of 100 degrees and a nodding range of 90
degrees. Each set was captured at a horizontal resolution of 0.25 degrees and a vertical
resolution of 0.2 degrees. We evaluated 50 data sets from four different rooms, each room
containing some number of chairs, trash cans, flip charts, plants, etc. Objects were placed
up to 90 degrees of rotation from each other. Most scenes contained two or three objects of
the same type, but some scenes contained up to four objects of three different kinds. Fig. 5.7
shows some results of our object dicovery algorithm. Points that belong to the same object
have the same color, and the numbers represent the class label assigned to each segment.
For instance, the scene on the left contains four chairs of two different kinds, and they are
correctly labeled as 25 (blue) and 27 (violet). In a quantitative analysis we computed the
conditional entropy [Tuytelaars et al., 2009] of a hand labeled “ground truth” and the class
labels that resulted from the discovery algorithm. We obtained values around 1, which is
very good compared to similar algorithms described by Tuytelaars et al. [2009].
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Figure 5.8.: Object categorization across different scenes. Left: Result without using categorization.
The object discovery returns a different class for the left chair than for the other two chairs. Right:
Result using categorization. Here, a reasoning across different scenes helps to associate all three
chairs with each other and to assign them the same class label.

5.3.4. Object Categorization Across Different Scenes

Despite its ability to discover object classes without supervision, the algorithm described
in the previous section has two disadvantages: First, it considers all segments as potential
object parts resulting in many false neighborhood connections between foreground and
background segments. This results in object candidates composed of real object parts and
background parts. And second, it can not associate two instances of the same class with
each other when they appear in different scenes. The reason for this is that, as the dis-
covery process is unsupervised, the resulting local class labels are not unique over a given
number of scenes. This means that an object class might be associated with a class label
G1 when one scene is observed, but the same object class might have a different class label
G2 if observed in a different scene. Therefore, in Shin et al. [2011] (page 212) we extend
the approach in two aspects: First, we employ a saliency-based foreground extraction al-
gorithm, and second we learn object categories, i.e., object classes that are consistent across
a sequence of input scenes. To do this, we need to solve the data association problem,
which we achieve by introducing a third level of reasoning named the class graph. The key
idea behind the class graph is to find a mapping from local class labels to global category
labels. Unlike the parts graph and the scene graph, the class graph models the statistical
dependencies between labels of object class instances rather than object parts. Its nodes
correspond of discovered object classes and the edges connect classes that have a similar
appearance. In the same way as above, we use probabilistic inference to smooth the graph,
and we obtain a most likely assignment of class labels across different scenes. An example
is shown in Fig. 5.8, where the left image shows the result of object discovery without the
categorization step. We see that the algorithm incorrectly assigns one of the three chairs
to a different class. However, by reasoning across various scenes using our categorization
step, all three chairs are correctly associated with the same class label.
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In the previous chapter, we have seen how additonal sources of information such as sim-
ilarities or the structure of regular patterns can be used to infer the existence and the lo-
cation of instances of object classes. This was done completely unsupervised, i.e. there
was no hand-labeled training data set given. In this chapter, we elaborate on this idea
even further, but now we additionally investigate approaches that can update the learned
representation before all input data has been observed. Concretely, this means that the un-
derlying model learned by the algorithm is updated and refined whenever a new set of
observations is available. This is often denoted as online learning, which stands in con-
trast to the standard offline learning approach where no model updates are done once the
learning step has finished. Online learning is particularly useful when learning should be
adaptive, i.e. it can handle new, unobserved situations. However, this benefit also comes
with the drawback that online methods can never be better than their offline counterparts,
because they have to rely on a smaller subset of the data. We will see an example of this
with an experimental comparison in Sec. 6.2. Before, we present a self-supervised online
learning method in Sec. 6.1, where the information used for learning comes from a pro-
prioceptive sensor in a robotic car. Sec. 6.1.4 shows an online learning approach to find
dynamic objects in 3D range scans.

6.1. Self-supervised Online Learning of Driving Behaviours

In this section, we consider again the application of a perception system for autonomous
cars. However, in contrast to Chapter 3, where we investigated supervised learning me-
thods to classify pedestrians and cars, we will now discuss an algorithm that is able to
perform online learning from an additional data source instead of human inputs. Con-
cretely, our input data consists of an image sequence from a camera that was mounted
inside a car, and a stream of acceleration measurements acquired from an inertial mea-
surement unit (IMU), which produces data that is synchronized with the camera. The aim
now is to segment the data stream online and to learn a correlation between the traffic sit-
uation observed with the camera and the corresponding vehicle motion in terms of IMU
measurements for each such segment. For example, the system should then be able to re-
late a deceleration measured by the IMU to a red traffic light observed with the camera,
and then predict such a deceleration the next time a red light is detected. The two major
benefits of this learning method over those given in Chapter 3 are that we do not need
any human interaction for learning and that the algorithm is completely adaptive to new
situations. All details of the method are presented in Maye et al. [2011] on page 243, here
we explain the key ideas.
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6.1.1. A Bayesian Formulation of the Problem

As mentioned, for a given sequence of camera images and associated acceleration mea-
surements from an IMU sensor, our aim is to automatically segment the data into motion
segments, find a label that identifies the traffic situation of each segment, and predict a
motion based on the currently inferred traffic situation. To do this, we use a Bayesian fil-
ter approach that estimates all model parameters unsupervised and online, i.e. each new
observation refines the model and yields a new prediction for the next time step. In our
formulation we use the following random variables: rt represents the length of the current
motion segment at time t; lt is the label of the traffic situation at time t; at is the predicted
action at time t; z1:t are the IMU measurements up to time t and c1:t the camera measure-
ments up to time t. With this, we state the problem as an estimation of the joint distribution
over rt, lt, and at given the data up to time t, which can be factorized as

p(rt, lt,at | z1:t, c1:t) = p(rt | z1:t)p(lt | rt, c1:t)p(at | rt, lt, z1:t). (6.1)

Here, we made the reasonable assumption that the segment length rt and the action at
are conditionally independent of c1:t given z1:t, and that the scene label lt is conditionally
independent of z1:t given c1:t. Thus, we have divided our problem into the estimation of
the three factors in Eq. (6.1), which can be described as follows: p(rt | z1:t) corresponds
to the model of the motion segmentation, p(lt | rt, c1:t) to the traffic situation model, and
p(at | rt, lt, z1:t) to the action prediction model. The estimation of the latter two will be
described in the next section. For the motion segmentation model p(rt | z1:t) we note that
the joint p(rt, z1:t) can be factorized as

p(rt, z1:t) =
∑

rt−1

p(rt | rt−1)p(zt | rt−1, z1:t−1)p(rt−1, z1:t−1), (6.2)

which consists of a transition probability p(rt | rt−1), the predictive distribution given by
p(zt | rt−1, z1:t−1), and the posterior p(rt−1, z1:t−1) from the previous time step. While the
transition probability can be set to a simple binary distribution, the predictive distribution
for the new measurements zt is modeled as a multivariate Gaussian, whose parameters are
marginalized out using the conjugate Normal-Wishart prior. Furthermore, to overcome the
large computational cost that results from storing and computing p(rt | z1:t) for t and all
previous time steps, we use a particle filter in the implementation.

6.1.2. The Traffic Situation Model and the Action Model

The discrete labels lt in Eq. (6.1) correspond in our formulation to indices into a range
{1, 2, . . . , N} of potential traffic situations. These traffic situations are modeled as genera-
tive models p(ct | ηi), which for given parameters ηi return a distribution over potential
camera measurements. Here, a camera measurement is represented using a bag-of-words
approach where descriptors extracted from the images are clustered into K clusters and
a histogram is computed that counts the number of descriptors per cluster. Thus, the
model p(ct | ηi) can be described as a multinomial distribution, and we use again a con-
jugate prior, which in this case is the Dirichlet distribution with hyperparameters ψi , to
marginalize over the model parameters ηi.
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(a) motion segmentation (b) traffic situation and predicted action

Figure 6.1.: Self-supervised online learning of driving behaviours. (a) Result of our motion seg-
mentation algorithm. (b) Example result of a discovered traffic situation with a predicted action.
Here, the system correctly predicts a braking maneuver.

To estimate the number N of potential traffic situations found in the images we use
Bayesian hypothesis testing, which means that we compute the Bayes factor Bi

Bi =
p(ct | lt = i,ψi)

p(ct | lt, rt, ct−1,ψrt−1)
(6.3)

for each of the N existing models, where ψrt−1 are the hyperparameters learned over the
current segment. If Bi is below a threshold ξ for all models i, we add a new model with
initial hyperparameters. Thus, to summarize we compute the likelihood p(ct | lt, rt, ct−1)
of the current label lt and obtain an estimate of the new label distribution using Bayes’ law:

p(lt | rt, c1:t) ∝ p(ct | lt, rt, ct−1)p(lt | rt, c1:t−1). (6.4)

The remaining term in Eq. (6.1) is the action model p(at | rt, lt, z1:t). Here, we pro-
ceed in a similar way as before. To each traffic situation model Mi we associate an action
model Ai, which is represented as a Gaussian Mixture Model (GMM). This enables us to
assign different possible actions to the same traffic situation. For instance, when a driver
reaches a traffic light, they might brake even when the light is green, e.g. due to a jam.
To estimate the number of Gaussian components we again compute the Bayes factor and
introduce a new Gaussian when all old Gaussians are too unlikely. Also, as above we use
the conjugate prior of the Gaussians to marginalize out the parameters and compute the
hyperparameters using online updates. In the implementation we attach both the action
and the traffic situation model to each particle representing a hypothesis over the current
segment length.
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(a) 3D point cloud data (b) MLS map

Figure 6.2.: Online estimation of dynamic objects. (a) Point cloud data produced by an up- and
down sweeping 2D laser. The red dots correspond to the dynamic objects that are estimated
online by the algorithm. (b) A different scenario, where the data is represented using an MLS
map [Triebel et al., 2006]

6.1.3. Results

To evaluate the approach, we collected a dataset with a car in an urban setting. Our car
is equipped with a Sony XCD-SX910 camera recording 1280x960 images at 3.75 frames
per second and an XSens MTi IMU running at 100 Hz with x pointing forward, y to the
right, and z upward. The sequence contains 8218 images and is about 40 minutes long.
We encountered different scenes comprising of traffic lights, crosswalks, or changes of
speed limit. The car was driven in a loop so that it passes several times through the same
situation, which gives a better estimation of the quality of our solution.

We estimated the quality of our motion segmentation algorithm from Section 6.1.1 on the
recorded data and performed inference on the final posterior distribution (6.2) to get the
optimal sequence of segment lengths representing our motion segments. We set the hazard
rate to λ = 1/10, the number of particles to P = 100, and the prior hyperparameters of
the normal-Wishart to κ0 = 1,ρ0 = 0, ν0 = 3,Λ0 = I. We only considered IMU data at
10 Hz. Fig. 6.1a shows the extracted motion segments along with the corresponding IMU
data. Our algorithm identified 165 segments which are validated by visual inspection of
the IMU data. Furthermore, the segmentation has been compared to a manual annotation
of our image sequence and exhibited an accuracy of approximatively 92%. For the ground
truth labeling of the change-points, we watched the video and noted down where a human
would expect a change of driving behavior.

To evaluate the traffic situation labeling we created a ground truth by manually annotat-
ing the image sequence. Then, we learned traffic situation models with our approach from
an explicitly selected subset of images containing traffic lights, yield signs and pedestrian
crossings. We obtained an accuracy of 93% for traffic light scenes, 99% for yield scenes,
and 91% for pedestrian crossings scenes. An example for a qualitative result is shown in
Fig. 6.1b. Here, the currently estimated traffic situation label and the predicted action are
visualized inside the current image from the video sequence. As we can see, the situation
is a red traffic light, and the algorithm correctly predicts a negative acceleration, which
corresponds to a braking maneuver.
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(a) Vertex insertion (b) Re-arranged star clusters

Figure 6.3.: Insertion of a data point with star clustering. (a) The new data point may introduce
additional links in the similarity graph (green) affecting adjacency and hence the validity of the
current minimal star cover. (b) Inconsistent stars are re-arranged (green circles). The number
of broken stars largely determine the running time. On real graphs, the avg. number of stars
broken is usually small (experimentally verified) yielding an efficient incremental approach.

6.1.4. Online Estimation of Dynamic Objects

Another example of an unsupervised online learning framework is presented in Kästner
et al. [2010] on page 228. Here, a 2D laser scanner is used to collect 3D point cloud data
while moving up and down, and at the same time measurements corresponding to dy-
namic objects are identified and their model is incrementally updated. Again, we use a
Bayesian filter approach which estimates the parameters of a Gaussian Mixture Model for
each laser measurement online. Each mixture component has an associated likelihood of
corresponding to a dynamic object, which is also estimated online. Two example results of
this method are shown in Fig. 6.2.

6.2. Unsupervised Online Segmentation of 3D Scenes

In Sec. 5.3 we presented an unsupervised learning algorithm for segmenting 3D scenes
into meaningful clusters. We saw that by exploiting similarities and physical closeness, a
reasonable labeling of a 3D point cloud can be achieved. However, the method presented
there was an offline algorithm, i.e. for every new observed 3D scene, the low-level seg-
mentation, the underlying graph structure and the similarities between the segments have
to be computed again. This leads to a significant overhead in computational ressources.
Particulary if we are concerned with a mobile robot platform, new observations are often
not significantly different from the observations made previously. Therefore, we investi-
gate in this section an online variant of the method presented in Sec. 5.3. The details of
this online method are given in Triebel et al. [2012] on page 249, here we will decribe the
major ideas.

6.2.1. Online Clustering in Feature Space

Our goal is to modify the SSCGF algorithm (see Algorithm 3 on page 50) in such a way
that it can perform the inference step incrementally, i.e. without having to re-compute the
structure and the marginals of the CRF. First, we simplify the problem by only considering
objects that do not consist of multiple parts. This makes the use of a parts graph unneces-
sary. Then, we observe that there are two main components in the algorithm: the clustering
step, and the smoothing step, and we need to find online variants for both of them. For
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(a) Mesh segmentation (b) Online clustering (c) Scene graph construc-
tion

(d) Scene graph inference

Figure 6.4.: Key steps of the processing pipeline. (a) Result after segmenting the triangle mesh.
Each color represents a different segment. (b) Result after online clustering in feature space.
Each color represents a different feature cluster. (c) Construction of the scene graph. Nodes are
centers of oriented bounding boxes (OBBs) around each segment. Edges connect segments with
overlapping OBBs. (d) Result after inference in the scene graph. The class label distribution is
smoother compared to (b), as can be seen, e.g., in the upper left corner of the building.

the clustering step, we use the star clustering algorithm by Aslam et al. [2004], because it
is particularly made for online computation. Clustering is performed by building a simi-
larity graph and determining star and satellite nodes so that the data is represented by a
minimal number of maximal star-shaped subgraphs (“min-max condition”). An example
of this is shown in Fig. 6.3a. Then, for a new data point the similarities to the existing
nodes are computed and the star and satellite nodes are rearranged so that the min-max
condition is again valid. In the worst case, all nodes need to be rearranged, but this occurs
in practice only very rarely. Most often, only a few nodes change from center to satellite
nodes.

Thus, in our application, we first compute a low-level segmentation of a new 3D mesh
(see Fig. 6.4a), extract features as was done in offline SSCGF, and insert all new segments
according to their similarities into the existing star graph, which results in a new clustering
(see Fig. 6.4b). Then, after rearranging, we re-compute the node potentials of the scene
graph for those nodes that were involved in the changed star clusters. Next, we insert the
new segments also into the scene graph and connect them with already existing segments
that are close enough (Fig. 6.4c). Finally, we re-run loopy belief propagation, but only for
those messages that are directly influenced by the new nodes and the changed potentials
(Fig. 6.4d). This is described next.

6.2.2. Online CRF Inference with Incremental Belief Updates

If we used standard loopy belief propagation (LBP) for the inference (see Sec. 2.3.3 on page
15), this would require a re-initialization of all messages every time a new scan is observed.
Thus, the number of message updates grows at least linearly with the number of totally
observed mesh segments. To avoid this, we perform the message update online, i.e. we
only update messages that are affected by a change in the cluster graph G and the messages
that depend on them. First, we note that in the CRF, nodes are never removed, and a
change in G can affect nodes from earlier points in time. Thus, we need to provide two
kinds of update operations: inserting a new node into the CRF, and changing the feature
function of an existing node. In the first one, new messages are added, in the second,
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6.2. Unsupervised Online Segmentation of 3D Scenes

existing messages need to be recomputed, which is essentially the same as removing the
old message and adding a new one. The major problem here is however, that a newly
inserted and initialised message has maximal entropy and can not propagate the same
amount of information as the existing messages obtained after LBP convergence earlier.
This leads to an ”over-voting” of the potentials of the new nodes from the existing nodes.

To overcome this problem, we store all messages computed in each LBP iteration in a
message history mij = m

(1)
ij ,m

(2)
ij , . . . . Then, before computing (2.18), we determine the

minimal history length µ of all message histories mki where k ∈ N (i)\j, and the max-sum
rule (2.18) turns into

m
(µ+1)
ij (lj)← max

li
logϕi + logψij +

∑

k∈N (i)\j
m

(µ)
ki (li). (6.5)

Some care has to be taken here: to avoid inconsistencies, all messages in the history mij

later than µ need to be removed. Also, all message histories that depend on mij need to
be updated as well. However, the amount of change caused by these updates decreases
with every set of successor messages to be updated. To avoid an entire update of all mes-
sage histories, we determine a threshold ε and stop updating message histories when the
change drops below ε. Note that this is different from the threshold ξ for LBP convergence:
while ε determines the number of messages updated after an online update – and thus the
performance difference between online and offline processing, ξ influences the amount of
smoothing. By changing ε gradually towards 0, the online LBP algorithm turns into its
standard offline version.

6.2.3. Results

For evaluation, we ran experiments on streamed 3D laser range data acquired with an
autonomous car. The sensor consists of three SICK LMS-151 laser scanners mounted ver-
tically on a turn table. The rotation frequency was set to 0.1Hz. We drove the car slowly
(≈ 15km/h) around a car park in front of a building. We use qualitative and quantitative
measures for evaluation. The qualitative evaluation is done by visualizing the discovery
results with different colors for each category (see Fig. 6.5). The quantitative measures
are: number of resulting categories, number of update steps, and the entropy-based v-
measure [Rosenberg and Hirschberg, 2007], which is defined as the harmonic mean of ho-
mogeneity and completeness of the obtained labelling compared to a human-labeled ground-
truth.

Fig. 6.6 shows a performance comparison with respect to different edge weight param-
eters we and online message update thresholds ε. The left and middle figure show the
V-measure compared to a hand-labeled ground truth over time. We can see that the per-
formance increases over time and that the online LBP version for ε = 0.2 is only slightly
worse than the offline version. However, as shown in Fig. 6.6(right), there is a significant
reduction in the number of updated messages compared to the offline LBP. A smaller ε
improves the V-measure performance, but it also increases the message passing horizon
causing more message updates and thus a longer computation time.
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(a) 2 point clouds (b) 4 point clouds

(c) 6 point clouds (d) 17 point clouds

Figure 6.5.: Results of online scene segmentation. Results are shown after (a) 2, (b) 4, (c) 6, and (d)
17 point clouds. Note that initially only two categories are discovered, and the categorization is
incorrect (e.g. the tree and the building are assigned the same label). However, as the algorithm
evolves over time, the categorization improves, and the number of classes is increased.
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Figure 6.6.: Quantitative results. (a) V-Measure compared to ground truth for each time step with
different values of we (all offline). In the beginning, smoothing makes the result worse, as the
number of clusters is reduced too much. Later, smoothing improves the result. The amount
of smoothing has not a strong influence. (b) Comparison between online and offline LBP. With
decreasing value of ε, online performance approaches the offline quality, with some random
effects. (c) Number of messages updated in online and offline LBP. The red line shows the num-
ber of new messages introduced at each time step, which is the minimum number of necessary
updates. A smaller ε leads to more message updates.
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7. Active Learning

At this point, we have seen a number of techniques to make the learning process more au-
tonomous by not requiring user interaction and more efficient by formulating online algo-
rithms so that only incremental updates are needed instead of a complete re-computation.
However, it is clear that only relying on completely unsupervised learning will not be
sufficient to solve problems such as semantic mapping, in which a human-interpretable
annotation of a given environment representation is sought. Here, some kind of human
interaction is needed, although we still aim for approaches that reduce the number of re-
quired user interactions as much as possible. One idea to do this is to leverage the ideas
from unsupervised learning and combine them with supervised learning methods, so that
the human user is asked to give one label only for a whole sub-class of similar instances in-
stead of one label for every instance. This idea is closely related to semi-supervised learning
[Chapelle et al., 2006], and we will give a proof-of-concept example in Sec. 7.1. However,
as mentioned in the introduction (see Fig 1.1), a thorough investigation of such combined
techniques, particularly if they are supposed to be online methods, is out of the scope of
this thesis. Instead, we try to do an intermediate step by focussing on supervised online
learning methods which require less user interactions by actively selecting data points,
from which learning can be achieved better. This concept is called Active Learning and is
motivated by the insight that, given sufficient initial data, the learner itself should have
a model that allows to distinguish between new data points, that could help to improve
further predictions and those that are likely not to improve them. We give a more detailed
explanation of Active Learning in Sec. 7.2, and we propose a concrete Active Learning
algorithm for a semantic mapping task. Then, in Sec. 7.3 we apply Active Learning for in-
teractive image segmentation, where one property of this particular problem can be used
to formulate a very efficient online method. Finally, in Sec. 7.4 we apply the Confidence
Boosting algorithm developed in Sec. 4.4 to Active Learning, which leads to an efficient
online learning method with very steep learning curves.

7.1. Combining Supervised and Unsupervised Learning

As mentioned above, for tasks that require semantic information we have to use some kind
of supervision during learning, and one possibility to reduce the required supervision is
to use unsupervised learning before user interaction. This idea is used in Debnath et al.
[2014] on page 284 to learn a classifier for indoor objects such as chairs and monitors. Con-
cretely, before asking the human supervisor for a semantic label for training, we group
the observed data into clusters using unsupervised learning. Then, our algorithm queries
one common label for each cluster from the supervisor and uses the so obtained training
data in a semi-supervised learning step. This approach has two major advantages: first, it
reduces the amount of human intervention significantly by asking labels for multiple in-
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Figure 7.1.: Flow chart of our system. From a sequence of images, regions of interest are detected
using super pixel segmentation and by comparing the segments based on SIFT features. Then
the resulting patches are clustered. From each cluster, a subset of patches is used to query object
labels from a human supervisor. The resulting hand-labelled data together with some unlabelled
samples is then used to train a semi-supervised classifier.

stances at the same time. And second, it gives us the potential to pre-select interesting data
to train on, for example by asking labels only for clusters that are significantly represented.
More details of the method are given in the following.

7.1.1. From Clusters to Labels

A flow chart of our complete semi-supervised learning method is given in Fig. 7.1. We
start with a sequence of input images and determine first an appropriate set of rectangular
regions of interest named patches. Then, we extract SIFT features [Lowe, 1999] and define
a similarity measure between patches based on the Euclidean distance between matching
descriptors. Based on these similarities, we cluster the patches using spectral clustering.
The motivation to apply clustering before querying a class label is two-fold: first, the num-
ber of required user interactions, is reduced, because we query only one common label for
an entire group of data instances. And second, the clustering step gives us the opportu-
nity to pre-select interesting data to train on, because typically some clusters can be easily
identified as more relevant for the learning task based on characteristics such as cluster
size or similarities of elements within a cluster. The intuition here is that only those data
instances should be learned by the classifier, for which there is enough evidence that they
correspond to a meaningful object class. In the next step, we select a subset of appropriate
patches from each cluster and query object labels from a human supervisor. Here, we aim
to produce only very few label queries on one side, on the other side we need to make sure
that the data we provide as training samples to the semi-supervised learning method is as
pure as possible, i.e. ideally there should be no instances of different objects labelled by
the human with the same label. Therefore, we propose to use a quality measure q for all
patches within a cluster, which is based on the similarities s computed earlier. Concretely,
for every patch A of a given cluster C, we compute q as the sum of similarities within the
cluster:

q(A) =
∑

B∈C
s(A,B). (7.1)
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Figure 7.2.: Examples of clusters obtained from the clustering algorithm (rows corresponds to dif-
ferent clusters). For both clusters, we show the first three elements according to the quality
measure defined in (7.1).

After computing the q-values, we sort all elements within a cluster in descending order of
q and ask one common label from the user for the first m such elements of each cluster.
This policy gives a good trade-off between the two opposing objectives of generating few
label queries and providing pure training data. To illustrate this step, Fig. 7.2 shows an
example result of the clustering step, where rows corresponds to different clusters and
only the first 3 elements according to the quality measure q are shown.

Then, the final step in our approach uses the labelled data to learn a classifier for the ob-
jects discovered in the environment. For this, we first compute the Hierarchical Matching
Pursuit (HMP) descriptor introduced by Bo et al. [2011] on every patch. Then, we per-
formed experiments with three different classifiers: a standard Support Vector Machine
(SVM), a nearest-neighbor classifier and a transductive SVM, which is a semi-supervised
learning method. Thus, in addition to the labelled training set D of size l, the algorithm
is also given an unlabelled set D? = {x?i ∈ Rp}ki=1 of test examples to be classified. From
these three methods the worst in our experiments was the standard supervised SVM, and
we did not consider this further. The highest classification performance was obtained with
the transductive SVM.

7.1.2. Results

In our experiments, we investigated the correspondence of the number of label queries
made by the algorithm and the classification accuracy. There are two parameters that can
be set: the number of clusters c and the number m of patches per cluster, which receive a
label after the query (see above). On one side, we want to have few clusters, i.e. c should be
low. However, if there are more clusters, then the clusters are smaller and therefore purer,
i.e. there are more elements that agree on the true class label. Purer clusters means that we
can increase m, without assigning wrong labels to patches, thus we obtain better training
data. This relationship is shown in Fig. 7.3. If the number of clusters is small, we get the
best accuracy for m = 1. But for more clusters, m = 2 is better, because by assigning the
same label to the first m elements of each cluster, we get fewer wrong labels. In general we
found that having less labels for training is better than having more, but wrong labels.
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Figure 7.3.: Accuracy vs. number of clusters and numberm (m = 1, 2, 3) of patches receiving a label
from the query. More clusters lead to a higher cluster purity. Then, higher values of m are more
effective, because the tSVM receives better training data.

7.2. Active Learning for Semantic Mapping

Another strategy to reduce the number of required label queries is to selectively choose
those data points, which are expected to give a large amount of information for refining
the currently learned model. This idea is called Active Learning, and it stands in contrast
to passive learning methods in that it performs learning in cycles of training and testing
instead of clearly separating between a learning and a prediction phase. We explain Active
Learning more detailed in Sec. 7.2.1 and refer to the survey of Settles [2012] for a deeper
analysis. In Sec. 7.2 we then apply this idea to the problem of semantic mapping, where
the underlying classifier is a sparse variant of the Gaussian Process Classifier.

7.2.1. Active Learning in General

Fig. 7.4 shows a general flow chart of an Active Learning framework. First, we start with
an initial training set (X0,Y0), where X0 = {x1, . . . ,xN} are the N feature vectors and
Y0 = {y1, . . . , yN} are the corresponding class labels. For binary classification we have
yi ∈ {−1, 1} and for multiple classes we usually define the yi as indices into the C classes.
Then we train a classifier with (X0,Y0), which we model as a function f : Rd → RC , i.e.
each input feature vector x is mapped to a prediction vector p ∈ RC . Next, a set of K data
samples {x∗1, . . . ,x∗K} is drawn from the test data set X ∗ and classified using f . Here, the
nature of X ∗ defines the type and complexity of the active learning problem: if X ∗ is given
beforehand and its size does not change during learning, then we are concerned with pool-
based active learning. If, however X ∗ is a potentially infinite stream of data, then we have
stream-based active learning, which is significantly harder. In the applications presented
here, we consider the pool-based variant.

Then, in the classification step we obtain the label predictions y∗1, . . . , y
∗
K , i.e. the class

indices for which the classifier returned the highest probability in the prediction vectors
p ∈ RC . Here, the prediction vectors are important, because they are used to compute the
confidence of the classifier, e.g. based on the normalized entropy as in Eqn. (4.4). Now, the
key element of active learning is the ability of the learner to query new class labels from
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Figure 7.4.: Active Learning flow chart. After an initial training step, the classifier is presented
new test data and reports label predictions and confidence values (here: uncertainties). These
are used to ask a human supervisor for new ground truth labels, which subsequently are added
to the current training data. Then, the training process is repeated with the extended training
data until a stopping criterion is met.

the human supervisor. This is usually done by selecting those test points x∗i , for which
the classifier has a low confidence and asking a ground truth label ŷi for them. These new
data-label pairs (x∗i , ŷi) are then added to the current training data (Xj−1,Yj−1), where j
is the index of the current learning round, and the learning process starts again until an
appropriate stopping criterion is reached. In our applications, we use a fixed number of
learning rounds.

One important question in Active Learning is how to select the data samples for which
semantic information, i.e. in our case class labels, are queried from the human supervisor.
We refer to this as the which-question problem. Settles [2012] summarizes the following query
strategies: uncertainty sampling, query-by-committee, expected model change, expected
error reduction, variance reduction, and density weighting. Among these, the most used
method is the uncertainty sampling, and we also use it in our framework. In the literature,
there are at least two common ways to compute uncertainty from a prediction vector p:
the normalized entropy given in Eq. 4.4 and the best-vs-second-best (BVSB) method, which
computes the quotient of the second-largest entry of p and the largest one. Now, to address
the which-question problem, the standard uncertainty sampling approach uses a confidence
threshold ϑc and decides to ask for a ground truth label ŷ for all those data samples which,
in the current learning epoch, have been classified with a confidence lower than ϑc. This
strategy raises the following question: How do we know that the classifier gives meaning-
ful uncertainty estimates so that uncertainty sampling actually makes sense? To answer
this question, we will use our findings from Chapter 4 and use preferably those classifiers
for Active Learning that tend to show a low level of overconfidence. A concrete example
of this is given in the following.

7.2.2. Application to Semantic Mapping

We want to apply the general idea of Active Learning to the concrete problem of semantic
mapping. Specifically, in Triebel et al. [2013a] on page 257 we consider the problem of first
detecting all traffic lights from a given sequence of camera images recorded in an urban
environment, and then annotating a given map automatically with this information. To
do this, we use a variant of the Gaussian Process Classifier (GPC), because, as we have
seen in Sec. 4.2 the GPC tends to be less overconfident in its predictions than other clas-
sifiers such as the SVM. This is a very important observation, because an overconfident
classifier can not be used effectively for Active Learning, as it makes wrong predictions
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Epoch&0& Epoch&2&Passive&detector& Ac3ve&detector& Epoch&9&

Figure 7.5.: Active learning in a semantic mapping context. This figure shows semantic maps in-
dicating the positions of traffic lights along a street in Paris. Circles denote the locations of
ground-truth traffic lights. The shading encodes the correctness of the classification output as
provided by a probabilistic classifier: red denotes no detections, and green denotes all possible
traffic light detections being found. False positives are shown as grey squares. From left to right,
we first see a typical passive detector, followed by our active-learning framework at epochs 0, 2,
and 9 respectively. Note that in the active learning setting the shading of the circles progresses
from red to green as a greater proportion of traffic lights are correctly detected with increasing
confidence. Similarly the number of false positives reduces dramatically. By epoch 2 the active
learning framework already outperforms the passive detector.

with high confidence. As a result, when selecting the next data points for the label query,
it is unlikely that these samples were the misclassified ones, preventing the classifier from
improving on them in the next step. Note however, that an underconfident classifier causes
less problems, because it only results in too many generated label queries, including those
for which a correct classification was already found. This reduces the efficiency and in-
creases the amount of label queries, but it does not prevent the classifier from improving
its classification performance.

As already mentioned in Sec. 4.4, the GPC has the disadvantage that it requires huge
computational ressources, both in memory and run time. This is due to the fact that it
maintains a mean µ, as well as a covariance matrix Σ, which is computed from a kernel
function and has size |y|2. A number of sparsification methods have been proposed in or-
der to mitigate this computational burden, and we adopt one such sparsification method:
the Informative Vector Machine (IVM) [Lawrence et al., 2002]. The main idea of this algo-
rithm is to only use a subset of the training points denoted the active set, I, from which
an approximation q(f | X,y) = N (f | µ,Σ) of the posterior distribution p(f | X,y) is
computed. The IVM algorithm computes µ and Σ incrementally, and at every iteration j
selects the training point (xk, yk) which maximizes the entropy difference ∆Hjk between
qj−1 and qj for inclusion into the active set. As q is Gaussian, ∆Hjk can be computed by

∆Hjk = −1

2
log |Σjk|+

1

2
log |Σj−1|. (7.2)

The details of the implementation can be found in Lawrence et al. [2005]. The algorithm

68



7.2. Active Learning for Semantic Mapping

0 1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

Epoch no.

f 1
 m

ea
su

re

 

 

SVM active SVM passive SVM random IVM active IVM passive IVM random

Figure 7.6.: Learning rates for the sparse Gaussian Process classifier (IVM) and a support vector
machine (SVM) as indicated by the f1-measure after each learning epoch. Measurements are
averaged over 100 runs on a publicly available data set. Error bars indicate one standard er-
ror of the mean. The IVM using a normalised entropy-based data selection strategy (IVM+NE)
consistently outperforms all other active learning variants in terms of overall performance and
learning rate.

stops when the active set has reached a desired size. In our implementation, we choose
this size to be a fixed fraction γ of the training set.

7.2.3. Results

To evaluate our approach we use the publicly available Traffic Lights Recognition (TLR)
data set of Mines ParisTech, which comprises 11,179 colour images taken at 25 Hz from
a car driven through central Paris at speeds under 31 mph and ground-truth labels for
traffic light positions. As recommended by the authors of the dataset, we exclude sections
where the vehicle was stationary for long periods of time. We use data from the first 5,800
frames for training and the remainder for testing. We compute a template-based feature
set inspired by Torralba et al. [2007a], as was already used in Sec. 4.3. Each training or test
window is represented by a feature vector of length 200.

When training the IVM we used an active set fraction γ of 0.2, which means that infor-
mative points will be added to the active set until its size is 20% of the training set size. We
use a Squared Exponential (SE) kernel with white noise. Training such a classifier takes
approximately 1.5 seconds on a single 3.4GHz core. The SVMs used here are trained using
libsvm [Chang and Lin, 2011], and use the same kernel as used by the IVM. They are trained
using 10-fold cross-validation on top of a grid-search over the two parameters, both in the
space 2k where k = {−7,−6, . . . ,+4}. Training takes approximately 10 minutes.

A qualitative result of our approach is given in Fig. 7.5. We see, that the Active Learner
is able to improve its classification in every training epoch, while the passive learner only
gives one result with many false positive and false negative detections. We note that both
the passive and the active learner were provided with the same number of training sam-
ples. For a quantitative result, we refer to Fig. 7.6, which shows the learning rates in terms
of f1-measure for six different algorithms averaged over 100 runs. In particular, we used

69



7. Active Learning

the IVM and SVM classifiers both in an active and in a passive learning setup. As we
can see from the plot, the IVM learner starts off with a worse f1 measure at epoch 0 but
has already exceeded the SVM by epoch 2, and is better (with non-overlapping 95% con-
fidence bounds) in the steady state from then onwards. In addition, we performed Active
Learning with both classifiers, but with a random selection of the new training samples
rather than using the normalized entropy criterion. The result justifies empirically our
choice of normalised entropy as a valid criterion for data selection compared to a random
selection. Intuitively, both methods should improve classification by virtue of the fact that
they increase the training set size. However, the results indicate that for both the IVM
and the SVM, using normalised entropy leads to more rapidly improving classification
performance.

7.3. Active Learning for Interactive Image Segmentation

In a further application example of Active Learning, we consider the problem of interactive
image segmentation. In general, image segmentation is concerned with the task to sepa-
rate the pixels of an image into foreground and background, or likewise into a number of
different classes. Here, we will consider the former case, i.e. we do binary segmentation.
In general the image segmentation problem is ill-posed, because a correct segmentation
depends strongly on the application. Therefore, we focus on the interactive segmentation
problem, where the user provides information about the regions to be segmented, e.g. by
manually sampling image pixels and assigning them to a predefined region class. These
user scribbles are used as ground truth information, and the aim is to infer a good segmen-
tation using these scribbles as constraints on the labelling. To do this, many approaches
have been presented in the literature with impressive results. However, current methods
can reach high classification rates only by requiring comparably many user scribbles, and
the number of user scribbles needed usually grows very fast as the segmentation quality
approaches 100%. In the next section, we briefly describe the approach. For further details
we refer to Triebel et al. [2014] on page 273.

7.3.1. Algorithm Overview

Fig. 7.7 shows an example sequence of our active learning framework for interactive image
segmentation. From a set of initial user scribbles from both foreground and background
regions (Fig 7.7a), our algorithm learns an IVM as in Sec. 7.2 and classifies the remaining
pixels. Then, a segmentation is obtained using regularization (Fig. 7.7b), and an uncer-
tainty measure is computed from the predictive variance returned by the IVM. As above,
we use an IVM, because its uncertainty estimates are more reliable than those produced
by other learning methods such as Support Vector Machines. Then, we perform an over-
segmentation of the original image based on superpixels [Felzenszwalb and Huttenlocher,
2004] and compute the average classification uncertainty (entropy) for each segment (see
Fig. 7.7c). In the next step, the algorithm selects the segment with the highest uncertainty to
query a ground truth label from the user, samples pixels uniformly from the segment, and
adds the samples with the obtained labels to the training data set (see Fig. 7.7d). Note that,
due to imperfections in the segmentation, some segments can contain both foreground
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(a) (b) (c) (d) (e) (f)

Figure 7.7.: Example sequence of our proposed active learning framework. The algorithm starts
with initial user scribbles as shown in (a). It then learns a sparse GP classifier and segments
the image using the GP prediction and a regularization term (b). Then, candidate regions for
new, informative user scribbles are computed (c). These are based on the normalized entropy
of the GP prediction, i.e. bright regions represent a higher classification uncertainty than darker
regions. In this case, a segment at the upper right border is chosen. A label is queried for these
pixels (here it is background), and a sub-set of uniformly sampeled pixels together with the class
labels is added to the training data (d). In the next round, the classification is improved and the
result is refined (e). After a few rounds (here 4 in total), the final segmentation is obtained (f).

and background pixels. In that case, the user can select a “don’t know” option, and the
next segment is chosen in the order of decreasing entropies. This however, occurs only
rarely when the segmentation is done sufficiently fine-grained. The whole learning and
classification process is then repeated for a fixed number of times or until an appropriate
stopping criterion is met (Fig. 7.7e and 7.7f).

As mentioned, we use again an IVM instead of a standard GPC, due to efficiency rea-
sons. However, in addition to that the IVM has another advantageous property, namely
its ability to compute the posterior distribution p(f | X ,y) incrementally. Concretely, the
algorithm loops over all active points and updates mean vector µ and covariance matrix
Σ by increasing their lengths in every iteration. In particular, it keeps the lower triangular
matrix Ld of a Cholesky decompositon in memory and updates it using rank-1 Cholesky
updates, where Ld is of size d × d and d = 1, . . . , D. Further details of this procedure are
given in Algorithm 1 of Lawrence et al. [2005]. For our purpose, this incremental scheme
is particularly useful, because it avoids the complete re-computation of the GP parameters
in every training round and adds only a fixed number of rows and columns to Ld. This
decreases the training time substantially. For an efficient class prediction, we furthermore
use an online update rule, which is based on the fact that in every training round of Ac-
tive Learning the same test data are considered. This is a particular property of interactive
image segmentation, and is not true in general. As a consequence, it is possible to use the
information from the previous round, were a correlation of each pixel with the old train-
ing data was already computed, in the current round. This can be done by splitting the
Cholesky decompostion into blocks and applying the Schur complement for the inversion.
Details are given in Triebel et al. [2014] (page 273).
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Figure 7.8.: (a) Average f-measure over 8 active learning rounds. The GPC steadily improves the
segmentation, because its label queries are more informative for classification. In contrast, the
Parzen window only improves slighty and then remains at a lower performance level. We also
show GPC results where new user scribbles are chosen randomly and not based on the entropy.
This also improves the segmentation, as it increases the training data, but it is worse than the
entropy-based method. (b) Run time of online and offline inference, averaged over all images.
Note that in batch 0, the online and the offline method take the same time, because they both
build up the initial covariance matrix. However, in later steps the online computation time drops
down significantly.

7.3.2. Results

We evaluate our active learning approach on the benchmark data set from the University
of Graz [Santner et al., 2011]. It consists of images with ground truth segmentations and
user scribbles. As our method applies for foreground and background segmentation we
chose a subset of 44 images from the dataset which contain only two object classes. As
performance measure for this benchmark we use the f1 measure, which is defined as the
harmonic mean of precision and recall.

We compare our approach with the method of Nieuwenhuis and Cremers [2013]. There,
the data term is computed using a Parzen window (PW) estimator, and the training data
consists of color information and positions of user scribbles. We use the same idea, but em-
ploy a GPC instead of the PW. For a quantitative evaluation, we ran active learning with
the GPC and the PW on the Graz data set (Fig. 7.8a). Both approaches perform equally
well in the first rounds, but then the GPC (red curve) outperforms the PW (blue curve),
because it asks more informed label queries, while the PW tends to be overconfident. We
also show the results for randomly selected scribbles (magenta curve) instead of those with
the highest uncertainty. We see that random sampling also improves the classification, as
it provides more training data in every round, but the improvement is smaller compared
to selecting the most uncertain segments. This is because the GP requests the more infor-
mative user scribbles.

In Fig. 7.8b, we show the benefit of our online prediction step over the standard offline
technique in every active learning round. Observe that for all but the first learning round
the average run time drops from the order of minutes to the order of seconds. Also note
that the increase in run time over the learning rounds is super-linear in the offline case,
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RGBD Begbroke USPS Letter Pendigits DNA
pGB 0.2704 0.2668 0.1536 0.2628 0.1589 0.1410
aGB 0.1824 0.1463 0.1123 0.1876 0.0983 0.0867
pCB 0.1248 0.0568 0.0898 0.1161 0.0559 0.0811
aCB 0.1165 0.0517 0.0726 0.0840 0.0341 0.0724

Table 7.1.: Average classification errors over 100 runs.

where for the online method it is roughly linear. In the first round, the online and the
offline method perform the same steps, because every pixel is compared to all training
points. Currently, we compute this in parallel on 8 CPU threads, but we expect a substan-
tial speed-up when using a GPU implementation.

7.4. Efficient Active Online Learning for 3D Object Classification

As we have seen in Chapter 4, the Gaussian Process Classifier tends to be less overconfi-
dent compared to the Support Vector Machine or Boosting techniques, and we have used
that fact in the previous sections to formulate Active Learning methods with faster learn-
ing rates, whenever a GPC (or an IVM) was used. However, as we mentioned already
in Sec. 4.4, the GPC has huge computational demands, and even the IVM requires a lot
of time for training the kernel hyperparameters. With that motivation, we developed the
Confidence Boosting algorithm in Sec. 4.4.2 and showed that it is not worse in terms of
overconfidence compared to the GPC, but it is much more efficient. Here, we evaluate
Confidence Boosting further by applying it in an Active Learning framework.

To do this, we ran active learning on the same six data sets as described in Sec. 4.4.3,
once with standard gradient boosting and once with Confidence Boosting. We repeated
this 100 times with the training sets randomly shuffled to obtain results that are indepen-
dent on the data ordering. The mean classification errors are given in Table 7.1. Apart from
the fact that active learning performs better on all data sets than passive learning, where
new training data was added randomly and not based on its confidence, we see that Con-
fidence Boosting results in lower classification errors in all cases. In particular, Confidence
Boosting with active learning gave the best results for all data sets. The progress of the
learning process for two data sets is depicted in Fig. 7.9 (a) and (b). Here, the means and
standard deviations of the classification error are shown for every epoch, again averaged
over 100 randomly shuffled runs through the data. We see that active learning improves
the classification faster than passive learning. Furthermore, Confidence Boosting generally
leads to better results, particularly when combined with active learning.

Fig. 7.9c shows the number of label queries for newly added training samples in every
epoch of active learning. In general, we see that this number decreases for all data sets
with the number of learning epochs. We also see that Confidence Boosting decreases this
number further. We relate this to the fact that Confidence Boosting results in a higher
correlation between uncertain and incorrect classified samples, which enables the classifier
to find more incorrect samples for re-training while at the same time not loosing many
correct classified samples. Some qualitative results of our approach are shown in Fig. 7.10.
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Figure 7.9.: (a) and (b): Learning curves for two sample data sets (left: ’pendigits’, center: ’RGB-
D’). The x-axis shows the learning epochs, the y-axis represents the classification error on the
test set. We compare standard online gradient boost (GB) with our online Confidence Boosting
(CB), both using passive and active learning and show mean and standard deviations over 100
runs, where the training data was shuffeled randomly. As we can see, active learning reduces
the test error faster than passive learning, where new training samples are added randomly.
Also, Confidence Boosting leads to steeper learning curves and better classification results. (c):
Number of new label queries used per epoch. All curves start with a pool of 250 samples. The
remaining training data are presented to the classifier in subsequent epochs for prediction and
re-training. We see that in each epoch less additional queries are needed than in the previous
one and that Confidence Boosting needs less label queries than gradient boosting.
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Figure 7.10.: Qualitative results of our experiments. We show three different objects from the RGBD
data set, for which we computed HMP descriptors on the depth information, i.e. colour is not
used for classification. After 10 rounds of active learning, Confidence Boosting (CB) returned the
correct label, while gradient boosting did not. Note that CB even distinguishes the lime correctly
from a lemon although there was no colour information used, i.e. even such small differences in
shape can be detected with our approach.
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8. Conclusions

In this thesis, we have presented a number of different learning techniques for classifica-
tion tasks in robotics and computer vision. The motivation behind these techniques was
to develop efficient learning algorithms that at the same time facilitate the process for the
human user by requiring as little user input as possible. To do this, we saw on one side that
algorithms that operate unsupervised can still extract enough information from the data to
achieve a reasonable segmentation result, albeit these results can not be used directly for
tasks were semantic information is required. On the other side, we developed efficient on-
line learning methods that do use human input for learning, although with the aim to do
this with the least necessary effort for the user. In particular, the Active Learning methods
presented here seem to be a very promising compromise between a low work load for a
human supervisor and the requirement for the algorithm to receive semantic information
so that certain tasks, for which such information is needed, can be performed. The further
investigation of these techniques therefore seems to be a reasonable motivation for future
research.
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Abstract
This paper presents a novel people detection and tracking
method based on a multi-modal sensor fusion approach that
utilizes 2D laser range and camera data. The data points in the
laser scans are clustered using a novel graph-based method
and an SVM based version of the cascaded AdaBoost clas-
sifier is trained with a set of geometrical features of these
clusters. In the detection phase, the classified laser data is
projected into the camera image to define a region of inter-
est for the vision-based people detector. This detector is a
fast version of the Implicit Shape Model (ISM) that learns an
appearance codebook of local SIFT descriptors from a set of
hand-labeled images of pedestrians and uses them in a vot-
ing scheme to vote for centers of detected people. The ex-
tension consists in a fast and detailed analysis of the spatial
distribution of voters per detected person. Each detected per-
son is tracked using a greedy data association method and
multiple Extended Kalman Filters that use different motion
models. This way, the filter can cope with a variety of differ-
ent motion patterns. The tracker is asynchronously updated
by the detections from the laser and the camera data. Experi-
ments conducted in real-world outdoor scenarios with crowds
of pedestrians demonstrate the usefulness of our approach.

Introduction
The ability to reliably detect people in real-world environ-
ments is crucial for a wide variety of applications including
video surveillance and intelligent driver assistance systems.
According to the National Highway Traffic Safety Admin-
istration report (NHTSA 2007) there were 4784 pedestrian
fatalities in United States during the year 2006, which ac-
counted for 11.6% of the total 42642 traffic related fatal-
ities. In countries of Asia and Europe, the percentage of
pedestrian accidents is even higher. The number of such ac-
cidents could be reduced if cars were equipped with systems
that can automatically detect, track, and predict the motion
of pedestrians. However, pedestrians are particularly diffi-
cult to detect because of their high variability in appearance
due to clothing, illumination and the fact that the shape char-
acteristics depend on the view point. In addition, occlusions
caused by carried items such as backpacks, as well as clutter
in crowded scenes can render this task even more complex,
because they dramatically change the shape of a pedestrian.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our goal is to detect pedestrians and localize them in 3D
at any point in time. In particular, we want to provide a
position and a motion estimate that can be used in a real-
time application, e.g. online path planning in crowded en-
vironments. The real-time constraint makes this task par-
ticularly difficult and requires faster detection and tracking
algorithms than the existing approaches. Our work makes
a contribution into this direction. The approach we propose
is multimodal in the sense that we use 2D laser range data
and CCD camera images cooperatively. This has the advan-
tage that both geometrical structure and visual appearance
information are available for a more robust detection. In this
paper, we exploit this information using supervised learn-
ing techniques based on a combination of AdaBoost with
Support Vector Machines (SVMs) for the laser data and on
an extension of the Implicit Shape Model (ISM) for the vi-
sion data. In the detection phase, both classifiers yield like-
lihoods of detecting people which are fused into an over-
all detection probability. Finally, each detected person is
tracked using multiple Extended Kalman Filters (EKF) with
three different motion models and a greedy data associa-
tion. This way, the filter can cope with different motion
patterns for several persons simultaneously. The tracker is
asynchronously updated by the detections from the laser and
the camera data. The major contributions of this work are:
• An improved version of the image-based people detector

by Leibe et al. (2005). The improvement consists in two
extensions to the ISM for a reduced computation time to
make the approach better suited for real-time applications.
• A tracking algorithm based on EKF with multiple motion

models. The filter is asynchronously updated with the de-
tection results from the laser and the camera.
• The integration of our multimodal people detector and the

tracker into a robotic system that is employed in a real
outdoor environment.
This paper is organized as follows. The next section

describes previous work that is relevant for our approach.
Then, we give an overview of our overall people detec-
tion and tracking system. Section 4 presents our detection
method based on the 2D laser range data. Then, we intro-
duce the Implicit Shape Model (ISM) and our extensions to
the ISM. Subsequently, we explain our EKF-based tracking
algorithm with a focus on the multiple motion models we
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Figure 1: Overview of the individual steps of our system. See text for details.

use. Finally, we describe our experiments and conclusions.

Previous Work
Several approaches can be found in the literature to identify
a person in 2D laser data including analysis of local mini-
ma (Scheutz, Mcraven, & Cserey 2004; Schulz et al. 2003;
Topp & Christensen 2005), geometric rules (Xavier et al.
2005), or a maximum-likelihood estimation to detect dy-
namic objects (Hähnel et al. 2003). Most similar to our
work is the approach of Arras, Mozos, & Burgard (2007)
which clusters the laser data and learns an AdaBoost classi-
fier from a set of geometrical features extracted from the
clusters. Recently, we extended this approach (Spinello
& Siegwart 2008) by using multi-dimensional features and
learning them using a cascade of Support Vector Machines
(SVM) instead of the AdaBoost decision stumps. In this pa-
per, we will make use of that work and combine it with an
improved appearance-based people detection and an EKF-
based tracking algorithm.

In the area of image-based people detection, there mainly
exist two kinds of approaches (see Gavrila (1999) for a sur-
vey). One uses the analysis of a detection window or tem-
plates (Gavrila & Philomin 1999; Viola, Jones, & Snow
2003), the other performs a parts-based detection (Felzen-
szwalb & Huttenlocher 2000; Ioffe & Forsyth 2001). Leibe,
Seemann, & Schiele (2005) presented an image-based peo-
ple detector using Implicit Shape Models (ISM) with excel-
lent detection results in crowded scenes.

Existing people detection methods based on camera and
laser rangefinder data either use hard constrained approaches
or hand tuned thresholding. Cui et al. (2005) use multiple
laser scanners at foot height and a monocular camera to ob-
tain people tracking by extracting feet and step candidates.
Zivkovic & Kröse (2007) use a learned leg detector and
boosted Haar features extracted from the camera images to
merge this information into a parts-based method. However,
both the proposed approach to cluster the laser data using
Canny edge detection and the extraction of Haar features to
detect body parts is hardly suited for outdoor scenarios due
to the highly cluttered data and the larger variation of illu-
mination encountered there. Therefore, we use an improved
clustering method for the laser scans and SIFT features for
the image-based detector. Schulz (2006) uses probabilistic
exemplar models learned from training data of both sensors
and applies a Rao-Blackwellized particle filter (RBPF) in or-
der to track the person’s appearance in the data. The RBPF
tracks contours in the image based on Chamfer matching as

well as point clusters in the laser scan and computes the like-
lihood of different prototypical shapes in the data. However,
in outdoor scenarios lighting conditions change frequently
and occlusions are very likely, which is why contour match-
ing is not appropriate. Moreover, the RBPF is computation-
ally demanding, especially in crowded environments.

Several methods have been proposed to track moving ob-
jects in sequential data (see Cox (1993) for an overview).
The most common ones include the joint likelihood filter
(JLF), the joint probabilistic data association filter (JPDAF),
and the multiple hypothesis filter (MHF). Unfortunately,
the exponential complexity of these methods makes them
inappropriate for real-time applications such as navigation
and path planning. Cox & Miller (1995) approximate the
MHF and JPDA methods by applying Murty’s algorithm
and demonstrate in simulations the resulting speedup for the
MHF method. Rasmussen & Hager (2001) extend the JLM,
JPDA, and MHF algorithms to track objects represented by
complex feature combinations. Schumitsch et al. (2006)
propose a method to reduce the complexity of MHT methods
introducing the Identity Management Kalman Filter (IMKF)
for entities with signature.

Overview of the method
Our system is divided into three phases: training, detection
and tracking (see Fig. 1). In the training phase, the system
learns a structure-based classifier from a hand-labeled set
of 2D laser range scans, and an appearance-based classifier
from a set of labeled camera images. The first one uses a
boosted cascade of linear SVMs, while the latter computes
an ISM, in which a collected set of image descriptors from
the training set vote for the occurrence of a person in the test
set. In the detection phase, the laser-based classifier is ap-
plied to the clusters found in a new range scan and a proba-
bility is computed for each cluster to correspond to a person.
The clusters are then projected into the camera image to de-
fine a region of interest, from which the appearance-based
classifier extracts local image descriptors and computes a
set of hypotheses of detected persons. Here, we apply a new
technique to discard false positive detections. Finally in the
tracking phase, the information from both classifiers is used
to track the position of the people in the scan data. The
tracker is updated whenever a new image or a laser measure-
ment is received and processed. It applies several motion
models per track to account for the high variety of possible
motions a person can perform. In the following, we describe
the particular steps of our system in detail.
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Structure Information from
Laser Data Analysis

We assume that the robot is equipped with a laser range sen-
sor that provides 2D scan points (x1, ...,xN ) in the laser
plane. We detect a person in a range scan by first clustering
the data and then applying a boosted classifier on the clus-
ters, which we describe as follows.

Clustering
Jump distance clustering is a widely used method for 2D
laser range data in mobile robotics (see Premebida &
Nunes (2005) for an overview). It is fast and simple to
implement: if the Euclidean distance between two adjacent
data points exceeds a given threshold, a new cluster is gen-
erated. Although this approach performs well in indoor sce-
narios, it gives poor results for outdoor data, because the
environment is geometrically more complex and bigger dis-
tances, reflections and direct sunlight effects usually occur.
This often leads to over-segmented data with many small
clusters. To address this problem, we use a simple and effec-
tive technique that extends the classic jump distance method.
It consists in the following steps:

1. Perform jump distance clustering with threshold ϑ. Each
cluster Si is defined by its left border xl

i, its central point
xc
i , and its right border xr

i :

Si =
{
xl
i,x

c
i ,x

r
i

}
(1)

2. Compute a Delaunay triangulation on the centers xc
i .

3. Annotate each edge eij := (xc
i ,x

c
j) of the Delaunay

graph with the Euclidean distance between Si and Sj .

4. Remove edges with a distance greater than ϑ and merge
each remaining connected component into a new cluster.

Note that the same threshold ϑ is used twice: first to de-
fine the minimum jump distance between the end points of
adjacent clusters and then to define the Euclidean distance
between clusters. Experimental results showed that this re-
duces the cluster quantity of 25% − 60%, significantly re-
ducing overclustering. The additional computational cost
due to the Delaunay triangulation and distance computation
is lower compared to a full 2D agglomerative clustering ap-
proach.

Boosted Cascade of Support Vector Machines
We use AdaBoost (Freund & Schapire 1997) to classify the
clustered laser data into the classes “person” and “no per-
son”. AdaBoost creates a strong classifier from a set of
weak classifiers. Viola & Jones (2002) further improved
this approach by ordering the weak classifiers in a degen-
erate decision tree which they call an attentional cascade.
This reduces the computation time significantly. We apply
this method, but we use support vector machines (SVMs),
in particular c-SVMs with linear kernel (Boser, Guyon, &
Vapnik 1992), instead of the standard decision stumps based
on thresholding. The main reason for this is to obtain a
small number of classifiers in each stage and to guarantee an
optimal separation of the two classes. Before applying the

SVMs, we normalize the input data in order to avoid numer-
ical problems caused by large attribute values. The param-
eters c of the c-SVMs where obtained from a local search
where the classification results where evaluated using 5-fold
cross validation.

We denote the detection of a person using a binary ran-
dom variable π that is true whenever a person is detected.
Each of the L cascaded SVM-classifiers hi yields either 1
or 0 for a given input feature vector f . The overall detection
probability can then be formulated as

p(π | f) =
L∑

i=1

wihi(f) (2)

In the learning phase, the weights wi and the hyperplanes
are computed for each SVM classifier hi. The laser-based
people detector then computes (2) for each feature vector
f in the test data set. In our implementation, we compute
the features f of a cluster S as described in our previous
work (Spinello & Siegwart 2008).

Appearance Information from
Image Data Analysis

Our image-based people detector is mostly inspired by
the work of Leibe, Seemann, & Schiele (2005) on scale-
invariant Implicit Shape Models (ISM). An ISM is a gen-
erative model for object detection and has been applied to a
variety of object categories including cars, motorbikes, ani-
mals and pedestrians. In this paper, we extend this approach,
but before we briefly explain the steps for learning an object
model in the original ISM framework.

An Implicit Shape model consists of a codebook I and
a set of votes V . The K elements of I are local region de-
scriptors dC

1 , . . . ,d
C
K and V contains for each dC

i a set ofDi

local displacements {(∆xij ,∆yij)} and scale factors {sij}
with j = 1, . . . , Di. The interpretation of the votes is that
each descriptor dC

i can be found at different positions inside
an object and at different scales. To account for this, each lo-
cal displacement points from dC

i to the center of the object
as it was found in the labeled training data set. We can think
of this as a sample-based representation of a spatial distribu-
tion p(π, x̂ | dC

i ,xi) for each dC
i at a given image location

xi = (xi, yi) where x̂ = (x̂, ŷ) denotes the center of the de-
tected person. To obtain an ISM from a given training data
set, two steps are performed:

1. Clustering All region descriptors are collected from the
training data. The descriptors are then clustered using ag-
glomerative clustering with average linkage. In the code-
book, only the cluster centers are stored.

2. Computing Votes In a second run over the training data,
the codebook descriptors dC

i are matched to the descrip-
tors dI

j found in the images, and the scale and center dis-
placement corresponding to dI

j is added as a vote for dC
i .

In the detection phase, we again compute interest points xI
j

and corresponding region descriptors dI
j at various scales

on a given test image I . The descriptors are matched to the
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codebook and a matching probability p(dC
i | dI

j ) is obtained
for each codebook entry. To compute the likelihood to detect
a person at location x̄ we use the following marginalization:

p(π, x̄ | xI
j ,d

I
j ) =

K∑

i=1

p(π, x̄ | dC
i ,x

I
j )p(d

C
i | dI

j ) (3)

This defines the weight of the vote that is cast by each de-
scriptor dI

j at location xI
j for a particular occurrence of a

person at position x̄. The overall detection probability is
then the sum over all votes:

p(π, x̄ | gI) =

M∑

j=1

p(π, x̄ | xI
j ,d

I
j ) (4)

where gI = (xI
1, . . . ,x

I
M ,d

I
1, . . . ,d

I
M ). With the sample-

based representation, we can find the x̄ that maximizes (4)
by a maxima search using a variable-bandwidth mean shift
balloon density estimator (Comaniciu, Ramesh, & Meer
2001) in the 3D voting space.

First Extension to ISM: Strength of Hypotheses
In the definition of the ISM there is no assumption made on
the particular shape of the objects to be detected. This has
the big advantage that the learned objects are detected al-
though they might be occluded by other objects in the scene.
However, the drawback is that usually there is a large num-
ber of false positive detections in the image background.
Leibe, Seemann, & Schiele (2005) address this problem
using a minimum description length (MDL) optimization
based on pixel probability values. However, this approach
is rather time demanding and not suited for real-time appli-
cations. Therefore, we suggest a different approach.

First, we evaluate the quality of a hypothesis about a de-
tected object center x with respect to two aspects: the overall
strength of all votes and the way in which the voters are dis-
tributed. Assume that ISM yields an estimate of a person at
position x. We can estimate the spatial distribution of voters
xI
j that vote for x using a 1D circular histogram that ranges

from 0 to 2π. When computing the weight of the vote ac-
cording to (3) we also compute the angle α

α(xI
j ,x) = arctan2(yIj − y, xIj − x) (5)

and store the voting weight in the bin that corresponds to α.
This way we obtain a histogram ξ(x) with, say, B bins for
each center hypothesis x. Now we can define an ordering on
the hypotheses based on the histogram difference

d(x1,x2) :=

B∑

b=1

ξb(x1)− ξb(x2), (6)

where ξb(x1) and ξb(x2) denote the contents of the bins with
index b from the histograms of x1 and x2 respectively. We
say that hypothesis x1 is stronger than x2 if d(x1,x2) > 0.

The second idea is to reduce the search area in the voting
space using the region of interest computed from segmented
clusters in the laser data. This further reduces the search
space and results in a faster and more robust detection due
to the scale information.

Second Extension to ISM:
High-dimensional Nearest Neighbor Search
Another problem of the ISM-based detector is the time re-
quired to compute the matching probability p(dC

i | dI
j ). Im-

age descriptors such as SIFT, GLOH or PCA-SIFT are very
effective (see Mikolajczyk & Schmid (2005) for a compari-
son), but they may have up to 256 dimensions. Considering
that the size of the codebook can be as big as 25000, we
can see that a linear nearest-neighbor (NN) search can not
be used for real-time applications. A potential alternative
would be the use of kD-trees, but these provide efficient NN
search only for dimensions not more than around 20, be-
cause the number of neighboring cells inside a given hyper-
sphere grows exponentially with the number of dimensions.

Therefore we apply approximate NN search, which is de-
fined as follows. For a given set of d-dimensional points
P ⊂ Rd and a given radius r, find all points p ∈ P for a
query point q so that ‖p − q‖2 ≤ r with a probability of
at least 1 − δ. This can be implemented efficiently using
locality-sensitive hashing (LSH) as proposed by Andoni &
Indyk (2006).

Tracking Pedestrians
So far, we described how pedestrians can be detected in
2D laser range data and in camera images. The result of
these detectors is an estimate of the position of a person at
a given time frame. However, for many applications it is
required to also have information about the kinematics of
the person, e.g. provided by a motion vector. This can be
achieved by tracking the position of the person and predic-
ting the future motion based on the observations from the
previous time frames. A key issue for a people tracking al-
gorithm is the definition of the motion model. Pedestrians
are not constrained to a particular kind of motion and they
can abruptly change their motion direction at any time. To
address this problem, we use the following motion models
for each tracked person:

1. Brownian motion: This accounts for sudden motion
changes.

2. Constant speed: The person does not change direction or
speed.

3. Smooth turning: The forward speed is constant and a we
fit a second order polynomial into the last 10 positions of
the pedestrian using least mean square fitting (LMS).
In each time step, the tracker needs to solve the data as-

sociation problem that consist in finding a mapping between
observations and tracked objects. In our system, we use a
greedy approach to do the data association, which is per-
formed in two steps: In the first step we choose the motion
model whose prediction has the smallest distance to the clos-
est observation. In the second step, we consider the person
with the longest tracking history and assign to it the obser-
vation that is closest to it and still inside a 3σ ellipse from
the last position. For the distance computation we use the
Mahalanobis metric. Then we assign the observation that is
closest to the person with the second-longest history and so
on. If this process ends up with unassociated observations, a
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Figure 2: Left and Center: Image detection recall value and frames in dataset 1 and 2: ISMe vs Haar Adaboost cascade method. ISMe yields
a higher detection rate than Haar/Adaboost mainly due to the distinctiveness of the features used, the detection based on a soft decision on
multiple votes, and the robustness against occlusions. Right: Comparison of multimodal and laser-only based people detection on a tracking
sequence. The tracker follows a pedestrian and a higher overall probability is obtained with the multimodal detection method compared to
the laser-only detection. A part of the graph shows that the laser detection performs better in case of multiple continuous false negatives in
the image detection, but then the algorithm quickly regains confidence.

new track is created. In the case that no assignment is found
for a tracked person, the corresponding track is updated only
using the motion prediction based on all three motion mod-
els. This is done until a new observation can be assigned,
but at most for 0.5 seconds, afterwards the track is removed.

Experimental Results
A car equipped with several active and passive sensors is
used to acquire the datasets. In particular, we use a camera
with a wide angle lens in combination with a 2D laser range
finder in front of the car. An accurate camera-laser synchro-
nization has been developed for this work.

Training datasets
Image detection We trained our image detection algo-
rithm using a set of 400 images of persons with a height
of 200 pixels at different positions and dressed with different
clothing and accessories such as backpacks and hand bags in
a typical urban environment. SIFT descriptors (Lowe 2003)
computed at Hessian-Laplace interest points are collected
for the codebook building. Binary segmentation masks are
used to select only features that are inside the person’s shape.

Laser detection We trained our laser-range detection al-
gorithm computing several features on clustered points.
Laser training datasets have been taken in different outdoor
scenarios: a crowded parking lot and a university campus.
The training data set is composed of 750 positive and 1675
negative samples. The resulting cascade consists of 4 stages
with a total of 8 features.

Qualitative and quantitative results
We evaluated our extension of ISM (ISMe) on a challeng-
ing dataset. We collected two datasets in an urban envi-
ronment and selected sequences in which pedestrians are
walking, crossing, standing and where severe occlusions
are present. Both sequences are manually annotated with
bounding boxes of at least 80 pixel height and where at least
half of a person’s body is shown. The first test set consists
of 311 images containing 938 annotated pedestrians, the sec-
ond consists of 171 images and 724 annotated pedestrians.

In order to show a quantitative performance a compari-
son is performed between the classic Haar based AdaBoost
pedestrian detection and our detector (see Figure 2 left and
center). We can see that the AdaBoost based approach
yields a very low hit rate (on average less that 50%) on both
datasets due to the low robustness of Haar features and the
concept of the cascade. If top level stages do not classify, the
detector produces false negatives, which is often the case in
a complex or occluded image frame. Conversely, ISMe has
a quite high true-positive rate (TPR) during the entire frame
sequence. Recall and precision rates have been computed
in order to verify the role of false positives for ISMe. For
both datasets the computed recall value is similar and com-
parably high (82% and 81%). Similar results are obtained
for the precision (≈ 61%). ISMe has also been compared
with an unconstrained implementation of ISM (maximum
strength center selection and no image ROI constraint) and
the resulting precision was half of the ISMe precision value.

In order to quantify the laser classification, a test data set
in crowded scenes composed of 249 positive and 1799 nega-
tive samples data was prepared. We obtained a true positive
rate (TPR) of 64.7% and a false positive rate (FPR) of 30.0%
(FP:161 FN: 88 FP: 536 TN: 1273). To test the usefulness
of using a multimodal detection algorithm a single person
was tracked, and a comparison with a laser-only detection
is shown in the right plot of Fig. 2. The overall detection
probability for this track increases and a smoother and more
confident tracking is achieved. It is important to remark that
there is a part in which the multimodal detection performs
slightly worse than plain laser detection. There, a continu-
ous false negative detection occured in the image detector,
but this was quickly recovered as can be seen. We also note
that many pedestrians were severely occluded, and that the
detection task is so difficult that a performance of over 90%
is far beyond the state of current computer vision systems.

Qualitative results from two frames are shown in Fig. 3.
The box colors in the image correspond to different tracks,
and the size of the filled circles is proportional to the pedes-
trian detection confidence. Another experiment has been
performed to evaluate the time advantage of using an LSH
approach during codebook matching with respect to linear
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Figure 3: Qualitative results from dataset 1 and 2 showing pedestrian crossings. The colored boxes in the image describe different tracks and
probability levels; the size of the filled circle in the tracking figure is proportional to the confidence of the pedestrian detection. It is important
to notice that highly occluded pedestrians are also successfully detected and tracked.

neighbor search. A clustered codebook has been produced
and tested by matching a random test image extracted from
one of the two sequences with the codebook. LSH-based
NN search resulted 12 times faster than the linear approach.

Conclusions
In this paper, we presented a method to reliably detect and
track people in crowded outdoor scenarios using 2D laser
range data and camera images. We showed that the detection
of a person is improved by cooperatively classifying the fea-
ture vectors computed from the input data, where we made
use of supervised learning techniques to obtain the classi-
fiers. Furthermore we presented an improved version of the
ISM-based people detector and an EKF-based tracking algo-
rithm to obtain the trajectories of the detected persons. Fi-
nally, we presented experimental results on real-world data
that point out the usefulness of our approach.
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Abstract— This paper presents a novel people detection and
tracking method based on a combined multimodal sensor
approach that utilizes 2D and 3D laser range and camera
data. Laser data points are clustered and classified with a
set of geometrical features using an SVM AdaBoost method.
The clusters define a region of interest in the image that is
adjusted using the ground plane information extracted from
the 3D laser. In this areas a novel vision based people detector
based on Implicit Shape Model (ISM) is applied. Each detected
person is tracked using a greedy data association technique and
multiple Extended Kalman Filters that use different motion
models. This way, the filter can cope with a variety of different
motion patterns. The tracker is asynchronously updated by the
detections from the laser and the camera data. Experiments
conducted in real-world outdoor scenarios with crowds of
pedestrians demonstrate the usefulness of our approach.

I. INTRODUCTION

The ability to reliably detect people in real-world environ-
ments is crucial for a wide variety of applications including
video surveillance and intelligent driver assistance systems.
The detection of pedestrians is the next logical step after the
development of a successful navigation and obstacle avoid-
ance algorithm for urban environments. However, pedestrians
are particularly difficult to detect because of their high
variability in appearance due to clothing, illumination and
the fact that the shape characteristics depend on the view
point. In addition, occlusions caused by carried items such
as backpacks or briefcases, as well as clutter in crowded
scenes can render this task even more complex, because they
dramatically change the shape of a pedestrian.

Our goal is to detect pedestrians and localize them in 3D at
any point in time. In particular, we want to provide a position
and a motion estimate that can be used in a real-time appli-
cation. The real-time constraint makes this task particularly
difficult and requires faster detection and tracking algorithms
than the existing approaches. Our work makes a contribution
into this direction. The approach we propose is multimodal
in the sense that we use laser range data and images from
a camera cooperatively. This has the advantage that both
geometrical structure and visual appearance information are
available for a more robust detection. In this paper, we
propose to exploit this information using supervised learning
techniques that are based on a combination of AdaBoost with
Support Vector Machines (SVMs) for the laser data and on an
extension of the Implicit Shape Model (ISM) for the camera
data. In the detection phase, both classifiers yield likelihoods

of detecting people which are fused into an overall detection
probability. The information extracted from 3D and 2D data
define the positioning of the hypotheses in the image. The
image detection method is constrained in region of interest
generated by the 2D laser and positioned in the image
using a ground plane extraction method from 3D scans.
Finally, each detected person is tracked using a greedy data
association method and multiple Extended Kalman Filters
that use different motion models. This way, the filter can cope
with a variety of different motion patterns for several persons
simultaneously. The tracker is asynchronously updated by the
detections from the laser and the camera data. In particular,
the major contributions of this work are:

• An improved version of the image-based people detector
by Leibe et al. [12]. It consists in three extensions to
the Implicit Shape Model (ISM), resulting in a reduced
computation time and an improved feature selection.

• A method to discard false positive detections by com-
puting regions of interest in the camera images.

• The use of a 3D scanning device, which facilitates a fast
and robust detection of the ground plane and thus helps
to disambiguate possible detections of pedestrians.

This paper is organized as follows. The next section describes
previous work that is relevant for our approach. Then, we
give a brief overview of our overall people detection and
tracking system. The following section presents in detail
our detection method based on the 2D laser range data
and explains 3D plane extraction. Then, we introduce the
implicit shape model (ISM), present our extensions to the
ISM and expose the region of interest generation algorithm.
Subsequently, we explain our EKF-based tracking algorithm
focusing particularly on the multiple motion models we use.
Finally, we present experiments and conclude the paper.

II. PREVIOUS WORK

Several approaches can be found in the literature to
identify a person in 2D laser data including analysis of local
minima [17], [20], geometric rules [23], or a maximum-
likelihood estimation to detect dynamic objects [10]. Most
similar to our work is the approach of Arras et al. [2] which
clusters the laser data and learns an AdaBoost classifier from
a set of geometrical features extracted from the clusters.
Recently, we extended this approach et al. [18] in such a way
that multi-dimensional features are used and that they are
learned using a cascade of Support Vector Machines (SVM)
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Fig. 1. Overview of the individual steps of our system. See text for details.

instead of the AdaBoost decision stumps. In the area of
image-based people detection, there mainly exist two kinds
of approaches (see [8] for a survey). One uses the analysis of
a detection window or templates [7], [22], the other performs
a parts-based detection [5], [11]. Leibe et al. [12] presented
an image-based people detector using Implicit Shape Models
(ISM) with excellent detection results in crowded scenes.

Existing people detection methods based on camera and
laser rangefinder data either use hard constrained approaches
or hand tuned thresholding. Zivkovic and Kröse [24] use
a learned leg detector and boosted Haar features extracted
from the camera images to merge this information into a
parts-based method. However, both the proposed approach to
cluster the laser data using Canny edge detection and the ex-
traction of Haar features to detect body parts is hardly suited
for outdoor scenarios due to the highly cluttered data and the
larger variation of illumination encountered there. Therefore,
we use an improved clustering method for the laser scans
and SIFT features for the image-based detector. Schulz [16]
uses probabilistic exemplar models learned from training
data of both sensors and applies a Rao-Blackwellized particle
filter (RBPF) in order to track the person’s appearance in
the data. However, in outdoor scenarios lighting conditions
change frequently and occlusions are very likely, which is
why contour matching is not appropriate. Moreover, the
RBPF is computationally demanding, especially in crowded
environments.

III. OVERVIEW OF THE METHOD

Our system is divided into three phases: training, detection
and tracking (see Figure 1). In the training phase, the system
learns a structure-based classifier from a hand-labeled set
of 2D laser range scans, and an appearance-based classifier
from a set of labeled camera images. The first one uses a
boosted cascade of linear SVMs, while the latter computes an
implicit shape model (ISM), in which a collected set of image
descriptors from the training set vote for the occurrence of a
person in the test set. In the detection phase, the laser-based
classifier is applied to the clusters found in a new range scan
and a probability is computed for each cluster to correspond
to a person. The clusters are then projected into the camera
image to define a region of interest and positioned using the
information of the ground plane extracted from the online
retrieved 3D point cloud. Thus an appearance-based classifier
extracts local image descriptors and uses them to obtain a
set of hypotheses of detected persons. Here, we apply a
new technique to discard false positive detections. Finally

in the tracking phase, the information from both classifiers
is used to track the position of the people in the scan data.
The tracker is updated whenever a new image or a laser
measurement is received and processed. It applies several
motion models per track to account for the high variety of
possible motions a person can perform. For the scope of this
paper, we omit the details of our tracking algorithm and refer
instead to[19] for an extensive explanation. In the following,
we describe the particular steps of our system in detail.

IV. STRUCTURE INFORMATION: LASER DATA ANALYSIS

Our robotic system features a 2D and a 3D laser range
scanner. The dense and frequent 2D range data is used to
estimate possible locations of a person’s legs, and the 3D
point clouds are used to extract the ground plane to aid the
appearance-based person detector (see section V).

A. Clustering and Classification of 2D range data

A graph based reasoning on the classic jump distances
segmentation has been proposed in [18] in order to address
the problem of clustering range data in outdoor scenario.
Experimental results showed that this reduces the cluster
quantity of 25%−60%, significantly reducing overclustering
but mantaining clusters information.

We use an improved version of Adaboost [6] based on a
cascade of support vector machines (SVMs)[18] to classify
the clustered laser data into the classes “person” and “no
person”. The main reason for this is to obtain a small number
of classifiers in each stage and to guarantee an optimal
separation of the two classes. We denote the detection of a
person using a binary random variable π that is true whenever
a person is detected. Each of the L cascaded SVM-classifiers
hi yields either 1 or 0 for a given input feature vector f . The
overall detection probability can then be formulated as

p(π | f) =

L∑

i=1

wihi(f) (1)

In the learning phase, the weights wi and the hyperplanes
are computed for each SVM classifier hi. The laser-based
people detector then computes (1) for each feature vector f
in the test data set.

B. Ground Plane Extraction from 3D Scans

As mentioned, a point cloud P obtained with our 3D
rotating scanner device reflects the full 360◦ environment of
the vehicle. The idea is to use this information to extract the
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Fig. 2. 3D ground plane extraction. Left: Camera image as seen from the inside of the vehicle. Middle: Triangulated 3D point cloud of the same scene
(seen from above). Right: Camera image with the points of the extracted ground plane overlayed.

position of the ground plane in the local environment of the
vehicle to be able to further disambiguate detected persons
from the camera images and to reduce false positives. In
the literature, there exist many different approaches to detect
planes in 3D range data [13], [21], [9]. For the application
described here we want to detect and track persons if as
fast as possible. Therefore, we decided to use a simple
but time efficient region growing technique to detect the
ground plane. The criterion for a scan point to belong to
the ground plane is that its corresponding normal vector
deviates only slightly (in our implementation by maximal
25◦) from the upright vector (0, 0, 1)T and that it is not
farther away from its closest neighbor than a given threshold
(we use 1 m). The region growing is initiated always at the
same fixed point right in front of the vehicle at the ground
level. To efficiently compute the normal vectors, we exploit
the fact that the point clouds are structured in slices – each
scan line of the vertically mounted rotating laser scanner
accounts for one slice. This facilitates a fast and simple
mesh triangulation performed by connecting two consecutive
points from one slice with one point of the consecutive
slice. From this triangulation the normal vectors are easily
computed from the normalized cross product of difference
vectors. An example result of the ground plane extraction is
shown in Figure 2. To clarify: rectangular bounding boxes
are created in the image where laser clusters are found then
the extracted ground plane is used to place those region
of intereset (ROI) at the correct height in the image. The
resulting ROI placement helps the image detector in creating
valid detection hypotheses.

V. APPEARANCE INFORMATION: IMAGE DATA ANALYSIS

Our image-based people detector is mostly inspired by the
work of [12] on scale-invariant Implicit Shape Models (ISM).
An ISM is a generative model for object detection. In this
paper we extend this approach, but before we briefly explain
the steps for learning an object model in the original ISM
framework.

An Implicit Shape model consists of a codebook I and
a set of votes V . The K elements of I are local region
descriptors dC

1 , . . . ,d
C
K and V contains for each dC

i a set of
Di local displacements {(∆xi,j ,∆yi,j)} and scale factors
{si,j} with j = 1, . . . , Di. The interpretation of the votes is

that each descriptor dC
i can be found at different positions

inside an object and at different scales. To account for this,
each local displacement points from dC

i to the center of the
object as it was found in the labeled training data set. To
obtain an ISM from a given training data set, two steps are
performed:

1) Clustering All region descriptors are collected from
the training data. The descriptors are then clustered
using agglomerative clustering with average linkage.
In the codebook, only the cluster centers are stored.

2) Computing Votes In a second run over the training
data, the codebook descriptors dC

i are matched to the
descriptors dI

j found in the images, and the scale and
center displacement corresponding to dI

j is added as a
vote for dC

i .
In the detection phase, we again compute interest points xI

j

and corresponding region descriptors dI
j at various scales

on a given test image I . The descriptors are matched to
the codebook and a matching probability p(dC

i | dI
j ) is

obtained for each codebook entry. With the sample-based
representation, we can detect a person at location x̄ by a
maxima search using variable bandwidth mean shift balloon
density estimation [4] in the 3D voting space.

A. First Extension to ISM: Strength of Hypotheses

In the definition of the ISM there is no assumption made
on the particular shape of the objects to be detected. This
has the big advantage that the learned objects are detected
although they might be occluded by other objects in the
scene. However, the drawback is that usually there is a large
number of false positive detections in the image background.
[12] address this problem using a minimum description
length (MDL) optimization based on pixel probability values.
However, this approach is rather time demanding and not
suited for real-time applications. Therefore, we suggest a
different approach.

First we evaluate the quality of a hypothesis of a detected
object center x with respect to two aspects: the overall
strength of all votes and the way in which the voters are
distributed. Assume that ISM yields an estimate of a person
at position x. We can estimate the spatial distribution of
voters xI

j that vote for x using a 1D circular histogram that
ranges from 0 to 2π. When computing the weight of the vote
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we also compute the angle α

α(xI
j ,x) = arctan2(yIj − y, xIj − x) (2)

and store the voting weight in the bin that corresponds to α.
This way we obtain a histogram ξ(x) with, say, B bins for
each center hypothesis x. Now we can define an ordering on
the hypotheses based on the histogram difference:

d(x1,x2) :=

B∑

b=1

ξb(x1)− ξb(x2), (3)

where ξb(x1) and ξb(x2) denote the contents of the bins with
index b from the histograms of x1 and x2 respectively. We
say that hypothesis x1 is stronger than x2 if d(x1,x2) > 0.
The second idea is to reduce the search area in the voting
space using the region of interest computed from segmented
clusters in the laser data. This further reduces the search
space and results in a faster and more robust detection due
to the scale information.

B. Second Extension to ISM: Features weight analysis

An important problem of classifying high dimensional
feature vectors consist in the correct positioning of the sepa-
rating hypersurfaces between negative and positive samples.
The original ISM approach does not consider this problem
and it just classifies the feature distribution of pedestrian
feature descriptors π+ thus, during the detection step, it uses
a distance threshold T in order to match features to the
codebook. In this paper we enrich the pedestrian feature set

Fig. 3. Left: Features are weighted for their positional stability wu
i .

Features found in the trunk are more stable (white), features found in the
legs are less stable due to the part motion. Right: Smartter vehicle platform.

using two different informative weights in order to select and
treat differently each match in the detection phase. Features
found in the pedestrian silhouette and features found in the
background are now both collected in the training phase.
Therefore, a neighborhood analysis of each positive feature
descriptor is computed considering the quantity of negative
samples in a radius of distance T (the same value used in
the detection step). This value called wf

i is then normalized
with respect to the cardinality of the negative set π−:

wf
i = 1− card(neighTi (π−))

card(π−)
(4)

This weight gives an information about the distinctiveness of
each feature, assigning very low values to positive samples

in loci where a high number of negative descriptors are
found. In order to prune out weak feature vectors without
impoverishing the learned pedestrian feature distribution, a
low value of wf

i have to be chosen. This elimination method
decreases the amount of false positive matching and it can be
seen as a compact way of expressing a k−nn classification.

Another proposed improvement in the classification
method is to consider statistics in the position of the positive
feature set as an informative cue of the pedestrian pose.
Pedestrian features are analyzed for positional stability with
respect to the object center: more the same feature is found in
the same area more a high weight wu

i is assigned. According
to this weight, features found on the trunk of the pedestrian
body will have high values due to its rigidness and features
found on the limbs area will have a low value due to their
flexibility and position change with respect to the object
center. Rigid features will vote the center as a part of a rigid
body keeping a fixed angle between the vector pointing to
the object center and the vector parallel to the direction of its
support (the direction in which the descriptor is computed to
be rotation invariant). The rest of the features are classified
also with their support angle and matched on the codebook
during detection with a given variance in order to distinct that
similar descriptors at totally different angles do not classify
pedestrians (see Figure 3)

C. Third Extension to ISM:
High-dimensional Nearest Neighbor Search

Another problem of the ISM-based detector is the time
required to compute the matching probability p(dC

i | dI
j ).

Image descriptors such as SIFT, GLOH or PCA-SIFT are
very powerful (see [15] for a comparison), but they may
have up to 256 dimensions. Considering that the size of
the codebook can be as big as 25000, we can see that
neither a linear nearest-neighbor (NN) search can be used
for real-time applications or kD-trees that provide efficient
NN search only for dimensions not more than 20, because
the number of neighboring cells inside a given hypersphere
grows exponentially with the number of dimensions.

Therefore we apply approximate NN search, which is
defined as follows. For a given set of d-dimensional points
P ⊂ Rd and a given radius r, find all points p ∈ P for
a query point q so that ‖p − q‖2 ≤ r with a probability
of at least 1− δ. This can be implemented efficiently using
locality-sensitive hashing (LSH) as proposed by [1].

D. Region of interest generation in urban environment

A common problem of ISM based methods is the tendency
of generating a high quantity of false positives. In the voting
stage an image feature can match several times a codebook
entry and therefore it can vote for multiple object centers.
Due to object symmetries, feature mismatches and scene
configurations (i.e. vertical structures, complex buildings)
strong false positive object hypotheses can occur in empty
or unlikely areas on the image. In this paper we propose an
effective and fast way to remove this kind of errors based
on a distance transform computation. The idea here is that
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large connected ridges in the distance transform image can
be safely disregarded in the detection process because they
do not contain any gradient information, which is a necessary
condition for the detection of a pedestrian. Two additional
parameters are required here: The minimal area Iq of a ridge
that can be discarded, and a safety distance Iw between a
pixel and the edge that is closest to it in the image. Both of
these parameters are set so that no contour of a pedestrian
is included in the discarded area (in our case we use Iq =
and Iw =). This method is particularly effective in urban
environments where roads and sky are often visible and
contain no or little information. It consists in the following
four steps (see Figure 4):

1) Compute an edge map using Canny edge detector.
2) Compute an approximate distance transform [3].
3) Cluster connected components from all points that have

a distance of at least Iw to the nearest edge.
4) Discard all regions with an area that is bigger than Iq .

The remaining polygonal map consitutes tha region of
interest for the pedestrian detection.

The only assumption we make is that a sufficient contrast
is present in the image, which is reasonable, because object
detection is generally hard in low contrast images.
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Fig. 6. Comparison of multimodal detection rate with respect to laser based
people detection on a tracking sequence. The tracking follows a pedestrian
and an overall higher probability is obtained with multimodal detection
method than a laser detection method. A part of the graph shows that
laser detection performs better in case of multiple continuous false negatives
obtained from image detection but then it quickly regains confidence.

VI. EXPERIMENTAL RESULTS

A. Training datasets

Our mobile platform Smartter has been equipped with an
IBEO ALASKA laser scanner (0.25deg resolution, 180deg
field of view, max range up to 200m), a rotating turntable
with two SICK LMS 291-S05 lasers (3D laser) (1.0deg
resolution, 180deg field of view, max range up to 200m),
and a camera behind the windscreen (see Fig. 3).

1) Image detection: We trained our image detection algo-
rithm using a set of 400 images of persons with a height of
200 pixels at different positions and dressed with different
clothing and accessories such as backpacks and hand bags
in a typical urban environment. SIFT descriptors [14] com-
puted at Hessian-Laplace interest points are collected for the
codebook building. Binary segmentation masks are used to
select only features that are inside the person’s shape.

2) Laser detection: We trained our laser-range detection
algorithm computing several features on clustered points.
Laser training datasets have been taken in different outdoor
scenarios: a crowded parking lot and a university campus.
The training data set is composed of 750 positive and 1675
negative samples. The resulting cascade consists of 4 stages
with a total of 8 features.

B. Qualitative and quantitative results

We evaluated our extension of ISM (ISMe) on a chal-
lenging dataset. We collected two datasets in an urban
environment and selected sequences in which pedestrians
are walking, crossing, standing and where severe occlusions
are present. Both sequences are manually annotated with
bounding boxes of at least 80 pixel height and where at least
half of a person body is shown. The first test set consists of
311 images containing 938 annotated pedestrians, the second
consists of 171 images and 724 annotated pedestrians.

In order to show a quantitative performance several com-
parisons have been performed. A comparison between ISM,
the proposed ISM extended (ISMe) and Haar based Adaboost
(HAda) classifier is shown in the Precision-Recall graph of
Fig. 5 (top center). Equal error rates (EER) are highlighted
in each curve in order to show the performance gain. It is
important to notice that at higher Recall values ISM (and
HAda) shows a low precision (lots of false positives), while
our method, thanks to generated ROIs and the proposed
extension performs much better. HAda in general shows
the limit of using boosted cascades and not robust Haar
features for obtaining detection in complex backgrounds: if
top level stages do not classify, the detector produces false
negatives, which is often the case in a complex or occluded
image frame. ISMe is significantly flatter than the other
two methods and tends to the optimal upper right corner of
the graph. Another comparison presented is the normalized
difference in number of features processed between ISM
and ISMe (Fig. 5(top right). ISMe works with one type
of descriptor and one type of interest point, ISM usually
has two or three. In average the number of descriptors to be
matched and processed by ISMe is less than half than ISM.
Therefore, we considered a clustered codebook and a single
ROI in the image with a fixed number of features (about
150) and we activated the approximate NN in the matching
step to show a speed gain of about 5 times between the two
methods. Moreover, we plotted Recall over frames to show
a comparison for each sample between ISMe and HAda.
We can see, as we expected, AdaBoost based approach
yields a very low hit rate, conversely, ISMe has a quite high
true-positive rate during the entire sequence frame. Another
experiment shown in the section is a comparison between
ISMe and ISM in the false positive rate. Here the difference
is evident and it is interesting to see that the two graphs
never intersects, depiting a clear advantage of using ISMe. To
quantify: ISMe, ISM and HAda obtained respectively Recall
80%; 81%; 78% at Precision 63%; 22%; 0.01%.

We evaluated the laser classification on a data set in
crowded scenes with 249 positive and 1799 negative samples.
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Fig. 4. Region of interest generation. Uninformative content is discarded from the image by reasoning on the distance transformed image.Left: Edge
image (Canny). Middle: Approximate distance transform. Right: Result of the clustering in the distance transform image: areas in red are discarded
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Fig. 5. Top Left: ROC curve for the laser classifier. AUC is ≈ 0.8.Top Center: Precision Recall graph to compare ISM, ISMe and Haar based Adaboost,
equal error rate (EER) is respectively at 26%; 61%; 26%; 69%. Notice the flatness of ISMe specially at high Recall values. Top Right: Average features
quantity to match in ISM vs ISMe is shown in the left histogram; matching time is evaluated in the right histogram when approximate NN search is
activated.Lower Left Image detection recall value on frames in dataset 1: ISMe vs Haar Adaboost cascade method. ISMe obtains an higher detection rate
than the other method mainly due the distinctiveness of the features used, the detection given by a soft decision on multiple votes and the robustness
against occlusion. Lower Right False positives in image classification evaluated for each frame of dataset 1 compared to standard ISM. Here it is clear
the advantage of rescricting the voting in ROIs with the other proposed improvements.

We obtained a true positive rate (TPR) of 74.7% and a false
positive rate (FPR) of 30.0% (TP:184 FN: 65 FP: 536 TN:
1273), the ROC curve is shown in Fig. 5(top left).

We evaluated the usefulness of the multimdal detection
computing statistics of pedestrian detection at maximum
range of 15m. In order to quantify the performance of the
system we considered the probability evolution of tracking
a single person with both sensors and with just one 2D
laser (see Fig. 6). The overall detection probability for this
track increases and a smoother and more confident tracking
is achieved. It is important to remark that there is a part
in which the multimodal detection performs slightly worse
than plain laser detection. There, a continuous false negative

detection occurred in the image detector but this was quickly
recovered as can be seen. We also note that many annotated
pedestrians are severely occluded, and the detection task is
so difficult that a performance of over 90% is far beyond the
state of current computer vision systems.

Qualitative results are shown in Fig. 7. The box colors
in the image describe different tracks, the size of the filled
circle is proportional to the pedestrian detection confidence.

VII. CONCLUSIONS

In this paper, we presented a method to reliably detect
and track people in crowded outdoor scenarios using 2D
and 3D laser range data and camera images. We showed
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Fig. 7. Qualitative results from dataset 1 and 2 showing pedestrian crossings. The colored boxes in the image describe different tracks and probability
levels; the size of the filled circle in the tracking figure is proportional to pedestrian detection confidence. It is important to notice that highly occluded
pedestrians are also successfully detected and tracked.

that the detection of a person is improved by cooperatively
classifying the feature vectors computed from the input data,
where we made use of supervised learning techniques to
obtain the classifiers. Furthermore we presented an improved
version of the ISM based people detector and an EKF-based
tracking algorithm to obtain the trajectories of the detected
persons. Finally, we presented experimental results on real-
world data that point out the usefulness of our approach.
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[24] Z. Zivkovic and B. Kröse. Part based people detection using 2d range
data and images. In IEEE Int. Conf. on Intell. Rob. and Sys. (IROS),
San Diego, USA, November 2007.

Articles on Pedestrian and Car Detection (Chapter 3)

100Appeared in: Proc. of the Intern. Conf. on Intelligent Robots and Systems (IROS), 2008



Detecting Pedestrians at Very Small Scales

Luciano Spinello, Albert Macho, Rudolph Triebel and Roland Siegwart

Autonomous Systems Lab, ETH Zurich, Switzerland
email: {luciano.spinello, rudolph.triebel, roland.siegwart}@mavt.ethz.ch

Abstract— This paper presents a novel image based detection
method for pedestrians at very small scales (between 16 x 20 and
32 x 40). We propose a set of new distinctive image features
based on collections of local image gradients grouped by a
superpixel segmentation. Features are collected and classified
using AdaBoost. The positive classified features then vote for
potential hypotheses that are collected using a mean shift mode
estimation approach. The presented method overcomes the
common limitations of a sliding window approach as well as
those of standard voting approaches based on interest points.
Extensive tests have been produced on a dataset with more than
20000 images showing the potential of this approach.

I. INTRODUCTION

From the different participants in typical urban traffic
scenarios, pedestrians are the most vulnerable ones as they
are not protected by any kind of equipment as they exist for
motorists and cyclists. This fact is lamentably reflected in the
annual traffic accident statistics, as they are published, e.g.
by the Touring Club Switzerland (TCS) [1]. Here, two major
trends can be observed: first the steady decrease in the total
number of dead and seriously injured persons over the last 30
years, and second the increase in the percentage of dead and
injured pedestrians. The former is mostly due to the growing
number of safety systems available for modern vehicles,
while the latter originates from the fact that primarily mo-
torists and cyclists benefit from such safety systems, but not
pedestrians. One way to address this problem is to build more
intelligent driver assistant systems that aim at protecting the
driver and the pedestrian and avoid a potential collision. A
major requirement for this is, of course, the reliable detection
of pedestrians in urban traffic environments. However, this
task is rendered particularly difficult by at least the following
two facts:
• Pedestrians show a very high variability in shape and

color due to physical size, clothing, carried items, etc.
• In urban environments, especially in city centers, pedes-

trians most often appear in large numbers, e.g. when
crossing at a traffic light. This results in many occlu-
sions where the pedestrians are only partly visible.

Despite these difficulties, there are already some encourag-
ing approaches to detect pedestrians, majorly based on cam-
era data (e.g.[15]), but also using 2D laser range scanners [2]
or both [23]. However, these systems require a certain
minimal size at which the pedestrians are visible in the data,
which has the drawback that pedestrians that are far away,
as well as children, can not be detected reliably. According

Fig. 1. Detection of very small scale pedestrians in a urban walkway.

to the rule of thumb from theoretical traffic lessons, a car
that moves with 50km per hour needs 40m to come to
a full stop. This is still far from the maximal distance at
which pedestrians can be detected with current approaches,
using a lens that provides still an acceptable opening angle
(above 90 degrees). In this paper, we present an approach to
detect pedestrians that are up to 50m away while the lens
still provides a wide field of view. The size in which the
pedestrians appear in the image is as low as 16 by 20 pixels.
Our proposed technique uses a supervised learning algorithm
consisting of the following two major steps:
• Training Based on a superpixel segmentation proposed

by Felzenszwalb and Huttenlocher [9] and a compu-
tation of the image gradient, segments of strong edge
pixels are extracted. From these edge segments s, we
extract feature vectors based on a combination of his-
tograms of gradient orientations and the angles that each
line segment from a polyline approximation of s forms
with the horizontal axis. These features are used to train
an AdaBoost classifier [11]. In addition, we store the
positive training examples in a codebook together with
their displacement vectors with respect to the object
centers. This is inspired by the voting scheme of the
Implicit Shape Model (ISM) approach (see [15]).

• Classification Again, we compute edge segments and
feature vectors. Then we run the classifier and collect all
votes for object centers that are cast from edge segments
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Fig. 2. Flowchart of our detection algorithm.

classified as positive. Using mean shift mode estima-
tion [4], we obtain object positions for which many edge
segments vote and thus are strong hypotheses for the
position of an object, i.e. a pedestrian (see also Fig. 2).

Our approach avoids both the necessity of a sliding window,
as e.g. in [24], [5], and the requirement of a minimal
number of detected interest points (e.g. Hessian or Harris
corners [17]) to obtain robust hypotheses for small objects
such as in [15], [22]. We present the following novelties:
• the segmentation of edges from the gradient image

using a superpixel segmentation. This divides the edges
into chunks of homogeneous gradient variability and
provides highly informative local edge features. This
overcomes the usage of an overlapping tessellation
to learn object features and uses a more semantical
subdivision: at these image sizes, superpixels tend to
segment persons into more meaningful parts like torso,
head, limbs. The reason for that is that, due to the
smaller resolution, the gradient variability is usually
lower than at higher scales.

• a novel image descriptor particularly suited for the
detection of objects at small scales,

• a classifier based on a combination of AdaBoost and
the voting scheme known from the ISM approach.

The paper is organized as follows. In the next section we
discuss approaches from the literature that are most closely
related to our method. In Sec. III, we describe the feature
extraction and the details of our edge descriptor. Then, in
Sec. IV we present our classification technique and the
hypothesis generation. Sec. V shows the experimental results
and in Sec. VI we draw our conclusions.

II. RELATED WORK

In the area of image-based people detection, there mainly
exist two kinds of approaches (see [18] for a survey). One
uses the analysis of a detection window [5] or templates [12],
[24], the other performs a parts-based detection [8], [13].
Leibe et al. [15] presented an image-based people detector
using Implicit Shape Models (ISM) with excellent detection
results in crowded scenes. An extension of this method
that proposes a feature selection enhancement and a near-
est neighbor search optimization has been already shown

in [22][23]. In the specific area of small scales pedestrian
detection very few works are present. Viola et al. [24] detect
small pedestrians (bigger than the ones detected in this paper)
including a time integration. Efros et al. [6] uses optical flow
reasoning to detect humans and understand actions. Ferrari
et al. [10] classify contours for detecting simple objects
(coffee mugs, animals) in clutter by using an iterative path
search among linked segments. The superpixel method has
been introduced by Ren and Malik [20] using a Normalized
Cut criterion [21] to recursively partition an image using
contour and texture cues. Other methods have been proposed
to obtain quality superpixel segmentations [9], [7].

III. FEATURE EXTRACTION

In the literature, many different approaches are presented
to compute local interest point detectors and appropriate
region descriptors (for a comparison see [17]). However,
for our particular problem of object detection at very small
scales, none of these approaches is well suited for the
following reasons:

1) In areas of many small objects, usually – if at all – only
few interest points such as Harris corners or Hessian
blobs can be detected. Thus, the number of possible
voters is very low compared to the number of objects
to be detected. This results in detection results with low
confidence. We therefore decided to use edges instead
of interest points, as described below.

2) Standard descriptors such as SIFT [16], Histogram of
Oriented Gradients (HOG) [5], and shape context [3]
represent the local information in a high dimensional
feature space. One could think of applying such de-
scriptors to all (or some) points of an edge chain,
but this would result in a large number of feature
dimensions. Given that the size of the objects to be
detected usually ranges only about 300 pixels, this
seems inappropriate.

As a conclusion, we aim at finding a simple but informative
descriptor that is defined on chains of edge pixels and can
be computed efficiently. The decision to use chains of edge
pixels or, as we will denote them, edge segments, is somehow
inspired by the use of edgelets for detecting pedestrians
(see [25]). In the following, we present the details of our
method to compute edge segments and local descriptors.
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A. Superpixel Segmentation

The aim of this first step of our detection algorithm is
to preprocess a given input image and to obtain a more
semantic representation that is independent on the pixel
resolution of the image. One common way to achieve that
is by grouping image pixels into regions in such a way
that all pixels in a region are similar with respect to some
kind of similarity measure. In the literature, this is also
known as image segmentation, and it is crucial for a large
number of algorithms and applications in computer vision.
Many different algorithms have been suggested for this
problem and we refer to the related work section in [9]
for a good overview. Two of the more recent and mostly
used approaches, namely [20] and [9], define a graph where
the nodes are the image pixels and the graph edges are
defined by a neighbor relationship between pixels. Of these
two, the approach by Felzenszwalb and Huttenlocher [9] is
more tuned for computational efficiency and the one by Ren
and Malik [20] is more robust and yields more informative
regions. For our application of detecting small scale objects,
the use of complex similarity measures such as the peaks
in contour orientation energy as in [20] is not required.
Therefore, we use the former approach in our framework.
This algorithm groups the pixels into segments so that the
minimal dissimilarity across two segments is still higher than
the maximal dissimilarity within both segments. The number
of produced segments – usually named superpixels – can
be adjusted by a parameter k. An important characteristic
of this method is its ability to preserve details in low-
variability image regions while ignoring details in high-
variability regions. Therefore, it is especially suited for our
application, because pedestrians at small scales are usually
represented by only very few pixels in which the color
variability is comparably low due to the lower sampling
resolution. This means that one superpixel often represents
an entire body part like a leg, a torso, or a head.

B. Edge Segments and the Edge Descriptor

As mentioned above, we need to find a descriptor that is
not only assigned to single interest points, as those occur less
frequently in areas of small scale objects. Using superpixels
as regions of interest are a much better choice here, as
they are always found and they represent a higher vicinity.
However, defining a region descriptor for superpixels would
result in very complex computations. For our purpose, this is
not appropriate, as we only want to represent the information
contained in small image regions. As a tradeoff between
single pixels and regions, we use edge segments, which are
defined as chains of edge pixels that lie inside a superpixel.
For the computation of the edge pixels, we apply the Sobel
operator to the grayscale image and remove edges with
a gradient magnitude that is below a threshold τ . From
that, we compute the edge segments by simply applying the
superpixel segmentation described above to the edge image.

Adapted to our choice of edge segments we define a
descriptor that reflects the local information of each edge seg-
ment. This information is later used for our object detection

algorithm. In accordance to the notion of a region descriptor,
we refer to this as an edge descriptor. In our experiments,
we tested the following two kinds of edge descriptors:
• Histogram of orientations: The local gradient orienta-

tions along an edge segment are collected in a histogram
with n bins: each bin Bi counts the number ei of
edge points p at which the gradient γ(p) has a certain
orientation (see Fig. 4, left). For the descriptor, we use
2n values, where the first n are the values ei, normalized
by the sum m :=

∑n
i=1 ei, and the second n values

are the sums
∑

pj∈Bi
|γ(pj)| for each bin Bi, again

normalized by m. We name this descriptor HIST.
• Vector of directions: First we compute for each edge

segment a polyline approximation consisting of l line
segments. We do this using a variant of split-and-merge.
Then, we collect all angles between the line segments
and the horizontal axis in a vector of length l (see Fig. 4,
right). We name this descriptor VECT.

IV. FEATURE CLASSIFICATION

Based on the feature extraction described in the previous
section, our goal is to formulate an algorithm that classifies
these feature vectors into one of the two classes ’pedestrian’
or ’background’. For this task, we employ a supervised
learning technique that uses a hand-labeled training data
set with positive examples of small scale pedestrians. Many
techniques have been proposed to achieve this task. Two very
successful approaches are the face detection algorithm of
Viola and Jones [24] and the voting technique named Implicit
Shape Model (ISM) by Leibe et al. [15]. The advantage
of the first method is the strength of AdaBoost [11], i.e. a
classifier that is arbitrarily accurate on the training data and
at the same time yields a rating of the most relevant feature
dimensions for classification. The downside is that the image
has to be searched with a sliding window approach and at
different scales. In contrast, the voting scheme of ISM relies
on scale invariant features that are stored in a codebook along
with the relative position of the object center. No feature
search is needed here in the image, but the algorithm does

Fig. 3. Visual explanation of codebook voting. 1) Matched descriptors vote
for different center positions 2) Mean Shift mode estimator is run in order
to converge in local high density areas in the voting space 3) High strength
hypotheses are selected as detections.
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not rank certain feature dimensions over others when finding
matches in the codebook. Thus, extracted feature vectors may
vote for a potential object center, even though they reveal a
low evidence for the occurrence of the object.

In this paper, we suggest to combine both ideas to a
method that pre-classifies a given feature vector using Ada-
Boost and then, in the case a positive classification, searches
for a vote of the object center in the codebook. The details
of this are described in the following.

A. AdaBoost Classification

Boosting is a method to combine a set of weak classifiers
into a strong classifier. The only requirement for a weak
binary classifier is that its classification error on any given
training data set is bigger than 0.5, i.e. it must be better
than random guessing. Strong classifiers, however, can reach
arbitrary low training error rates. AdaBoost [11] achieves this
by adaptively assigning weights to the training examples and
iteratively learning M weak classifiers hi and corresponding
weights αi. After learning, the sum

g(z) :=

M∑

i=1

αhi(z) (1)

is used to decide whether a given test feature z is classified
as positive or negative by simply taking the sign of the
result of g. A broadly used type of weak classifiers are
decision stumps, and we also use them in our framework. A
decision stump finds a hyperplane η in feature space that is
perpendicular to one feature dimension. It is uniquely defined
by the index of the feature dimension, the orientation of the
normal vector of η, and the distance of η to the origin.

The features extracted in the previous step are expressed
as a 2n dimensional point for the first case and as a l
dimensional point in the second case. Features quality are
evaluated by learning a classifier for each kind of descriptor.
Moreover, we measured the quality of the combination of
descriptor VECT with HIST concatenating their values in a
single feature of dimension 2n + l. We call this descriptor
MIX.

B. Descriptor Codebook

The main idea of voting based classification techniques,
such as the one described by Leibe et al. [15], is to collect a
set of image descriptors together with displacement vectors,

Fig. 4. The two types of edge descriptors used in our detection algorithm.
Left: Histogram of orientations: for each edge point of a segment we use the
orientations of the corresponding gradient, here shown in yellow on four
sample edge points, and compute a histogram over them. Right: Vector
of line segment orientations: From a polyline approximation to the edge
segment, here shown as yellow arrows, we store the orientation angles of
each line segment in a vector.

usually named votes, and to store them into a codebook. The
justification of this is that each descriptor can be found at
different positions inside an object. Thus, a vote points from
the position of the descriptor to the center of the object as it
was found in the training data. To obtain a codebook from
labeled training data, all descriptors are clustered, usually
using agglomerative clustering, and the cluster centers are
stored, along with all votes corresponding to a particular
cluster. For the detection, new descriptors are computed on
a test image and matched against the descriptors in the
codebook. The votes that are cast by each matched descriptor
are collected in a voting space, and a mean-shift maximum
density estimator is used to find the most likely position of
an object (see Fig. 3).

C. Detecting Pedestrians

Once the AdaBoost classifier is trained and a codebook
is created from the training data, our detection algorithm
proceeds as follows. For a given input image, the gradient
map and the superpixel segmentation is computed. Using
the latter ones, we obtain the edge segments of the test
image. Then, we compute the descriptors as described above
and apply AdaBoost using equation (1). All descriptors that
are classified positive, are matched to the entries in the
codebook. Here, we do a range search to find all descriptors
d that are within a given Euclidean distance r from the
query descriptor dq. Then, all the votes cast from these
descriptors are collected in the voting space by adding their
displacements to the centroid of the edge segment for which
dq was computed. In the last step, we apply mean shift
mode estimation [4] in the voting space to find the most
likely object center for the given votes. Here, we set the
kernel radius to half of the width of the training images. To
initialize the mean shift estimation, we first collect all votes
in a 2D histogram with 0.5w×0.5h bins where w and h are
the width and height of the test image, and then start mean
shift at the position of the biggest bins. After convergence
of mean shift, we obtain all object hypotheses. From these,
we retain those that have a minimum number of votes τv .

V. EXPERIMENTS

To evaluate our detection algorithm quantitatively, we
applied it on a large set of test images with labeled positive
and negative examples. We trained our classifier with images
from pedestrians in two sizes, namely 16× 20 and 32× 40
pixels. This corresponds in our case to an approximate
distance of 56m and 28m, respectively (the focal length of
our lens is 4.2mm).

A. Setting the Parameters

As mentioned before, our algorithm depends on several
parameters: the superpixel coarseness k, the gradient strength
threshold τ , the length of the descriptor vectors m and n,
and the distance parameter r for codebook clustering. To
determine these parameters, we created a validation dataset
of 2000 random images and evaluated 25 combinations of
these parameters on these images. To limit the parameter
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Fig. 5. Precision-Recall graph for our detection algorithm (SP) and for
AdaBoost with Haar features as in [14] (AH). Due to the special design of
our descriptor for small scales, the detection on the smaller images yields
better results. The green line depicts the Equal Error Rate (EER)

search space, we chose m and n from the interval [6, 8] as
described in [5], and τ from [0, 40] to ensure that at most
15% of the gradient information is lost (considering that the
maximal possible value is 255). The parameter combination
with the maximal sum of true positive and true negative
detections was used in the later experiments. We obtained
k = 25, m = 8, n = 8, r = 18 and τ = 25.

B. Training

For training, we used an internationally standard dataset:
the NICTA large pedestrian image dataset [19]. It contains
pictures with pedestrians taken in typical urban environment.
They appear either alone or in crowded scenes whith partial
occlusions, in different poses (walking, standing, sitting) and
in a broad range of lighting variations. Negative examples
are represented by random crops of images from indoor and
outdoor environments.

We randomly selected 10000 positive images and 50000
negative images for each scale. In total we trained our
algorithm with 120000 image samples. In each image we
encountered between 10 and 20 edge segments, i.e. several
million descriptors were used for training. We used 5 times
more negative training examples to provide a large variety of
background. To assess the quality of the AdaBoost training
we used a leave-one-out cross validation, in which data is
partitioned into subsets such that the analysis is initially
performed on a single subset, while the other subsets are
retained for confirming and validating the initial results. The
training was performed on a quad core Intel Xeon CPU with
4GB of RAM in several hours of processing time.

C. Quantitative Results

The test set is composed of 24000 images with 4000
and 20000 negative examples. We evaluated our algorithm
for three different kinds of edge descriptors (see Sec. III-
B): Histogram of orientations (HIST), Vector of directions

(VEC), and both (MIX). The evaluations of the three types
of classifiers (HIST, VECT, and MIX) are shown in tables
I–III for image size 16×20 and in tables IV–VI for 32×40.
The precision-recall values are depicted in Fig. 5, along
with the result from the full-body detector for 14 × 28
images by Kruppa et al. [14]. This method, outperformed
by our technique, uses AdaBoost with Haar features and is
very similar to the one that is described by Munder and
Gavrila [18] as close to the best.

The VEC descriptor yields a much lower True Positive
Rate (TPR) than the HIST descriptor, which is most probably
due to the information loss caused by the polyline approxi-
mation of an edge segment. Note that the False Positive Rate
(FPR) of both descriptors are similar. The best results are
obtained using the combination (MIX) of both descriptors
that improves each statistics. It is important to remark that
the results for images of size 16 × 20 are generally better
than for those of size 32 × 40. The reason for this the
specific design of our feature descriptors: a bigger image
scale tends to exhibit a higher level of detail, therefore the
superpixel segmentation yields edge segments that are less
distinctive compared to those from the low scale images. In
the latter ones, superpixels represent body parts at a higher
semantic level (legs, heads, arms), whereas at larger scales,
the superpixels are less informative. Moreover, due to the
fact that low scale images have a lower resolution, mainly
strong edge pixels prevail. This means that thresholding the
gradient map at the same value τ results in a lower loss of
information. Nevertheless, the proposed technique performs
comparably well for images at higher scale: the TPR is only
about 3% and the TNR is only about 5% lower.

As a qualitative result, we show in Fig 6 the detection
result from a fraction of the test data set at image size 16×20.
All images are arranged in a grid and the estimated object
centers are depicted with yellow dots.

VI. CONCLUSIONS

We presented a novel image based detection method for
pedestrians at very small scales. For this particular problem
with sparse visual information we propose a new feature de-
scriptor inspired by edgelets in combination with superpixel
segmentation. Our technique overcomes common drawbacks
of the standard interest point voting approach and of the
scrolling window approaches using a descriptor codebook
and a robust AdaBoost classification technique. We have
evaluated parameters and show quantitative results on a large
dataset, showing the effectiveness of our method. In future
works we want to investigate how an intelligent tracking
can improve the results and how to improve the feature
robustness with respect to the scale magnification.
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TABLE I
CONFUSION MATRIX FOR SIZE 16X20 -

HIST DESCRIPTOR

Prediction
Ground truth P N

P 70.5% 29.5%
N 18.0% 82.0%

TABLE II
CONFUSION MATRIX FOR SIZE 16X20 -

VECT DESCRIPTOR

Prediction
Ground truth P N

P 56.6% 43.4%
N 18.8% 81.2%

TABLE III
CONFUSION MATRIX FOR SIZE 16X20 -

MIX DESCRIPTOR

Prediction
Ground truth P N

P 71.8% 28.2%
N 17.1% 82.9%

TABLE IV
CONFUSION MATRIX FOR SIZE 32X40 -

HIST DESCRIPTOR

Prediction
Ground truth P N

P 66.7% 33.3%
N 23.8% 76.2%

TABLE V
CONFUSION MATRIX FOR SIZE 32X40 -

VECT DESCRIPTOR

Prediction
Ground truth P N

P 53.0% 47.0%
N 23.9% 76.1%

TABLE VI
CONFUSION MATRIX FOR SIZE 32X40 -

MIX DESCRIPTOR

Prediction
Ground truth P N

P 68.4% 31.6%
N 22.1% 77.9%

Fig. 6. Qualitative result of our detection algorithm. 600 full size images
of correct detections from the test dateset are shown here in matrix form.
The yellow dots are the estimated object centers. To keep the presentation
uncluttered, the detected bounding box for each image is not displayed.
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Multiclass Multimodal Detection and Tracking
in Urban Environments

Luciano Spinello, Rudolph Triebel, and Roland Siegwart

Abstract This paper presents a novel approach to detect and track pedestrians and
cars based on the combined information retrieved from a camera and a laser range
scanner. Laser data points are classified using boosted Conditional Random Fields
(CRF), while the image based detector uses an extension of the Implicit Shape
Model (ISM), which learns a codebook of local descriptors from a set of hand-
labeled images and uses them to vote for centers of detected objects. Our extensions
to ISM include the learning of object sub-parts and templatemasks to obtain more
distinctive votes for the particular object classes. The detections from both sen-
sors are then fused and the objects are tracked using an Extended Kalman Filter
with multiple motion models. Experiments conducted in real-world urban scenarios
demonstrate the usefulness of our approach.

1 Introduction

One research area that has turned more and more into the focusof interest during
the last years is the development of driver assistant systems and (semi-)autonomous
cars. In particular, such systems are designed for operation in highly unstructured
and dynamic environments. Especially in city centers, where many different kinds
of transportation systems are encountered (walking, cycling, driving, etc.), the re-
quirements for an autonomous system are very high. One key prerequisite for such
systems is a reliable detection and distinction of dynamic objects, as well as an ac-
curate estimation of their motion direction and speed. In this paper, we address this
problem focusing on the detection and tracking of pedestrians and cars. Our system
is a robotic car equipped with cameras and a 2D laser range scanner. As we will
show, the use of different sensor modalities helps to improve the detection results.

Autonomous Systems Lab, ETH Zurich, Switzerland,
e-mail:{luciano.spinello, rudolph.triebel}@mavt.ethz.ch, rsiegwart@ethz.ch
This work was funded within the EU Projects BACS-FP6-IST-027140 and EUROPA-FP7-231888
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2 Luciano Spinello, Rudolph Triebel, and Roland Siegwart

The system we present here employs a variety of different methods from machine
learning and computer vision, which have been shown to provide good detection
rates. We extend these methods obtaining substantial improvements and combine
them into a complete system of detection, sensor fusion and object tracking. We use
supervised-learning techniques for both kinds of sensor modalities, which extract
relevant information from large hand-labeled training data sets. In particular, the
major contributions of this work are:

• Several extensions to the vision based object detector by Leibeet al. [13] using a
feature based voting scheme denoted as Implicit Shape Models (ISM). Our major
improvements to ISM are the subdivision of objects into sub-parts to obtain a
more differentiated voting, the use oftemplate masksto discard unlikely votes,
and the definition ofsuperfeaturesthat exhibit a higher evidence of an object’s
occurrence and are more likely to be found.

• The application and combination of boosted Conditional Random Fields (CRF)
for classifying laser scans with the ISM based detector using vision. We use an
Extended Kalman Filter (EKF) with multiple motion models tofuse the sensor
information and to track the objects in the scene.

This paper is organized as follows. The next section describes work that is related
to ours. Sec. 3 gives a brief overview of our overall object detection and tracking
system. In Sec. 4, we introduce the implicit shape model (ISM) and present our
extensions. Sec. 5 describes our classification method of 2Dlaser range scans based
on boosted Conditional Random Fields. Then, in Sec. 6 we explain our EKF-based
object tracker. Finally, we present experiments in Sec. 7 and conclude the paper.

2 Related Work

Several approaches can be found in the literature to identify a person in 2D laser data
including analysis of local minima [19, 23], geometric rules [24], using maximum-
likelihood estimation to detect dynamic objects [10], using AdaBoost on a set
of geometrical features extracted from segments [1], or from Delaunay neighbor-
hoods [20]. Most similar to our work is that of Douillardet al. [5] who use Condi-
tional Random Fields to classify objects from a collection of laser scans. In the area
of vision-based people detection, there mainly exist two kinds of approaches (see
[9] for a survey). One uses the analysis of adetection windowor templates[8, 4],
the other performs aparts-baseddetection [6, 11]. Leibeet al. [13] present a peo-
ple detector usingImplicit Shape Models(ISM) with excellent detection results in
crowded scenes. In earlier works, we showed already extensions of this method with
a better feature selection and an improved nearest neighborsearch [21, 22].

Existing people detection methods based on cameraandlaser data either use hard
constrained approaches or hand tuned thresholding. Zivkovic and Kr̈ose [25] use a
learned leg detector and boosted Haar features from the camera images and employ
a parts-based method. However, both their approach to cluster the laser data using
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Multiclass Multimodal Detection and Tracking in Urban Environments 3

Canny edge detection and the use of Haar features to detect body parts is hardly
suited for outdoor scenarios due to the highly cluttered data and the larger variation
of illumination. Schulz [18] uses probabilistic exemplar models learned from train-
ing data of both sensors and applies a Rao-Blackwellized particle filter (RBPF) to
track a person’s appearance in the data. However, in outdoorscenarios illumination
changes often and occlusions are very likely, which is why contour matching is not
appropriate. Also, the RBPF is computationally demanding,especially in crowded
environments. Douillardet al. [5] also use image features to enhance the object de-
tection but they do not consider occlusions and multiple image detection hypotheses.

3 Overview of Our Method

Our system consists of three main components: an appearancebased detector that
uses the information from camera images, a 2D-laser based detector providing
structural information, and a tracking module that uses thecombined information
from both sensor modalities and provides an estimate of the motion vector for each
tracked object. The laser based detection applies a Conditional Random Field (CRF)
on a boosted set of geometrical and statistical features of 2D scan points. The
image based detector extends the multiclass version of the Implicit Shape Model
(ISM)[13]. It only operates on a region of interest obtainedfrom projecting the
laser detection into the image to constrain the position andscale of the detected
objects. Then, the tracking module applies an Extended Kalman Filter (EKF) with
two different motion models, fusing the information from camera and laser. In the
following, we describe the particular components in detail.

4 Appearance Based Detection

Our vision-based people detector is mostly inspired by the work of Leibeet al. [13]
on scale-invariant Implicit Shape Models (ISM). In summary, an ISM consists in
a set of local region descriptors, called thecodebook, and a set of displacements
and scale factors, usually namedvotes, for each descriptor. The idea is that each
descriptor can be found at different positions inside an object and at different scales.
Thus, a vote points from the position of the descriptor to thecenter of the object
as it was found in the training data. To obtain an ISM from labeled training data,
all descriptors are clustered, usually using agglomerative clustering, and the votes
are computed by adding the scale and the displacement of the objects’ center to the
descriptors in the codebook. For the detection, new descriptors are computed on a
test image and matched against the descriptors in the codebook. The votes that are
cast by each matched descriptor are collected in a 3Dvoting space, and a maximum
density estimator is used to find the most likely position andscale of an object.
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4 Luciano Spinello, Rudolph Triebel, and Roland Siegwart

In the past, we presented already several improvements of the standard ISM ap-
proach (see [21, 22]). Here, we show some more extensions of ISM to further im-
prove the classification results. These extensions concernboth the learning and the
detection phase and are described in the following.

4.1 ISM Extensions in the Learning Phase

Sub-Parts: The aim of this procedure is to enrich the information from the voters
by distinguishing between different object subparts from which the vote was cast.
We achieve this by learning a circular histogram of interestpoints from the training
data set for each object class. The number of bins of this histogram is determined
automatically by usingk-means clustering. The final number of clusters, here de-
noted asq, is obtained using the Bayesian Information Criterion (BIC). Note that
this subpart extraction does not guarantee a semantical subdivision of the object
(i.e.: legs, arms, etc. for pedestrians) but it is interesting to see that it nevertheless
resembles this automatically without manual interaction by the user (see Fig. 1, left
and center).
Template Masks: In the training data, labeled objects are represented usinga binary
image namedsegmentation mask. This mask has the size of the object’s bounding
box and is 1 inside the shape of the object and 0 elsewhere. By overlaying all these
masks for a given object class so that their centers coincideand then averaging over
them, we obtain atemplate maskof each object class (see Fig. 1, left and center).
This method is more robust against noise than, e.g., Chamfermatching [3], and does
not depend on an accurate detection of the object contours. We use the template
mask later to discard outlier votes cast from unlikely areas.
Superfeatures: The original ISM maintains all features from the training data in the
codebook as potential voters and does not distinguish between stronger and weaker
votes. This has the disadvantage that often too many votes are cast, even if an oc-
curance of the object is not likely given the training data, and leads to many false
positive detections. To overcome this, we propose to extract superfeaturesfrom the
training data, i.e. descriptor vectors that cast a strongervote than standard features.
We keep these superfeatures in a separate codebook to avoid clutter in the implemen-
tation. A superfeature is defined by a local density maximum in descriptor space,
where only feature vectors are considered that correspond to interest points from a
dense area in the image space (inx, y, and scale). This definition ensures that for
superfeatures a high evidence of the occurrence of the object is combined with a
high probability to encounter an interest point. We computesuperfeatures by first
employing mean shift estimation on all interest points found in the training data set
for each class, and then clustering the feature vectors in descriptor space that cor-
respond to the interest points from the found areas of high density. This clustering
is done agglomeratively. In the end, we select the 50% of the cluster centers that
correspond to the biggest clusters. The right part of Fig. 1 shows an example. Note
that the superfeatures inherently reflect the skeleton of the object.
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Fig. 1 Left and Center: Sub-parts, depicted in colored slices, and template masks, in white. They
are computed from the training set. Note that even though the subparts are computed unsupervised,
they exhibit some semantic interpretation.Right: Superfeatures are stable features in image and
descriptor space. This figure shows Shape Context descriptors atHessian interest points (in red)
for the class ’pedestrian’. The position of the superfeatures are depicted in green.

4.2 ISM Extensions in the Inference Phase

Sub-Parts and Template Masks: After collecting all the votes for a given set of ex-
tracted input features from a test image, we first discard theones that are implausible
by placing the template mask at the potential object centersand removing the votes
that are cast from outside the mask. For the remaining ones wefind the maximum
density pointm using mean shift and insert all votes form into a circular histogram
with q bins: one per sub-part of the object. We denote each such histogram as a
hypothesish = (h1, . . . ,hq) of an object’s position. Thestrengthσ of a hypothesis
is defined as the sum of all bins, i.e. the number of all voters for the object center.
To find the best hypothesis we define a partial order≺ based on a function∆h:

hi ≺ h j ⇔ ∆h(hi ,h j) < 0 where ∆h(hi ,h j) :=
q

∑
k=1

sign(hi
k−h j

k). (1)

Using this, we select the hypothesis with the highest order (in case of ambiguity
we use the one with the highest strength) for each class. Then, we find the best
hypothesisacrossall classes as described below, remove all its voters and recompute
the ordering. This is done until a minimum hypothesis strength σmin is reached.
Thus, the parameterσmin influences the number of false positive detections.
Superfeatures: Superfeatures and standard features vote for object centers in the
same voting space, but the votes from superfeatures are weighted higher (in our
case by a factor of 2). Thus, the score of a hypothesis is higher if the fraction of
superfeatures voting for it is higher. In some cases where anobject’s shape visibility
is low only superfeatures might be used to obtain a very fast detection.
Best Inter-Class Hypothesis: As mentioned above, we need to rate the best object
hypotheses from all classes. To be independent on an over- orunder-representation
of a class in the codebooks, we do this by comparing the relative areas covered
by the voters from all class hypotheses. More precisely, we define a square areaγ
around each voter that depends on the relative scale of the descriptor, i.e. the ratio
of the test descriptor’s scale and that of the found descriptor in the codebook. The
fraction of the area covered by all voters of a hypothesis andthe total area of the
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6 Luciano Spinello, Rudolph Triebel, and Roland Siegwart

object (computed from the template mask) is then used to quantify the hypothesis.
Care has to be taken in the case of overlapping class hypotheses. Here, we compute
the set intersection of the interest points in the overlapping area and assign their
correspondingγ values alternately to one and the other hypothesis.

5 Structure Based Detection

For the detection of objects in 2D laser range scans, severalapproaches have been
presented in the past (see for example [1, 16]). Most of them have the disadvantage
that they disregard the conditional dependence between data points in a close neigh-
borhood. In particular, they can not model the fact that the label l i of a given scan
point zi is more likely to bel j if we know thatl j is the label ofz j andz j andzi are
neighbors. One way to model this conditional independence is to use Conditional
Random Fields (CRFs) [12], as shown by Douillardet al. [5]. CRFs represent the
conditional probabilityp(y | z) using an undirected cyclic graph, in which each node
is associated with a hidden random variablel i and an observationzi . In our case, the
l i is a discrete label that ranges over 3 different classes (pedestrian, car and back-
ground) and the observationszi are 2D points in the laser scan. At this point we omit
the mathematical details about CRFs and refer to the literature (e.g. [5, 17]). We only
note that for training the CRF we use the L-BFGS gradient descent method [14] and
for the inference we use max-product loopy belief propagation.

We use a set of statistical and geometrical featuresfn for the nodes of the CRF,
e.g. height, width, circularity, standard deviation, kurtosis, etc. (for a full list see
[20]). We compute these features in a local neighborhood around each point, which
we determine by jump distance clustering. However, we don’tuse this features di-
rectly in the CRF, because, as stated in [17] and also from ourown observation,
the CRF is not able to handle non-linear relations between the observations and the
labels. Instead, we apply AdaBoost [7] to the node features and use the outcome as
features for the CRF. For our particular classification problem with multiple classes,
we train one binary AdaBoost classifier for each class against the others. As a re-
sult, we obtain for each classk a set ofM weak classifiersui (decision stumps) and
corresponding weight coefficientsαi so that the sum

gk(z) :=
M

∑
i=1

αiui(f(z)) (2)

is positive for observations assigned with the class labelk and negative otherwise.
We apply the inverse logit functiona(x) = (1+e−x)−1 to gk to obtain a classification
likelihood. Thus, the node features for a scan pointzi and a labell i are computed as
fn(zi , l i) = a(gl i (zi)). For the edge featuresfe we compute two values, namely the
Euclidean distanced between the pointszi andz j and a valuegi j defined as

gi j (zi ,z j) = sign(gi(zi)g j(z j))(|gi(zi)|+ |g j(z j)|). (3)
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Multiclass Multimodal Detection and Tracking in Urban Environments 7

This feature has a high value if bothzi and z j are equally classified (its sign is
positive) and low otherwise. Its absolute value is the sum ofdistances from the
decision boundary of AdaBoost whereg(z)= 0. Thus, we define the edge features as

fe(zi ,z j , l i , l j) =

{(
a(d(zi ,z j)) a(gi, j(zi ,z j))

)T
if l i = l j

(0 0)T otherwise.
(4)

The intuition behind Eq. (4) is that edges that connect points with equal labels have
a non-zero feature value and thus yield a higher potential.

6 Object Tracking and Sensor Fusion

To fuse the information from camera and laser and for object tracking we use an Ex-
tended Kalman Filter (EKF) as presented in [21]. In our implementation, we use two
different motion models – Brownian motion and linear velocity – in order to cope
with pedestrian and car movements. The data association is performed in the camera
frame: we project the detected objects from the laser scan into the camera image.
Assuming a fixed minimal object height, we obtain a rectangular search region, in
which we consider all hypotheses from the vision based detector for the particular
object class. Using a previously calibrated distancer0 of an object at scale 1.0 (us-
ing the normalized training height), we can estimate the distancerest of a detected
object in the camera image by multiplyingr0 with the scale of the object. Then,rest

is compared to the measured distancermeasfrom the laser and both detections are
assigned to each other if|rmeas− rest| is smaller than a thresholdτd (in our case 2m).

We track cluster centers of gravity in the 2D laser frame using two system states:

xm1 = 〈(xcog,ycog),(vcog
x ,vcog

y ),(c1, . . . ,cn)〉 andxm2 = 〈(xcog,ycog),(c1, . . . ,cn)〉,

one for each motion model. Here,(vcog
x ,vcog

y ) is the velocity of the cluster centroid
(xcog

x ,ycog
y ) andc1, . . . ,cn are the probabilities of alln classes. We use a static state

model where the observation vectorw consists of the position of the cluster and the
class probabilities for each sensor modality:

w = 〈x̂cog, ŷcog,(c1, . . . ,cn)
1, . . . ,(c1, . . . ,cn)

s〉. (5)

Here,(x̂cog, ŷcog) is a new observation of a cluster center andsdenotes the number of
sensors. The matrixH models the mapping from states to the predicted observation
and is defined asH = (PTST

1 . . .ST
s )

T , whereP maps to pose observations and the
Si map to class probabilities per sensor. For example, for one laser, one camera and
constant velocity we have

P=
(

1 0 0 0 0 0
0 1 0 0 0 0

)
S1 = S2 =

(
0 0 0 0 1 0
0 0 0 0 0 1

)
. (6)
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Fig. 2 Left: For car classification, we use codebooks from 7 different views. For training, mirrored
images are included for each view to obtain a wider coverage.Center: For pedestrians we use 2
codebooks of side views with mirroring. Lateral views have sufficient information to generalize
frontal/back views.Right: Setup used for the city data set. Only a small overlap of the cameras’
field of view is used to cover a larger part of the laser scans. No stereo vision is used in this work.

7 Experimental Results

To acquire the data, we used a car equipped with two CCD cameras and a 2D laser
range finder mounted in front (see Fig. 2, right). The 3D transform between the laser
and the camera coordinate frame was calibrated beforehand.We acquired training
data sets for both sensor modalities. For the camera, we collected images of pedes-
trians and cars that we labeled by hand. The pedestrian data set consists of 400
images of persons with a height of 200 pixels in different poses and with different
clothing and accessories such as backpacks and hand bags in atypical urban en-
vironment. The class ’car’ was learned from 7 different viewpoints as in [13] (see
also Fig. 2, left). Each car data set consists of 100 picturesfrom urban scenes with
occlusions. Car codebooks are learned using Shape Context (SC) descriptors [2] at
Hessian-Laplace interest points [15]. The pedestrian codebook uses lateral views
and SC descriptors at Hessian-Laplace and Harris-Laplace interest points for more
robustness. Experience shows [13] that lateral views of pedestrians also generalize
well to front/back views. Our laser training data consists of 800 annotated scans
with pedestrians, cars and background. There is no distinction of car views in the
laser data as the variation in shape is low. The range data consists in 4 layers where
each has an angular resolution of 0.25◦ and a maximum range of 15m.

To quantify the performance of our detector we acquired two datasets containing
cars and pedestrians. The results of our detection algorithm are shown in Fig. 3.
Our vision based detecion named ISMe2.0 is compared to the standard ISM, our
previous extension ISMe1.0, and for the pedestrian class, with AdaBoost trained on
Haar features (ABH). For the class ’car’, we averaged the results over all different
views. We can see that our method yields the best results withan Equal Error Rate
(EER) of 72.3% for pedestrians and 74% for cars. The improvements are mainly
due to a decreased rate of false positive detections. The results of our laser based
detection are shown in the middle column of Fig. 3. We can see that our approach
using boosted CRFs performs better than standard AdaBoost.The right column of
Fig. 3 depicts the results for the combined detection using laser and vision. These
graphs clearly show that using both sensors the number of false positive detections
decreases and the hit rate increases. Some qualitative results are shown in Fig. 4
where a passing car and a crossing pedestrian are correctly detected and tracked.
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Fig. 3 Quantitative evaluation.Upper row: pedestrian detection,Lower row: car detection. From
left to right we show the results only using camera, only using laser, and both. As we can see, our
approach outperforms the other methods for both sensor modalities. The image based detection
is compared with standard ISM, our first extension of ISM (ISMe1.0) and AdaBoost with Haar
features. Our CRF-based laser detector is compared with AdaBoost. We can also see that the com-
bination of both sensors improves the detection result of both single sensors.

In addition, we evaluated our algorithm on a third, more challenging dataset ac-
quired in the city of Zurich. It consists of 4000 images and laser scans. The equal
error rates of this experiment resulted in 64.1% (laser-only), 64.1% (vision-only)
and 68% (combined) for pedestrians, and in(72.2%,73.5%,75.7%) for cars. As
a comparison, we evaluated the state-of-the-art pedestrian detector based on His-
togram of Oriented Gradients [4] and ABH obtained an EER of 36.4 and 8.9.

Fig. 4 Cars and pedestrian detected and tracked under occlusion, clutter and partial views. In the
camera images, upper row, blue boxes indicate car detections, orange boxes pedestrian detections.
The colored circle on the upper left corner of each box is the track identifier. Tracks are shown in
color in the second row and plotted with respect to the robot reference frame.
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8 Conclusions

We presented a method to reliably detect and track multiple object classes in outdoor
scenarios using vision and 2D laser range data. We showed that the overall perfor-
mance of the system is improved using a multiple-sensor system. We presented sev-
eral extensions to the ISM based image detection to cope withmultiple classes. We
showed that laser detection based on CRFs performs better than a simpler AdaBoost
classifier and presented tracking results on combined data.Finally, we showed the
usefulness of our approach through experimental results onreal-world data.
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10. D. Ḧahnel, R. Triebel, W. Burgard, and S. Thrun. Map building with mobile robots in dynamic
environments. InIEEE Int. Conf. on Rob. and Autom. (ICRA), 2003.

11. S. Ioffe and D. A. Forsyth. Probabilistic methods for findingpeople.Int. Journ. of Comp. Vis.,
43(1):45–68, 2001.

12. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmentation and labeling sequence data. InInt. Conf. on Machine Learning (ICML), 2001.

13. B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool. Dynamic 3dscene analysis from a moving
vehicle. InIEEE Conf. on Comp. Vis. and Pat. Recog. (CVPR), 2007.

14. D. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.Math.
Programming, 45(3, (Ser. B)), 1989.

15. K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.IEEE Trans. on
Pattern Analysis & Machine Intelligence, 27(10):1615–1630, 2005.

16. C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto. A lidarand vision-based approach for
pedestrian and vehicle detection and tracking. InITSC, 2007.

17. F. Ramos, D. Fox, and H. Durrant-Whyte. CRF-matching: Conditional random fields for
feature-based scan matching. InRobotics: Science and Systems (RSS), 2007.

18. D. Schulz. A probabilistic exemplar approach to combine laser and vision for person tracking.
In Robotics: Science and Systems (RSS), 2006.

19. D. Schulz, W. Burgard, D. Fox, and A. Cremers. People tracking with mobile robots using
sample-based joint probabilistic data ass. filters.Int. Journ. of Rob. Res. (IJRR), 22(2), 2003.

Articles on Pedestrian and Car Detection (Chapter 3)

116 Appeared in: Proc. of Field and Service Robotics (FSR), 2009



Multiclass Multimodal Detection and Tracking in Urban Environments 11

20. L. Spinello and R. Siegwart. Human detection using multimodal and multidimensional fea-
tures. InIEEE Int. Conf. on Rob. and Autom. (ICRA), 2008.

21. L. Spinello, R. Triebel, and R. Siegwart. Multimodal detection and tracking of pedestrians in
urban environments with explicit ground plane extraction. In IEEE Int. Conf. on Intell. Rob.
and Systems (IROS), 2008.

22. L. Spinello, R. Triebel, and R. Siegwart. Multimodal people detection and tracking in crowded
scenes. InProc. of the AAAI Conf. on Artificial Intelligence, July 2008.

23. E. A. Topp and H. I. Christensen. Tracking for following andpassing persons. InIEEE Int.
Conf. on Intell. Rob. and Systems (IROS), 2005.

24. J. Xavier, M. Pacheco, D. Castro, A. Ruano, and U. Nunes. Fast line, arc/circle and leg
detection from laser scan data in a player driver. InIEEE Int. Conf. on Rob. and Autom.
(ICRA), 2005.

25. Z. Zivkovic and B. Kr̈ose. Part based people detection using 2d range data and images. In
IEEE Int. Conf. on Intell. Rob. and Systems (IROS), San Diego, USA, November 2007.

Articles on Pedestrian and Car Detection (Chapter 3)

Appeared in: Proc. of Field and Service Robotics (FSR), 2009 117



A Layered Approach to People Detection in 3D Range Data
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Abstract

People tracking is a key technology for autonomous systems,
intelligent cars and social robots operating in populated envi-
ronments. What makes the task difficult is that the appearance
of humans in range data can change drastically as a function
of body pose, distance to the sensor, self-occlusion and oc-
clusion by other objects. In this paper we propose a novel ap-
proach to pedestrian detection in 3D range data based on su-
pervised learning techniques to create a bank of classifiers for
different height levels of the human body. In particular, our
approach applies AdaBoost to train a strong classifier from
geometrical and statistical features of groups of neighboring
points at the same height. In a second step, the AdaBoost
classifiers mutually enforce their evidence across different
heights by voting into a continuous space. Pedestrians are fi-
nally found efficiently by mean-shift search for local maxima
in the voting space. Experimental results carried out with 3D
laser range data illustrate the robustness and efficiency of our
approach even in cluttered urban environments. The learned
people detector reaches a classification rate up to 96% from a
single 3D scan.

1. Introduction
Robustly detecting pedestrians is a key problem for mobile
robots and intelligent cars. Laser range sensors are partic-
ularly interesting for this task as, in contrast to vision, they
are highly robust against illumination changes and typically
provide a larger field of view.

In this paper we address the problem of detecting pedes-
trians in 3D range data. The approach presented here uses
techniques from people detection in 2D range data for which
a large amount of related work exists (Kluge, Köhler, and
Prassler, 2001; Fod, Howard, and Mataríc, 2002; Schulz
et al., 2003; Cui et al., 2005; Arras, Martínez Mozos, and
Burgard, 2007). In early works, people are detected us-
ing ad-hoc classifiers, looking for moving local minima in
the scan. Learning has been applied for this task by Arras,
Martínez Mozos, and Burgard (2007) where a classifier for
2D point clouds has been learned by boosting a set of geo-
metrical features. As there is a natural performance limit for
people detection in asingle2D layer of range data, several
authors started looking into the use of multiple co-planar 2D

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: 3D pedestrian detection. A person pushing a
buggy, a child and a walking pedestrian are correctly identi-
fied in the point cloud.

laser scanners Gidel et al. (2008); Carballo, Ohya, and Yuta
(2008). Close to our context is the work of Mozos, Ku-
razume, and Hasegawa (2010), in which the authors apply
boosting on each of three horizontal layers and use a prob-
abilistic rule set to combine the three classifiers assuminga
known ground plane.

There is little related work on pedestrian detection in 3D
data. Navarro-Serment, Mertz, and Hebert (2009) collapse
the 3D scan into a virtual 2D slice to find salient vertical
objects above ground. For these objects, they align a win-
dow to the principal data direction, compute a set of fea-
tures, and classify pedestrians using a set of SVMs. Ba-
jracharya et al. (2009) detect people in point clouds from
stereo vision by processing vertical objects and consider-
ing a set of geometrical and statistical features of the cloud
based on a fixed pedestrian model. From the comprehen-
sive body of literature on people detection in images, we
mention the most related ones, namely the HOG detector
by Dalal and Triggs (2005) and the ISM approach by Leibe,
Seemann, and Schiele (2005). People detection from multi-
modal data using laser and vision has been presented by
Spinello, Triebel, and Siegwart (2008).

To our knowledge, this work presents the first principled
learning approach to people detection in 3D range data. The
idea is to subdivide a pedestrian into parts defined by dif-
ferent height levels, and learn a highly specialized classifier
for each part. We exploit the fact that most of the com-
mercial 3D laser devices retrieve the environment as a set
of individualscan lineswhich are not necessarily co-planar.

Articles on Pedestrian and Car Detection (Chapter 3)

118 Appeared in: Proc. of the Conf. on Artificial Intelligence (AAAI), 2010.



The building blocks used for classification aresegments, i.e.
groups of consecutive points in each scan line, on which a
set of geometrical and statistical features are computed. We
do not define a 3D pedestrian shape model beforehand, but
instead learn it from labeled data by storing the displace-
ments between the segment centers and the person’s center.
This allows for a general and robust description for articu-
lated and complex 3D objects. Then, each segment is clas-
sified based on the likelihood of belonging to each part. We
relate the output of each classifier geometrically by employ-
ing a 3.5D voting approach where each segment votes for
the center of a person. Areas of high density in the contin-
uous voting space define hypotheses for the occurrence of a
person. This allows for robustness against occlusions as not
all parts are needed for a detection. Moreover, our approach
does not rely on any ground plane extraction heuristics and
does not require any motion cues. No tracking is done in
this work.

The paper is structured as follows: Sec. 2 explains the pre-
processing steps we apply to the 3D data. Sec. 3 describes
how we subdivide and learn a 3D person model from data.
In Sec. 4 the detection step is presented. Sec. 5 contains the
experimental results and Sec. 6 concludes the paper.

2. Preprocessing 3D Range Data
Different systems exist to acquire 3D range data from the
environment. Many of them rely on a scanning device that
sends out laser rays and measures the distance to the clos-
est object. To acquire a 3D scan, such devices are usually
rotated about one of the main axes of the sensor-based co-
ordinate frame. Examples include 2D range finders such as
the SICK LMS laser scanner, mounted on a turntable that
rotates about its vertical or horizontal axis (Lamon, Kolski,
and Siegwart, 2006). Other devices, such as the Velodyne
HDL-64E, also rotate about thez-axis sending out 64 inde-
pendent laser beams that are not coplanar. The Alasca XT
rangefinder uses a beam deflected by a rotating mirror and
4 receivers. Such sensors return point clouds that consist of
individualscan lines, i.e. sequences of points that have been
measured with the same beam. With some abstraction, we
can thus think of such a 3D point cloud as a collection of
2D laser points arranged inslicesor layers. This definition
holds also for a wide set of non-laser sensors: range cam-
era data (e.g. Swissranger) or point cloud data from stereo
cameras can also be transformed into sets of scan lines by
horizontally sampling image pixels.

Formally, we consider a point cloudX as consisting of
layersLi = {xi j }, wherexi j = (xi j ,yi j ,zi j ). In this paper, we
demonstrate that by treating a 3D scan as a collection of 2D
scans at different levels, known and proven techniques for
detecting people in 2D range data can be easily extended to
the 3D case, yielding a fast and robust people detector for
3D range data.

2.1 Point Cloud Segmentation per Layer
As a first step of our detection algorithm, we divide each
scan line intosegmentsusing Jump Distance Clustering
(JDC). JDC initializes a new segment each time the distance

Nr Feature Name Nr Feature Name

f1 Width f2 Number of points

f3 Circularity f4 Linearity

f5 Boundary length f6 Boundary regularity

f7 Mean angular difference f8 Mean curvature

f9 Quadratic spline fitting f10 Cubic spline fitting

f11 Standard dev. w.r.t. centroid f12 Mean avg. dev. from median

f13 Kurtosis w.r.t. centroid f14 Radius

f15 PCA ratio f16 Bounding box area

f17 Convex hull area

Table 1: Features used to describe the shape and statistical
properties of a segment.

between two consecutive points exceeds a thresholdθd. As
a result, the data is reduced to a smaller number of segments
with a higher amount of information than that of the raw data
points. We denote each segment as a setS j , j = 1, . . . ,Ni of
consecutive points whereNi is the number of segments in
scan linei. Our algorithm assumes that the 3D scanner ro-
tates about the verticalz-axis, which means that the points
in a segment are sorted by ascending azimuth angles. The
segments constitute the primal element to extract local in-
formation.

2.2 Segment shape characterization
In the next step, we compute severaldescriptorsfor each
extracted segment. A descriptor is defined as a function
fk: S j → � that takes theM points contained in a segment
S j = {(x1,y1,z1) . . . (xM ,yM ,zM)} as an input argument and
returns a real value. Most of the features we use (f1 . . . f8)
have been presented by Arras, Martínez Mozos, and Bur-
gard (2007) and Spinello, Triebel, and Siegwart (2008), the
following ones (f9 . . . f17) are added for this particular task:

• Quadratic spline fitting: this feature measures the resid-
ual sum of squares of a quadratic B-Spline regressions2
(a piecewise polynomial approximation introduced by De
Boor (1978)) of the points inS j : f9 =

∑
i (s2 (xi ,yi)−yi)2

• Cubic spline fitting: this feature measures the residual
sum of squares of a cubic B-Spline regressions3 of the
points inS j , i.e. f10=

∑
i (s3 (xi ,yi)−yi)2

• Kurtosis with respect to centroid: the kurtosis is defined
as the fourth standardized moment of the clusterS j , i.e.

f12 =
∑

i (xi−x̂ j )4

M· f 4
11

, where f11 represents the standard devia-

tion with respect to the centroid, andx̂i the center of grav-
ity of S j .

• PCA ratio: this feature is the ratio between the second
biggest eigenvalueλ2 and the biggest eigenvalueλ1 of the
scatter matrix associated withS j . It measures the aspect
ratio of the oriented bounding box, i.e.f13=

λ2
λ1+1

• Bounding box area: this feature represents the area of the
axis-aligned bounding box ofS j .

• Convex hull area: this feature represents the area com-
puted from the convex hull polygon extracted fromSi .
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Figure 2: Learning a 3D person model. Objects are ver-
tically divided into K parts. For each part an independent
AdaBoost classifier is learned: all the segmented points con-
tained on each scan line are considered as positive samples
for theK AdaBoost classifiers.

Table 1 lists all 17 used features. The set of feature values
of each segmentSi then forms a vectorf i = ( f1, . . . , f17).

3. Learning a 3D Model of People

The appearance of people is highly variable. Humans have
different sizes and body shapes, wear clothes, carry bags,
backpacks, or umbrellas, pull suitcases, or push buggies.
This makes it hard to predefine models for their appearance
and motivates a learning approach based on a model that is
created from acquired data.

3.1 Definition of Parts

We tackle the problem of the shape complexity of humans by
a subdivision into different height layers orparts(see Fig. 2).
The subdivision is defined beforehand and does not follow
an anatomical semantics like legs, trunk, head. Results from
computer vision literature (Dalal and Triggs, 2005; Zhu et
al., 2006; Viola and Jones, 2002) and also our own experi-
ence show that descriptors computed in geometrically over-
lapping tessellations are powerful tools for learning an ob-
ject model. Therefore, for learning a 3D person model we
createK different and independent classifiers, each corre-
sponding to a height-divided part of a human.

For training, all the scan lines that fall within a part are
considered. The model is learned from subjects with similar
heights (within±15cmfrom the mean). As part classifier we
use AdaBoost (Freund and Schapire, 1997), a well known
machine learning algorithm, that has been proven successful
for people detection in 2D range data (Arras, Martínez Mo-
zos, and Burgard, 2007).

3.2 Learning the Part Detectors

AdaBoost is a general method for creating an accurate strong
classifier by combining a set of weighted weak classifiers,
in this case decision stumps. A decision stumpht defines a
single axis-parallel partition of the feature space. The final
strong classifierH(f ) computed for the feature vectorf is a

weighted sum of theT best weak classifiers:

H (f) = sign


T∑

t=1

αtht(f)

 , (1)

whereαt are the weights learned by AdaBoost.
As people are usually represented only by a few number

of data points in a 3D scan, there are many more background
segments than segments on people. This makes the training
set unbalanced. Now, instead of down-sampling the nega-
tive set, which could lead to an under-representation of the
feature distribution, we use an adaptive initial weight vector
w0 ∈ �N whereN is the total number of training segments.
Usually w0 is set to a uniform distribution, i.e. 1/N · 1N,
where1N is the vector of dimensionN with all entries equal
to 1. Instead we use

wp :=
1

2Npos
1Npos, wn :=

1
2Nneg

1Nneg, w0 =
(
wp,wn) , (2)

whereNpos,Nneg are the numbers of positive and negative
training samples. Thus, the bigger training set – in our case
the negative set – obtains a smaller weight.

To avoid early hard decisions in the classification of seg-
ments, we apply a sigmoid to the classification result in
Eq. (1). This can be interpreted as a measure of likelihood
p(πk | f i) of a segmenti, represented by its feature vectorf i ,
of corresponding to a partπk of a pedestrian:

gk(f i) =

∑T
t=1α

k
t h

k
t (f i)

∑T
t=1α

k
t

, p(πk | f i) =
(
1+e2−13gk(f i )

)−1
, (3)

wheregk is the normalized sum of weak classification results
of the k-th classifier andπk is a binary label that is true if
segmenti corresponds to partk.

In our case we need to classify one part against all others
and the background. We therefore face a multi-class classi-
fication problem for which we follow aone-vs-allstrategy:
when training a part, all the features of the segments con-
tained in that part are considered positive samples, the fea-
tures of the background and of the other parts are tagged as
negative samples.

3.3 Learning Geometric Relations
So far we described a way to classify parts of a person, now
we combine the individual classifications into a full person
detector. In computer vision, this problem is addressed using
part constellations(Fergus, Perona, and Zisserman, 2003),
Conditional Random Fields (CRF) (Felzenszwalb and Hut-
tenlocher, 2005), or implicit shape models (ISM) (Leibe,
Seemann, and Schiele, 2005). Loosely inspired from the
latter, we propose the following voting model.

First, we use the 3D displacement information of seg-
ments to define the geometric relations that constitute a 3D
person model. Each part and each segment found in a part
are considered independently. For a segmentSi found in
partπk in the training set, we store the 3D displacement vec-
tor vk

i , also called ‘vote’, i.e. the difference between the cen-
ter of the person and the center ofSi . Then all votes for
partπk are collected in a setVk. This information implic-
itly resembles different body poses of humans. For instance,
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Figure 3: Learning a 3D voting model for training the de-
tector. The displacement, or vote, between a segment and
the person center of gravity in 3D associated to each subpart
is stored asVk. Agglomerative clustering is carried out to
obtain a more compact representation ofVk.

if the training data is acquired during a walking sequence,
the segments contained in the lowest body part (associated
to feet/ankles) typically have a larger variation of displace-
ments with respect to the center of gravity, i.e. the votes
are spread out wider. After all person samples have been
processed, a large amount of votes for each part is stored.
The final step is then to compressVk for each part into a
new setV̂k. This is achieved using agglomerative cluster-
ing with average linkage and a distance thresholdθv (see
Figure 3). Then, a weight ˆwk

i = |V̂k|−1 is assigned to each
clustered votêvk

i of V̂k, where|V̂k| denotes the number of
vote clusters for partπk. The intuition here is that parts with
a higher displacement variability imply a lower voting con-
fidence. Finally, to obtain a practical geometrical interpreta-
tion of people in 3D, we compute the average bounding box
from all person samples.

4. Detecting People in 3D
Our detection method processes a single point cloud as input
and retrieves as output a set of detected people. After aquir-
ing a new 3D scan, it is processed by the JDC segmentation
step for each scan layer. Then, the feature vectorf i is com-
puted for each segment found in each part. The likelihood
of a segment to belong to a part is obtained by classifying
the features with the corresponding AdaBoost model. Thus,
we obtain a vector

ci =
(
p(π1 | f i), . . . , p(πk | f i)

)
. (4)

This defines a multiple weighted part hypothesis, there-
fore we need to find a way of properly treating this informa-
tion. Here, we use the voting model learned in the training
phase (see Section 3) to generate hypotheses of person cen-
ters in 3D. It is important to note that no assumptions about
the position of the ground plane are done in this work.

We formulate a 3.5D continuous voting space proce-
dure in which each segmentSi casts a set of non-negative
weighed votesV1, . . . ,VK in 3D, whereK is the number of

pedestrian subparts. Each vote setVm is weighted by the
subpart classification likelihood of equation (4):

ρ(k) =
ci(k)

K
(5)

whereci(k) is the value of them-element of the vector (4)
andK the number of subparts.

All generated votes are collected in a continuous voting
spaceW. High density loci represent hypotheses of pedes-
trians centers in 3D. Therefore, we estimate the modes of
the voting space distribution. This is achieved using Mean
Shift estimation (Comaniciu and Meer, 2002) with a spheri-
cal uniform kernel. Mean shift locates stationary points ofa
density function given discrete data sampled from that func-
tion. As soon as a mode is found, its score is computed:

score(xk | W) =


N(xk)∑

j

v̂
ǫ(v j )
j ρ(ǫ(v j))


ζ(N(xk))

K
, (6)

wherexk is a converged mode andN(xk) contains all the
indices of the votes contributing to the basin of attraction
of xk, ǫ(v j) is a function that returns the part index of the
votev j , v̂ j the weight value of votev j . ζ(·) is a function that
returns the number of parts from which the votes are orig-
inated. Thus,ζ(·) is a modifier that favors people that are
explained by more parts than others and it is very useful to
decrease strong false positives that receive vote from clut-
ter at the same height. The higher the hypothesis score of
equation 6, the higher the likelihood of detecting people in
xk. It is important to notice that this approach implements
a form of simultaneous detection and segmentation: votes
contributing to a hypothesis identify segments that belong
to a person.

5. Experiments
We evaluate our algorithm on two outdoor data sets collected
with a Velodyne HDL 64E S2 laser scanner. The first data
set, namedPolyterrasse, has been collected in a large area in
the front of the ETH Zurich main building, accessible only
to people and bicycles. The second data set, namedTan-
nenstrasse, has been collected on a busy street crossing in
downtown Zurich with trams, cars, pedestrians, or bicycles.

We collected 900 full-view point clouds for the first set
and 500 for the second set. The sensor rotates with a fre-
quency of 5Hz at a maximum range limited to 20m. This
produces around 120,000 points per 3D scan. In each frame,
people are manually annotated by a bounding box if they
are represented by at least 200 points and exceed 1.20m in
height. A second type of annotations are made for people
represented by at least 100 points and 1m height.

5.1 Training
We train with 203 persons, standing still and walking. We
define a subdivision of 9 parts at different heights given in
Table 2. The vote clustering threshold is set toθv= 25cm, the
JDC threshold is set toθd = 40cm. Training has been done
on 2592 background segments and 7075 people segments
from thePolyterrassedata set.
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Part number Part height # of votes # pos. training segments

1 [0m,0.2m] 7 500

2 [0.2m,0.4m] 9 814

3 [0.4m,0.6m] 4 751

4 [0.6m,0.8m] 3 811

5 [0.8m,1.0m] 6 866

6 [1.0m,1.2m] 3 881

7 [1.2m,1.4m] 3 903

8 [1.4m,1.6m] 3 917

9 [1.6m,2.5m] 2 632

Table 2: Person parts subdivision and vote set.
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Figure 4: Precision-recall curve of the individual part detec-
tors under the assumption of a known ground plane. Upper
body parts (nr. 6-8) show better performance partly due to
a better separation from the background, a higher point den-
sity, and a smoother shape.

The right-most column in Table 2 gives the resulting num-
ber of training samples for each part. The third column in
Table 2 contains the number of votes for each part after the
vote clustering step. Note that lower parts, related to legs,
return more votes due to the varying displacements of the
segments during walking. Only 20 decision stumps have
been learned to avoid overfitting.

5.2 Quantitative Performance Evaluation

We evaluated each part detector on 440 frames not in the
training set. To analyze the performance of the individual
classifiers, we assumed to know the ground plane and se-
lected the correct detector for each scan line. Figure 4 shows
the precision-recall curve for each part classifier. It is inter-
esting to see that the individual detection performances are
rather poor. The detectors show a high recall behavior, high
detection rates cause big quantities of false positives.

Figure 5 shows the overall precision-recall graph of the
proposed method applied to both data sets. Detections are
counted as true positives if the bounding box overlaps with
a manually labeled person by more than 60% to account
for metric inaccuracies in the annotation and the detec-
tion. Adopting the no-reward-no-penalization policy from
Enzweiler and Gavrila (2009), when a detection matches an
annotation of the second type, no true positives or no false
positives are counted.
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Figure 5: Evaluation for 3D people detection. Each figure
depicts precision-recall graphs at different ranges: from 0 to
10m, 15m, and 20m. Left : Detection performance for the
Polyterrassedata set, the Equal Error Rates (EER) are 96%,
71%, 65%. Right: Precision-recall graph for theTannen-
strassedata set, EER values are 95%, 76%, 63%.

The performance increase over the individual part detec-
tors is significant. The false positive rate is greatly decreased
while the true positive rate is increased. This means that the
part classifiers are diverse and complementary: if some parts
do not return positive classifications, others do. This prop-
erty is likely to explain the result shown in Fig. 1 where the
detector correctly finds the child although no child was in
the training set.

The figure also shows how the detection performance de-
creases with distance from the sensor. For thePolyterrasse
data set, the Equal Error Rate (EER) for ranges between 0
to 10m is 96%, to 15m it is 71% and to 20m it is 65%. For
theTannenstrassedata set, the respective numbers are 95%,
76%, and 63%. The decay is mainly caused by point sparsity
that leads to oversegmentation and less distinctive descrip-
tors. This loss of detail renders the distinction of people
from vertical structures of similar size such as traffic signs or
pillars more difficult. The overall performance is compara-
ble in both data sets although thePolyterrasseenvironment
is well structured while the crossing of theTannenstrasseis
a rather busy place with clutter and all kinds of dynamic ob-
jects. Note that the person model was learned only with data
from thePolyterrasseenvironment.

In our evaluation set, people are described by 1062 points
on average when they are in a range of 0 to 10m, by 557
points in a 15m range and by 290 points in a 20m range.
Therefore, a 73% decrease in the number of points, from
10m to 20mrange, causes only a 23% performance loss. Fig.
6 shows the detection results of two example frames.

A C++ implementation of the proposed method, not op-
timized for speed, obtains∼ 1Hz detection frequency in an
average 3D scan, limited to 10mmaximum range, of around
75,000 points.

6. Conclusions
In this paper we presented a principled learning approach to
people detection in 3D range data. Our approach subdivides
a person into parts at different height levels. For each part a
specialized AdaBoost classifier is created from a set of geo-
metrical and statistical features computed on segments. The
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Figure 6: Two example frames showing detection results as red boxes.Left : A frame of thePolyterrassedata set. Closely walk-
ing people and a partly visible individual standing close tothe sensor are correctly found.Right: A frame of theTannenstrasse
data set showing a cluttered urban street crossing with people, pillars, street signs, and a tram just entering the scene. People
are correctly detected while crossing the street and walking at a large distance to the sensor. There are two false positives in the
lower left part of the picture caused by a glass window with vertical steel poles.

classifiers mutually enforce their evidence across different
heights by voting into a continuous space. This approach al-
lows for the detection of people from partial views and does
not require knowledge of the ground plane. In experiments
with two different data sets in cluttered urban environments,
a classification rate up to 96% has been achieved which is
a high value given that we detect people from a single 3D
scan. In future work, we plan to combine this method with
tracking to integrate detection results over time.
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Abstract

This paper presents a novel approach to detect and track people and cars based on the com-
bined information retrieved from a camera and a laser range scanner. Laser data points are
classified by using boosted Conditional Random Fields (CRF), while the imagebased detec-
tor uses an extension of the Implicit Shape Model (ISM), which learns a codebook of local
descriptors from a set of hand-labeled images and uses them to vote for centers of detected
objects. Our extensions to ISM include the learning of object parts and template masks to ob-
tain more distinctive votes for the particular object classes. The detections from both sensors
are then fused and the objects are tracked using a Kalman Filters with multiple motionmod-
els. Experiments conducted in real-world urban scenarios demonstrate theeffectiveness of our
approach.

1 Introduction

One research area that has turned more and more into the focus of interest during the last years
is the development of driver assistant systems and (semi-)autonomous cars. In particular, such
systems are designed for operation in highly unstructured and dynamic environments. Espe-
cially in city centers, where many different kinds of transportation systems are encountered
(walking, cycling, driving, etc.), the requirements for an autonomous system are very high.
One key prerequisite is a reliable detection and distinction of dynamic objects, as well as an
accurate estimation of their motion direction and speed. In this paper, we address this prob-
lem by focusing on the detection and tracking of people and cars. Our system is a robotic car
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equipped with cameras and a 2D laser range scanner. As we will show, theuse of different
sensor modalities helps to improve the detection results.

The system we present employs a variety of different methods from machine learning and
computer vision, which have been shown to provide robust performances. We extend these
methods obtaining substantial improvements and combine them into a complete systemof
detection, sensor fusion and object tracking. We use supervised-learning techniques for both
kinds of sensor modalities, which extract relevant information from large hand-labeled training
data sets. In particular, the major contributions of this work are:

• Several extensions to the vision based object detector of[Leibeet al., 2005], that uses
a feature based voting scheme denoted as Implicit Shape Models (ISM). Our major im-
provements to ISM are the subdivision of objects into parts to obtain a more differentiated
voting, the use oftemplate masksto discard unlikely votes, and the definition ofsuper-
featuresthat exhibit a higher evidence of an object’s occurrence and are more likely to
be found.

• The application and combination of boosted Conditional Random Fields (CRF)for clas-
sifying laser scans with the ISM based detector using vision. We use a KalmanFilter
(KF) with multiple motion models to fuse the sensor information and to track the objects
in the scene.

This paper is organized as follows. The next section describes work that is related to ours.
Sec. 3 gives a brief overview of our overall object detection and tracking system. In Sec. 4,
we introduce the implicit shape model (ISM) and present our extensions. Sec. 5 describes our
classification method of 2D laser range scans based on boosted Conditional Random Fields.
Then, in Sec. 6 we explain our sensor fusion techniques and our KF-based object tracker.
Finally, we present experiments in Sec. 7 and conclude the paper.

2 Related Work

This section presents the scientific literature related to people and vehicle detection. It is
organized in three parts: the first discusses range based approaches, the second image based
methods, and the last one presents the related work in the area of laser-camera multimodal
detection.

2.1 Range-based methods

Several approaches can be found in the literature to identify a person in 2D laser data. A
popular approach is to extract legs by detecting moving blobs that appear as local minima in
the range data[Fodet al., 2002; Scheutzet al., 2004; Schulzet al., 2003]. They characterize
people by computing geometrical and motion features. When motion features are used, people
that do not move can not be detected. The work of[Topp and Christensen, 2005] overcomes
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this problem, obtaining good results in an cluttered indoor environment.[Hähnelet al., 2003]
consider the problem of classifying beams in range scans that are reflected by dynamic ob-
jects. An expectation maximization (EM) estimation is run in order to determine which beam
has been reflected by a dynamic object as a person. The work of[Xavier et al., 2005] is also
based on the identification of people by geometrical features on the range scan. They segment
data into clusters and they apply a set of heuristics in order to distinguish between lines, circles
and legs. The first work that formulates the problem of detecting people asa learning problem
in a principled manner has been developed by[Arraset al., 2007]. They use geometrical and
statistical features computed in clusters extracted from the scan in order to learn a AdaBoost
classifier. Excellent results have been presented for indoor environments. [Luberet al., 2008]
also make use of learning techniques for detecting and tracking several classes of objects using
unsupervised creation of exemplar models.[Arraset al., 2008] use a multi-hypotheses tracker
to adaptively address the problem of occlusions and self-occlusions when tracking multiple
pedestrians in range data.[Lauet al., 2009] track groups of people by using a distance cluster-
ing in a multi-hypotheses tracking system.

Detection of people in 3D range data is recently gaining attention in the robotics com-
munity. [Navarro-Sermentet al., 2009] use a ground detector, PCA analysis and geometrical
descriptors classified by Support Vector Machines for detecting peoplefrom 3D data retrieved
from several nodding laser rangefinders.[Spinelloet al., 2010] detect people in 3D point cloud
data by using a smart part-based voting approach based on banks of learned AdaBoost classi-
fiers. This method is appealing for its generality (it does not need any ground detector) and for
the accuracy of the results.

A successful work in the field of vehicles detection using range data is the one of [Petro-
vskaya and Thrun, 2008] that focuses on tracking and detection of multiple vehicles via a
model based approach. It encompasses both geometric and dynamic properties of the tracked
vehicle in a single Bayes filter. Other approaches based on segmentation and classification are
the one of[Zhao and Thorpe, 1998] and[Strelleret al., 2002]. The first enforces a rectangular
model of a car in range data by using heuristics on extracted lines and usesan Extended Inter-
active Motion Model for tracking. In the latter, several motion models are used and applied to
simple geometrical models of vehicles.

2.2 Camera-based methods

In the area of image-based object detection, and people detection in particular, there mainly
exist two kinds of approaches (see[Enzweiler and Gavrila, 2009] for a survey). One uses
the analysis of adetection windowor templates[Gavrila and Philomin, 1999; Violaet al.,
2003], the other performs aparts-baseddetection[Felzenszwalb and Huttenlocher, 2000;
Ioffe and Forsyth, 2001]. The detection window approach uses a scalable window that is
scrolled through the image. For each step, a classification of the image area under the detec-
tion window is obtained. A template-based detection technique is similar to the previously de-
scribed approach, but in this case a simple distance measure is computed between the edges in
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the image under the template silhouette and the silhouette itself. Part-based detection methods
aim at independently detecting parts to obtain location hypotheses for entire objects. There
exist plenty of computer vision based people detection systems described in the literature.
Here, we refer to the most successful ones.[Leibe et al., 2005] presented an image-based
people detector usingImplicit Shape Models(ISM) with excellent detection results in crowded
scenes. This method is based on a database orbag of words, called codebook, extracted from
standard descriptors, that vote for object centers. A mean shift mode estimation is used to
define object hypotheses in the continuous space and a minimum description length method
to select the winning ones. In earlier works, we showed already extensions of this method
with a better feature selection and an improved nearest neighbor search[Spinelloet al., 2008b;
Spinelloet al., 2008a]. Another image-based person detection algorithm that obtained remark-
able detection results has been presented by[Dalal and Triggs, 2005]. This method is based on
the classification of special image descriptors called Histogram of Oriented Gradients (HOG),
computed over blocks of different sizes and scales in a fixed size detection window. The HOG
descriptor is based on a collection of normalized image gradients on each cell.The resulting
high dimensional vector is then classified with a linear support vector machine(SVM). [Zhu
et al., 2006] then refined this detector by using a fast rejector-based SVM cascade todiscard
the presence of a person in the detection window.

Unlike human bodies, cars have relatively peculiar characteristics in structure such as four
wheels, a certain number of pillars, two bumpers, etc. The appearance ofthese parts changes
due to different car models, view points and lighting conditions. The methods already dis-
cussed for people detection are also used for detecting cars.[Leibe et al., 2007] detect and
track people and cars by using stereo system and an ISM approach where detection hypotheses
are selected via an optimization that takes in account overlaps between detections and between
object categories.[Zheng and Liang, 2009] compute ’strip features’ to describe image loca-
tions with arcs, edge-like and ridge-like patterns that are frequently found on vehicles. They
learn a complexity-aware RealBoost to produce a fast and accurate classification method.[Pa-
pageorgiou and Poggio, 2000] detect cars and people by using an overcomplete set of Haar
features classified with a support vector machine method.

2.3 Multimodal approaches

Most existing people detection methods based on cameraand laser range data depend on hard
constrains or hand tuned thresholding.[Cui et al., 2005] use multiple laser scanners at foot
height and a monocular camera to obtain people tracking by extracting feet and step can-
didates. [Zivkovic and Kr̈ose, 2007] employ a range-based leg detector and boosted Haar
features from camera images to detect people by using a probabilistic ruleset. Both methods
cluster laser data points using a Canny edge detector and they extract unrobust image features
to detect body parts. These approaches, based on simplistic processingof data, are hardly
suited for outdoor scenarios due to presence of clutter in image and rangedata. Moreover,
in such environments a large illumination variability could affect the descriptiveness of fea-
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Figure 1: Overview of the method.

tures based on simple intensity-based descriptors (Haar features). Thework of [Schulz, 2006]
uses probabilistic exemplar models learned from camera and laser data and itapplies a Rao-
Blackwellized particle filter (RBPF) to track a person’s appearance in the data. The RBPF
tracks contours in the image based on Chamfer matching as well as point clusters in the laser
scan and computes the likelihood of different prototypical shapes in the data. However, in
outdoor urban scenarios occlusions are very likely, thus a contour matching approach does not
represent an appropriate choice for dealing with partial object visibility. Neverthless, RBPF is
a computationally demanding technique, specially when tracking multiple objects in ascene.
[Douillard et al., 2008] employ a Conditional Random Field (CRF) learned on 2D laser data
and robust image features to detect multiple classes of objects (i.e. cars, people, vegetation).
Promising results are obtained, but occlusions and overlapping object detection hypothesis,
critical for yielding good results in any frame, are not handled by the algorithm. The work
of [Premebidaet al., 2009] does not implement tracking of objects but it evaluates several
centralized and decentralized fusion rules with standard vision and laser detectors.[Wender
and Dietmayer, 2008] employ a camera and a laser scanner to detect cars in front of a robotic
platform. They use simplistic heuristic rules on range data for estimating the viewpoint of the
vehicle (front, side etc). Thus, they apply an AdaBoost-based image detector trained with Haar
features on different car viewpoints.

3 Overview of Our Method

Our system consists of three main components (see scheme in Fig. 1):

• an appearance-based detector that processes data from a camera image

• a range based detector that processes data from a laser rangefinder

• a tracking module that fuses the information from both sensor modalities and provides
an estimate of the motion vector for each tracked object.

The laser-based detector is based on a Conditional Random Field (CRF),formulated with
a boosted set of geometrical and statistical features of 2D laser range data. The image based
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detector extends the multiclass version of the Implicit Shape Model (ISM)[Leibeet al., 2007].
The vision-based detector operates only on regions of interest obtainedfrom projecting range
data into the image to constrain the position and scale of the detectable objects (the“early
fusion” step). The tracking module applies a Kalman Filter with two different motion models,
fusing the information from camera and laser. In the following, we describethe particular
components in detail.

Mathematical notations Throughout this paper we use the following mathematical nota-
tions:

• avectoris denoted with a bold letter, e.g.a.

• amatrix is denoted with a bold capital letter, for exampleB.

• setsis denoted with calligraphic capital letters. For example,C. The cardinality of a set
C is expressed by the notation‖C‖.

• numerical constants are denoted with capital letters.

4 Appearance Based Detection

Our vision-based people detector is mostly inspired by the work of[Leibe et al., 2005] on
scale-invariant Implicit Shape Models (ISM). In summary, an ISM consistsin a setI of local
region descriptors calledcodebook, and a setV of displacements and scale factors, usually
namedvotes, for each descriptor. The idea is that each descriptor can be found atdifferent
positions inside an object and at different scales. Thus, a vote points from the position of
the descriptor to the center of the object as it was found in the training data. To obtain an
ISM from labeled training data, the descriptors are computed at interest point positions and
then clustered, usually using agglomerative clustering with a maximal distance thresholdϑd.
Then, the votes are obtained by computing the scale and the displacement of the objects’
center to the descriptors. A training dataset consists in a collection of images and binary image
masks defining the area and the position of the objects in each image. For the detection, new
descriptors are computed on a test image and matched against the descriptors in the codebook.
The votes that are cast by each matched descriptor are collected in a 3Dvoting space, and a
maximum density estimator is used to find the most likely position and scale of an object.

In previous works, we presented already several improvements of the standard ISM ap-
proach [Spinelloet al., 2008a; Spinelloet al., 2008b]. Here, we show some more extensions
of ISM to further improve the classification results. These extensions concern both the learning
and the detection phase and are described in the following.
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4.1 ISM Extension: Generating a Superfeature Codebook

In the standard ISM formulation, the process of generating a codebook does not include any
feature selection. This has two potential disadvantages: first, a codebook for a given object
category may contain many entries, and second, each entry may cast a big quantity of votes.
One possibility to reduce the number of codebook entries is to increase the distance threshold
ϑd when creating the codebook. However, in this case each entry in the codebook represents a
larger variability of descriptors which leads to more votes per entry. When matching a code-
book to new descriptors found in a test image, usually the same distance thresholdϑd is used
as when generating the codebook. Therefore, ifϑd is large, more matches are found for a given
new descriptor. Both effects result in a larger number of votes, which increases the number of
false positive detections.

The goal of asuperfeaturecodebook is to overcome these disadvantages by collecting
more informed descriptors that cast stronger votes. We define superfeatures as features that
are stable in image space and in descriptor space. This means that a superfeature is frequently
found in the training set, at approximately the same image position with respect to the object
center, and its variability in descriptor space is low. This definition ensures that for superfea-
tures a high evidence of the occurrence of the object is combined with a highprobability to
encounter an interest point. LetO+ be defined as the set of all interest points found inside the
segmentation masks in the training data. Each element ofO+ is a three-dimensional vector,
where the dimensions are the relative displacement (∆x,∆y) between the location of the inter-
est point and the object center, and the scales at which the interest point has been detected.
Let furthermoreκ be a function that maps fromO+ to theD-dimensional descriptor space�D.
In the training phase,κ is computed for all interest points in the labeled images. To compute
superfeatures, we perform four steps. First, we determine points that liein very dense areas of
O+ by applying mean-shift mode estimation[Comaniciuet al., 2001]. This way, we obtain a
reduced setO∗ of interest points, i.e.:

O∗ =ms
(
ρx,ρy,ρs,O+

)
, (1)

where ms(·) indicates the mean shift estimator with uniform ellipsoidal kernelK of semiaxes
ρx,ρy andρs. We setρx = ρy in order to give equal importance to interest points found in both
directions. In our implementation we useρx = ρy = 5 andρs= 0.2. Thus,O∗ consists of theM
modeso∗1, . . . ,o

∗
M of the interest point distribution inO+ as found by the mean-shift estimator.

In the second step, we determine for each modeo∗i the setJi of image descriptors that have
been computed at interest points inside the kernel aroundo∗i , i.e.

Ji =
{
κ(p) | p ∈ O+∩K(o∗i )

}
, (2)

whereK(o∗i ) denotes the ellipsoidal kernel centered at the modeo∗i . Then, we apply agglom-
erative clustering with average linkage to the descriptors inJi , i.e.
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{C1,C2, . . . } = ac(ϑd,Ji) , (3)

where ac(·) represents a function that computes agglomerative clustering with distance thresh-
old ϑd, andC1,C2, . . . are the resulting clusters in descriptor space.

In the last step, we remove all clusters with cardinality smaller than a thresholdϑc and
store the centroids of those clusters that are bigger than the median of the cardinality of the
remaining clusters into the descriptor setI∗i , or formally

I∗i := {cn(C) | C ∈ C ∧ ‖C‖ ≥md(C)} . (4)

Here,C denotes the set of all clusters that are bigger thanϑc, cn(·) computes the centroid of a
cluster, and md(·) returns the median cluster cardinality. The resulting superfeature codebook
I∗ is defined as

I∗ :=
M⋃

i=1

I∗i . (5)

The computation of the set of votesV∗ for I∗ follows the same procedure as in standard ISM.
The resulting superfeature codebookI∗ has less elements than the standard ISM codebook

and each entry is associated to less votes. Figure 2 shows a visual explanation of the superfea-
ture codebook generation. It is interesting to see that the superfeaturesinherently reflect the
skeleton of the object. In case of a pedestrian, superfeatures are mostlytaken in theΛ-shaped
area between the legs, and nearby the shoulders. Even though this result is strictly related to
the kind of interest point detector (e.g. Harris and Hessian interest points are located either on
corners or on blobs), it intuitively reflects distinctive local areas for detecting pedestrians. This
result is in agreement with other local weighting methods found in the area of image-based
people detection (see e.g. the discussion of[Dalal and Triggs, 2005] on the high classification
weight that such areas receive).

4.2 ISM Extension: Learning Object Parts

The aim of this procedure is to further enrich the information retrieved in the voting process by
distinguishing between different object parts from which the vote has been cast. The segmen-
tation into parts is computed offline during the training process for each object category. Here,
an object part is defined as a circular sector, where the circle center is aligned with the center
of the bounding box that encompasses all training instances of an object class. This definition
of an object part is motivated by the fact that the displacement vectors stored in an ISM vote
for object centers. Hence, a natural way to distinguish the voters in the training data is with
respect to the orientation of their displacement vectors.

8
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Figure 2: Generation of a superfeature codebook. Superfeatures are stable features in image and
descriptor space. First, all interest points from the training data are accumulated in a continuous
space. Then, high density areas are found using mean shift mode estimation. In the next step, we
consider the descriptors associated to the clustered points and segment them using agglomerative
clustering. From the resulting clusters, we select those that are larger than the median and store
them together with the votes from the associated interest points in the superfeature codebook. In
this example, we used Shape Context descriptors computed at Hessian interest points (in red) for
the class ’pedestrian’. The position of the superfeatures are depicted in green.

To distinguish appropriate object parts, we perform three steps. We start again with the
accumulated setO+ of interest points from the training data set. Then, we compute the orien-
tation angle of each displacement vector with respect to the horizontal line through the center
of the bounding box that encompasses all object instances (see Fig. 3).All orientation angles
are collected in a setA. Finally, we applyk-means clustering[Lloyd, 1982] to the elements of
A. The problem here is that the numberK of clusters is not given beforehand. We solve this
by re-running the clustering algorithm with increasing values ofK and evaluating the resulting
clusters with the Bayesian Information Criterion (BIC)[Schwarz, 1978]. The BIC can be used
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Algorithm 1: K-means clustering with estimation of the number of clusters.
Input: Set of orientation anglesA from voters
Output: Optimal set of clustersA∗
K← 1
bold←−∞
bnew←−∞
A← ∅
while bnew≥ bold do
A∗← A
A←kMeans (A,K)
bold← bnew

bnew←−2ln(RSS(A)
‖A‖ )+K ln(‖A‖) Compute BIC using residual sum of squares (RSS)

K← K +1
end
return A∗

for model selection from a class of parametric models with different numbers of parameters.
It represents a balanced score based on the likelihood of the model and itscomplexity. Our
overall clustering method is summarized in Algorithm 1. We note that the ResidualSum of
Squares (RSS) of clusters obtained with thek-means algorithm decreases monotonically with
growing K. The RSS is exactly 0 whenK = ‖A‖, i.e. when each data point defines its own
cluster. The BIC is used to trade off a low residual error with a low model cost. Once the
BIC does not increase any longer, the maximum is found and the process stops. To perform
k-means clustering onA, we need to take care of the fact that the orientation angles are pe-
riodic, i.e. 0 needs to be identified with 2π. Fortunately, ink-means clustering only relative
distances between points and clusters are required. Thus, we can replace each element inA by
a corresponding point on the unit circle and use the arc length between twosuch points as the
distance metric for clustering. When clustering is completed,A is represented by a collection
of angle intervals:A = (a1, . . . ,aK ], whereai = [αi−1,αi) is an angle interval that defines an
object part.

An example of the outcome of our clustering algorithm is shown in Fig. 4. Note that
although our algorithm does not explicitly search for a semantical subdivision of the object
(e.g.: legs, arms, etc. in case of the pedestrian object category), it nevertheless resembles this
automatically without human interaction. In Sec. 4.4 we describe how we use thisextended
shape information for hypothesis selection.

10
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Figure 3: Subparts are computed by accumulating interest points, iteratively runningk-means
clustering, and using the BIC to score the cluster result.

4.3 ISM Extension: Learning Shape Templates

Based on a similar reasoning as described in the previous section, we propose another exten-
sion to the standard ISM approach to distinguish the votes with respect to theirquality. The aim
of this is to discardoutlier votes, i.e. those that are cast from interest points located in unlikely
areas for a given object class. Outliers are caused by training exampleswith an unusual shape
where some interest points lie outside the most likely shape of the object. For example, there
might be training examples of the class “pedestrian”, where a person extremely extends the
arms. Then, if there are interest points detected on an arm, the resulting displacement vector
stored inV will be very rare and thus correspond to an unlikely vote. Later, in the detection
phase, this causes problems, because such an unlikely vote is treated in thesame way as likely
ones, causing many false positive detections.

A first attempt to detect and remove outlier votes has already been made by[Leibeet al.,
2005]. There the authors compute a combined optimization between expected segmentation
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Figure 4: Clustered object parts (colored sectors) and template masks, overlaid as brightness val-
ues, for the classespedestrianandcar-sideview. Both are computed from the training set. Note that
even though the object parts are computed unsupervised, they exhibit some semantic interpretation.

and silhouette matching via Chamfer matching[Borgefors, 1988]. This approach is compu-
tationally expensive and it is influenced by noise due to the nature of contour matching. In
contrast, we propose a probabilistic approach. Instead of relying on theobject’s silhouette to
determine outliers, we use the entire binary shape masks from the training data. By aligning
all shape masks for a given object class so that their center points coincide and by computing
the average mask, we obtain a gray value maskTc with pixel values between 0 and 1. This
procedure is similar to the one used to produce eigenfaces[Sirovich and Kirby, 1987]. These
pixel values can be interpreted as prior probabilities for the location of interest points in the
given object class. We denoteTc as thetemplate maskof the object classc. Naturally, all train-
ing images used to create the template mask are given in scale 1, but we can obtain template
masks at different scales by scalingTc using bilinear interpolation.

An example of the template masks which we obtained for the classes “pedestrian” and
“car-sideview” is shown in Fig. 4. Here, the template masks are visualized asbrightness values
together with the part clustering method presented in the previous section. Ascan be seen, the
average shapes of both object classes are clearly visible.

4.4 ISM Extension: Multiclass Hypothesis selection

After learning standard codebooksIc, superfeature codebooksI∗c, segmented object partsAc,
and template masksTc for each object classc = 1, . . . ,C from the training data as described
before, we incorporate these information into the detection step. Here, we have to perform
some further adaptation to the standard ISM approach, as we assume a multi-class problem.
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Before however, we formulate the detection step mathematically.
After computing interest points and shape descriptors for a given test image, the latter are

matched with all codebooksIc andI∗c, and the modes of the voting space are computed using
mean-shift, as described above. Lethc = (x̄c, ȳc, sc) be a resulting mode, i.e. a possible center
location (x̄c, ȳc) of an object of classc and its scalesc. We will refer tohc as ahypothesisof
classc. Furthermore, letXc be the interest point locationsxi of all voters that were responsible
to create hypothesishc. As in standard ISM, each vote has an assigned voting strengthwi .
In the following, we will include the voting strength as an additional dimension to the point
location vector, i.e.xi = (xi ,yi , si ,wi). Using this, we define avoting scoreas

vs(hc) =
∑

xi∈Xc

2bi wiTc(xi ,yi ,hc), where bi =

{
1 if xi results fromI∗c
0 if xi results fromIc

(6)

andTc(xi ,yi ,hc) is the evaluation of the template mask at position (xi ,yi) after placing its center
at (x̄c, ȳc) and rescaling it withsc (see above). This means that the quality of a hypothesis is
influenced by four values, namely the number of votes, their strengthwi , whether they arise
from a superfeature match, and the prior quality of the voters obtained from the shape template
Tc. Unlikely votes with respect to the shape template receive a very low weight and their
contribution to the hypothesis score is strongly reduced.

Furthermore, for each object classc we make use of the information of the learned subparts
Ac. The idea is to obtain an information about the amount of parts that have beendetected.
Intuitively, a foreground object is expected to have most of the parts welldetected, instead,
an occluded object appears with less parts. To account for the different object parts from
which votes may be cast, we first formulate the voting score vsk, which is restricted to an
interval ak = (αk−1,αk) of orientations of vote vectors, wherek = 1, . . . ,K is the index of the
corresponding object part, i.e.

vsk(hc) =
∑

xi∈Xc, αk−1≤α(xi )<αk

wiTc(xi ,yi ,hc) and α(xi) = arctan

(
yi − ȳc

xi − x̄c

)
(7)

All part-based scores are then collected in aK-dimensional vectorξ defined as

ξ(hc) = (vs1(hc), . . . ,vsK(hc)) . (8)

Intuitively, this is a weighted histogram of votes where each bin corresponds to a learned
object part, or equally a sector of vote orientations.

To find the best hypothesis we define a partial order≺ on all hypotheses based on a function
∆r as

hi ≺ h j ⇔ ∆r

(
ξ(hi), ξ(h j)

)
< 0 where ∆r

(
ξ(hi), ξ(h j)

)
:=

K∑

k=1

sign(ξk(hi)− ξk(hi)) (9)
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Algorithm 2: Multiclass detection with ISMe
Input:

• Interest pointsxi and corresponding shape descriptorsdi from a new test image

• codebooksI1, . . . ,IC, superfeature codebooksI∗1, . . . ,I∗C and votesV1, . . . ,VC

for all C object classes

• minimal hypothesis scoreσmin

Output: Set of optimal object hypothesesH∗
H∗← ∅
hwin←∞
while hwin > σmin do

for c= 1 to C do
Dc← FindMatches (Ic, {di})
D∗c← FindMatches (I∗c, {di})
Yc← CollectVotes (Dc,D∗c,Vc)
Hc←ms(ρx,ρy,ρs,Yc) Mean-shift operation, returns set of hypotheses
Findh∗c s.t. hc ≺ h∗c ∀hc ∈ Hc,hc , h∗c Best hypothesis for classc, see Eqn. (9)
Γc← ComputeHypothesisArea (h∗c) see Eqn. (10)

end
h∗← argmaxh∗c(Γ1, . . . ,ΓC)
hwin← vs(h∗)
H∗←H∗∪h∗

end
returnH∗

whereξk(hi) indicates the value contained in the bink of the histogram for the hypothesis
hi . Intuitively, the function∆r measures for which of the hypothetical objects the individual
object parts are stronger represented in the voting space. Using Eqn. (9), we can determine the
hypothesish∗c with the highest order of all hypotheses for classc. In case of ambiguity we use
the one with the highest global score vs(·).

However, to determine the strongest hypothesis across all object classes, we can not simply
compare the scores, as they are based on different codebooks with different numbers of entries.
Instead, we use another measure based on the objectareathat is covered by a hypothesis. The
idea here is that all point locations inXc of votes that were responsible forhc, can be viewed
as small patches inside an object that contribute to the entire shape of the object, just as pieces
of a puzzle. To formulate that, we define a square regionγ(xi) around eachxi with side length
proportional to the scalesi . For the hypothesishc we can then define the relative area covered
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Figure 5: An urban environment with cars, pedestrian and other objects as it is perceived by a
2D laser.Left: Laser beams are shown in red, circles represents the measured points. Gray beams
indicate out of range data due to material reflections, sun related effects and particular object poses.
Center: Resulting JDC clustering of the scene. Orange lines depictsconsecutive points segmented
in the same cluster.Right: A Delaunay triangulation is build on the centroids of the segments. This
defines a graph among segments.

by all vote patches as

Γc =
area

(⋃
xi∈Xc

γ(xi)
)

‖{(x,y) | T(x,y,hc) ≥ 0.5}‖ , (10)

where the function area(·) computes the area of the joint region, and the denominator approx-
imates the area of the object by counting all points in the shape template that are likely to
be inside the shape. Care has to be taken in the case of overlapping class hypotheses. Here,
we compute the set intersection of the interest points in the overlapping area and assign their
correspondingγ values alternately to one and the other hypothesis.

Once an optimal hypothesish∗ across all classes is found, we remove all the votes coming
from those features that contributed toh∗, because we assume that an image feature belongs
to just a single object. The scores are then recomputed until a minimum scoreσmin is reached.
Algorithm 2 summarizes the individual steps.

5 Structure Based Detection

For the detection of objects in 2D laser range scans, several approaches have been presented in
the past (see for example[Arraset al., 2007]). Most of them have the disadvantage that they
disregard the conditional dependence between data in a close neighborhood. In particular, they
can not model the fact that the labell i of a given laser segmentSi is more likely to bel j if
we know thatl j is the label ofS j given thatS j andSi are neighbors. One way to model this
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conditional dependency is to use Conditional Random Fields (CRFs)[Lafferty et al., 2001],
as shown by[Douillard et al., 2008]. CRFs represent the conditional probabilityp(l | s) using
an undirected cyclic graph, in which each node is associated with a hidden random variable
l i and an observationsi . In our case,l i is a discrete label that ranges over 3 different classes
(pedestrian, car and background) andsi is a feature vector extracted from the 2D segmentSi

in the laser scan. A preprocessing step on range data has been defined inorder to produce
segments for the CRF detector. We use a simple clustering technique to group nearby points,
called Jump Distance Clustering (JDC). It is fast and simple to implement: if the Euclidean
distance between two adjacent data points exceeds a given threshold, a new cluster is generated
otherwise the point is added to the current cluster, see Fig. 5-center. Each cluster, or segment,
is defined as the set of pointsSi . Moreover we compute a Delaunay triangulation between the
centroids of each segmentSi in order to create a graph that connects clusters, see Fig. 5-right.

Assuming a maximal clique size of 2 for the graph, we can compute the conditional prob-
ability of the labelsl given the observationss as:

p(l | s) = 1
Z(s)

N∏

i=1

ϕ(si , l i)
∏

(i, j)∈E
ψ(si ,s j , l i , l j), (11)

whereZ(s) =
∑

l′
∏N

i=1ϕ(si , l′i )
∏

(i j )∈Eψ(si , l′i , l
′
j) is usually called thepartition functionandE is

the set of edges in the graph.ϕ andψ represent node and edge potentials.
To determine the node and edge potentialsϕ andψ we use the log-linear model:

ϕ(si , l i) = eun·fn(si ,l i ) (12)

ψ(si ,s j , l i , l j) = eue·fe(si ,s j ,l i ,l j ) (13)

wherefn andfe are feature functions for the nodes and the edges in the graph, andun andue

are feature weights that are determined in the training phase. The computationof the partition
function Z is intractable due to the exponential number of possible labelingsl′. Instead, we
compute thepseudo-likelihood, which approximatesp(l | s) and is defined by the product of all
likelihoods computed on themarkov blanket(direct neighbors) of nodei.

pl(l | s) =
N∏

i=1

ϕ(si , l i)
∏

s j∈N(si )

ψ(s j ,si , l j , l i)

∑

l′

(
ϕ(si , l

′
i )

∏

s j∈N(si )

ψ(s j ,si , l
′
i , l
′
j)
) (14)

Here,N(si) denotes the set of direct neighbors of nodei. In the training phase, we compute the
weightsu = (un,ue) that minimize the negative log pseudo-likelihood together with a Gaussian
shrinkage prior as in[Ramoset al., 2007]:

L(u) = − logpl(l | s)+ (u− û)T(u− û)
2σ2

(15)
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For the minimization ofL, we use the L-BFGS gradient descent method[Liu and Nocedal,
1989]. Once the weights are obtained, they are used in the inference phase to find the labelsl
that maximize equation (11). Here, we do not need to compute the partition function Z, as it is
not dependent onl. We use max-product loopy belief propagation (BP) to find the distributions
of each labell i . The final labels are then obtained as those that are most likely for each node.

In our case the Delaunay triangulation among segments defines the structureof the net-
work. We use a set of statistical and geometrical features for the nodes of the CRF, e.g. width,
circularity, standard deviation, kurtosis, etc. (for a full list see[Spinello and Siegwart, 2008]).
However, we do not use these features directly in the CRF, because, asstated in[Ramoset al.,
2007] and also from our own observation, the CRF is not able to handle non-linear relations
between the observations and the labels. Instead, we apply AdaBoost[Freund and Schapire,
1997] to the node features and use the outcome as features for the CRF. For ourparticular
classification problem with multiple classes, we train one binary AdaBoost classifier for each
class against the others. As a result, we obtain for each classc a set ofM weak classifiershc

i
(in this case decision stumps) and corresponding weight coefficientsαc

i so that the sum

gc(si) :=
M∑

i=1

αc
i h

c
i (si) (16)

is positive for observations assigned with the class labelc and negative otherwise. Note that
the absolute value ofgc can be interpreted as a classification quality. To obtain a classification
likelihood, we apply the logistic functiona(x) = (1+e−x)−1 to gc. We do this for two reasons:
first the resulting values are between 0 and 1 and can be interpreted as likelihoods of corre-
sponding to classc. Second, by applying the same technique also for the edge features, the
resulting potentials are better comparable. Thus, the node feature functionfn of the segment
featuressi and the labell i is computed as:

fn(si , l i) = a(gl i (si)) (17)

For the edge featuresfe we compute two values, namely the Euclidean distance between the
centroidsci andc j of the segmentsSi andS j , along with a valuegi j defined as:

gi j (si ,s j) = sign(gi(si)g j(s j)) · (|gi(si)|+ |g j(s j)|). (18)

Thus, the value ofgi j has a positive sign if AdaBoost classifiessi ands j into the same class
and otherwise it is negative. The absolute value ofgi j is the sum of the classification qualities
of AdaBoost. Ifgi(si) andg j(s j) are far from 0 thengi j has a high value, and viceversa. To
summarize, we define the edge features as:

fe(si ,s j , l i , l j) =

{ (
a(‖ci − c j‖) a(gi, j(si ,s j))

)T if l i = l j

(0 0)T otherwise.
(19)

The intuition behind equation (19) is that edges that connect segments with equal labels have
a non-zero feature value and thus yield a higher potential. The latter is sometimes referred to
as the generalized Potts model (see[Potts, 1952]).
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6 Object Tracking and Sensor Fusion

In this section we explain how to combine the two sensor modalities together. Range and
image data is used for “early fusion” and then combined in the tracking system.The early
fusion step consists in a technique for constraining the vision-based detector in salient image
regions. The tracker combines detection results from camera and laser and eventually solves
data association.

An important factor in our multisensor system is the extrinsic calibration betweencamera
and laser. Internal camera parameters are estimated by computing intrinsic camera calibration
[Zhang, 1999]. We employ the method explained in[Pless and Zhang, 2004] to calibrate the 2D
laser rangefinder with the camera. The procedure consists in simultaneously collecting image
and range data of a planar checkerboard placed in front of a robot at different positions and
orientations. For each pose of the planar pattern, the method constrains theextrinsic parameters
by registering the laser scanline on the planar pattern with the estimated plane computed from
the image. The solution uses nonlinear optimization that minimizes the re-projection error.

6.1 Early fusion: using laser segments to bound the voting space

The early fusion method is concerned with the definition of constraints in the ISMe voting
space of the image-based detector, in order to generate more precise object hypotheses. The
idea is to project segments extracted from the laser data as 3D boxes in the voting space. If
we consider a single laser segment, it could be projected as a box with heightset to a fixed
value, width defined by the extremal points of the segmentSi and depth defined by the scale
toleranceϑSi . These 3D boxes define boundaries in the voting space for hypothesis selection
for the image detector. Before the image hypothesis selection is run, the earlyfusion takes
place and it removes hypotheses that are not compatible with the boundaries. The generous
dimensions of the boxes allow the survival of imprecise detections in position and scale.

In order to consider range-image early fusion process, we need to setϑSi for each object
class. Precisely, we need to computeϑSi as a function of the laser segment distance. We
assume, for practical reasons, that the relationship between two variables is linear, even though
this is not true due to lens distorsions. The idea is to produce a linear least squares regression
that relates the objects pixel heightsωωωs and objects distancesωωωd:

ωd
i = β1ω

s
i +β2 (20)

where (β1,β2) are the parameters of the line computed with the regression from a collection of
objects measured heights and distances. Thus, we are able to query anhallucinateddistance
for each object category, by providing a scale input (and viceversa).

The scaleωs estimated for each segment distance is then converted in the depth of the
3D region of interest in the ISMe voting space, in order to easily prune false image detection
hypotheses:

ϑSi = (ωs
i −ϑ∗S,ωs

i +ϑ
∗
S) (21)
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Figure 6: Early laser-camera fusion. Laser segments are projected into the visual-based object
detection voting space as 3D boxes. Image detection hypotheses located into one of these regions
are considered valid, the others are discarded. Votes are shown as red circles. Object hypotheses
x̄i are shown in yellow. For clarity, features voting for the object centers (defined by position and
scale) are shown only on the left pedestrian.

whereϑ∗S is a constant fixed beforehand. An image detection hypothesis is considered valid if
it is found inside one of the 3D boxes that define the constraints of the votingspace. A visual
explanation can be seen in Fig. 6.
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The last step of the early fusion technique is to solve the data association problem of the
assignment between segments and corresponding image hypotheses. We assume that each
segment belongs to a single object. For each segment we compute the distanceand compute
the hallucinated scale (see Equation 20). We solve the assignment problem ina greedy manner:
given a segmentSi , we assign from all valid image detection hypotheses found in the projected
segment volume, that one to the segmentSi , which minimizes the absolute difference between
the scale of the hypothesis and the hallucinated scale. The remaining processing of hypothesis
selection for detection in camera images follows the technique explained in Section (4.4).

6.2 Combined detection using Kalman Filtering

The aim of multimodal object detection is to provide useful information to a navigation or
a driver assistance module. For this reason, a natural output choice for our detector is to
label laser segments with their class probability. The proposed fusion methodcombines the
detectors’ information and provides output that consists in laser segment positions and object
category labels.

We use tracking as a mean of integrating class probabilities over time and as an additional
algorithm output, to provide prediction information. We aim to design a reliable tracking
method that does not rely on single data association hypotheses and that scales gracefully with
the number of objects. Several methods have been developed in the tracking literature for
handling complex data association at a high computational cost (see Multi-hypothesis tracking
[Reid, 1979; Cox and Hingorani, 2002] and JPDA filters[Bar-Shalom and Li, 1995]). Our
tracking algorithm is designed to be computationally inexpensive and copes well with the
motion model of several kinds of object categories.

In contrast to cars, which have a comparably simple motion model given by the Acker-
mann model[Ackermann, 1818], pedestrians are much harder to describe with a single motion
model: they can stop, suddenly turn on spot, invert their trajectory etc. Therefore, we use a
pedestrian tracker in which each track is described by multiple Kalman Filters, each providing
a different motion model. The advantage of this method is that the number of estimating filters
scales linearly with the number of objects to track. Moreover, multiple hypotheses regarding
object motions are produced for each time step. For this work we employed twokind of mo-
tion models, described by linear velocity and Brownian motion. The motivation for selecting
Brownian motion is the ability to model sudden direction and speed changes, a condition that
occurs especially in case of people tracking. Nevertheless, a constantvelocity model, in short
intervals, well approximates a variety of smooth curved trajectories. The proposed tracking
technique is a way of combining tracking filters and it is very generic: An Extended Kalman
Filter (EKF), as well as other motion models, linear and non-linear, could be also used.

Tracks are managed by atracking managerthat solves data association, and creates or
deletes tracks. We assume that each track is associated at most to one singlesegment.N is the
number of laser segments present in a laser scan,R the number of tracks andM is the number
of Kalman Filters present for each track, each with a different motion model. Data association,
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i.e. the problem of assigning laser segments to tracks, is solved in two steps. The first step
is to compute which motion model to use for each track. In each track, the distance between
the Kalman Filters (KF) prediction and theN laser segments centroids are computed. This
process generates for each trackM Mahalanobis distances for each observation[Mahalanobis,
1936]. In each track, the closest distance for each observation is taken and the KF generating
that prediction is tagged. At the end of the first step of the association of laser segments, every
track obtains a set ofN distances fromN observations.

The second step of data association is used to select which observation is assigned to which
track. We want to assignN hypotheses toR tracks (whereN ,R). A rectangular matrix of size
R×N is generated in which rows represent track indices and columns observation indices. The
previously computed distances are inserted as values of the assignment matrix. The solution
of the combinatorial minimal weight assignment has been found with the extension of the
Munkres method for rectangular assignment matrices proposed by[Bourgeois and Lassalle,
1971]. If there are more segments than tracks thenR−N new tracks are created. Instead, if
more tracks than segments are present in a certain moment, the tracks that arenot updated
with a new observation are maintained until their variance in (x,y) reaches a fixed maximum
thresholdδx,y.

We now give a mathematical formulation for the tracks and for the fusion of thedetection
outputs. We track cluster centroids in 2D range data using two KF, each with adifferent motion
model:

xm1 =
(
(x̂S, ŷS), ( ˙̂xS, ˙̂yS), (p1, . . . , pC)

)
(22)

xm2 =
(
(x̂S, ŷS), (p1, . . . , pC)

)
(23)

(x̂S, ŷS) are the coordinates of the cluster centroid, (˙̂xS, ˙̂yS) is its velocity andp1, . . . , pn are the
probabilities of allC classes. The observation vectorz(k)i , at timek, consists of the position
of the cluster centroid and the categories probability estimates for each detection modality:

zi =
(
x̂Si , ŷ

S
i , (c1, . . . ,cn)1, . . . , (p1, . . . , pC)ς

)
. (24)

Here, (x̂S, ŷS) is an observation of a cluster centroid andς denotes the number of sensors. Each
block (p1, . . . , pC) is the estimate given by the range or image based classifier.

Kalman Filter is formulated by prediction and update step. Prediction at timek is computed
by:

x(k)−mi = Amix(k−1)−mi (25)

We write the state matrixAmi in the case of two motion models and two classes:

Am1 =



1 0 ∆k 0 0 0
0 1 0 ∆k 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Am2 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(26)
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If the matrixV1 indicates the state covariance matrix andV2 the sensors covariance matrix, we
compute:

P(k)−mi = AmiP(k−1)AT
mi+V1 (27)

The tracker manager selects which KF of each track is closer to the observation zi . Then it
solves data association between winning KF of each track and observations by using Munkres
assignment optimization. Observations are assigned to track and filters are updated. The
observation is used to update all the filters of the track. The update step is calculated by
computing the Kalman gainG, then updatingx(k)mi and the covariance matrixP:

Kmi = P(k)−miG
T
(
GP(k)−mi G

T +V2
)−1

(28)

P(k)mi = (I −KmiG)P(k)−mi (29)

x(k)mi = x(k)−mi+Kmi

(
z(k)a−Gx(k)−mi

)
(30)

wherez(k)a represents the assigned observation vector to the track. The matrixG models
the mapping from states to the predicted observation and is defined asG = (GT

x GT
s1 . . .G

T
sC)T ,

whereGx maps to pose observations and theGs1 map to class probabilities per sensor. For
example, for one laser, one camera and constant velocity we have:

Gs1 =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
Gs1 =Gs2 =

(
0 0 0 0 1 0
0 0 0 0 0 1

)
. (31)

7 Experimental Results

In this section, we present experimental results and quantitative comparisons with other tech-
niques in order to validate our method.

7.1 Experimental Platform

To acquire the data, we employed our urban mobile platformSmartter. The robot is based on
a standard Smart car that has been equipped with distance laser sensors, cameras, a differential
GPS unit, an Inertial Measurement Unit (IMU), an optical gyroscope and several processing
computers. In this case we acquired data by using a camera equipped with a telelens and a
2D laser range finder mounted in front. The camera has been mounted on a metal rig on the
rooftop of the vehicle and the logging system has been optimized to reduce frame drops.

7.2 Real World Dataset: Urban Scenario

We evaluated our technique on a challenging urban scenario dataset. We have set the laser
angular resolution to 0.25 degrees in order to obtain a high resolution laser dataset. Data
is collected around Z̈urich, Switzerland in a loop of circa 1km length for retrieving cars and
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Num Frames 1675
Laser range data resolution0.25deg
Image resolution 640×480px
Laser positioning horizontal, 48cm from ground
Camera lens Telelens, 45deg f.o.v.
Num of car samples 510
Num of people samples 376

Table 1: Urban Scenario testing dataset, collected in downtown Zürich, Switzerland

pedestrians in a real busy urban environment. We synchronized cameraand laser data for a total
of 1675 frames. The imagery is manually labeled with rectangle boxes indicatingpedestrians
and cars. Annotations in images are marked if at least half of an object is shown or the object
width in the image is greater than 80 pixels. Laser range data has been manuallylabeled
by using associated image frames as reference for the ground truth. Labeling is obtained by
manually selecting and assigning a class label to the segments in the range data.A suite of
MATLAB scripts has been used to simplify this process.

7.3 ISMe image detector training

Several ISM codebooks need to be trained due to the complexity of the multiclass (cars, pedes-
trians) classification task. Experience shows[Leibeet al., 2007] that lateral views of pedestri-
ans generalize well to front/back views. Therefore, we used a set composed of 400 images of
persons with a height of 200 pixels at different positions, dressed with different clothing and
accessories such as backpacks and hand bags in a typical urban environment. The category
’car’ has been learned from 7 different viewpoints as in[Leibeet al., 2007] (see also Figure 7,
left). 200 training images are used for each view. Car codebooks are learned using Shape Con-
text (SC) descriptors[Belongieet al., 2002] at Hessian-Laplace interest points[Mikolajczyk
and Schmid, 2005]. The pedestrian codebook uses lateral views and SC descriptors at Hessian-
Laplace and Harris-Laplace interest points for more robustness. We selected SC due to their
low dimensionality (36D): this shortens the time for feature extraction, for the agglomerative
clustering of the codebook generation and for feature matching with codebooks. In the work
of [Leibeet al., 2006], the authors compare several descriptors for object detection and they
show that SC descriptors are very good features for object detection.

7.4 Boosted CRF range detector training

Our laser training data consists of 600 annotated scans containing pedestrians, cars and back-
ground randomly sampled from a typical urban scenario. 5158 car data points, 2379 people
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Figure 7: Left: For car classification, we use codebooks from 7 different views. For training,
mirrored images are included for each view to obtain a wider coverage.Right: For pedestrians
we use a codebooks of side views with mirroring. Lateral views have sufficient information to
generalize frontal/back views.

data points and 25251 background labeled points have been used for training. There is no dis-
tinction of car views in the laser data as the variation in shape is low. The rangedata is limited
to a maximum range of 15m. As a first step, the AdaBoost classifier of range data features
is trained on this set. Then we use the output of the trained classifier to produce node feature
values for the CRF. Then, the CRF is trained in order to set the node and edge features weights.

7.5 Quantitative and Qualitative evaluation

In this section we present results in form of precision-recall curves. They summarize the
complete performance of a classifier:

Precision=
TruePos

TruePos+FalsePos
Recall= TruePos

TruePos+FalseNeg (32)

Precision-recall curve has the advantage of computing a classifier performance measure with-
out knowing the number of true negatives. Specially in case of image and range data classifi-
cation, setting this number can be ambiguous because the quantity of possible true negatives
in such data is not easy to define.

We run a comparison of the proposed multiclass image detection algorithms with ourprevi-
ous work[Spinelloet al., 2008a], as shown in Figure 13. Our vision based multiclass detection,
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named ISMe2.0 in the plots, is compared to the standard ISM, our previous single class detec-
tor ISMe1.0 and with an AdaBoost detector trained on Haar features (ABH). We can see that
our method yields the best results. It is important to see that the multiclass method obtains
higher recall values than the previous ISMe1.0, mostly due to the refinementsintroduced in
the hypothesis selection step, namely the object subparts and the shape templates.

We then run the system for the challenging Urban Scenario dataset. Pedestrian detection
with camera is shown in Fig. 8-left.

In the evaluation of results we compare the performance of several detectors by using equal
error rate (EER) error metric on a precision-recall graph. EER is a measure to compare the
accuracy of classifier. This measure is often used, specially in biometrics[K.P. Li, 1988] and
in computer vision[Leibeet al., 2005]. In general, the classifier with the lowest EER is most
accurate. EER is the point in which false positive rate and false negative rate have the same
value. The lower the EER, the more accurate the system is considered to be.The higher
the diagonal crossing point in the precision-recall curve, the lower EER, the less the errors
computed by the classifier.

We compared our image detector with respect to an Haar-AdaBoost basedclassifier and, in
case of the pedestrian detector, with the Histogram of Oriented Gradients technique developed
by [Dalal and Triggs, 2005]. In case of HOG and ABH we used the early fusion technique
explained in Section 6.1 in order to reduce the image search space. Our multiclass detector,
shortly named ISMe, clearly outperforms the other methods. Precision at equal error rate
(EER) is: 60.01% for ISMe, 52.21% for HOG, 11.17% for ABH. In general, if one is willing
to accept a high rates of false positives, the ISMe detector could achievea> 70% Recall. At
that values the difference with respect to the other methods is even more evident. We then
evaluated the laser based detector for pedestrian detection in Figure 8-right. There we show a
comparison between the Boosted CRF and a standard AdaBoost classification of JDC segments
(AJDC) in order to visualize the introduced performance enhancements. AJDC classifies JDC
segments regardless of the neighboorhood state. It is interesting to notice that the consideration
of the segments’ neighborhood in the CRF plays an important role in the ability to increase the
detection rate and reduces the number of false positives, the AJDC curveis always below the
CRF one and it decreases earlier than the CRF curve. In this case precision at EER is 64.23%
for the CRF and 57.09% for AJDC.

We then evaluated the performance of our system in case of car detection (see Figure 10).
The ISMe car image detector outperforms the ABH detector. The latter has been trained on
trunks, sides and frontal views of cars. It is important to remark that the results shown in
Figure 10-left are averaged between the 7 car views of ISMe. the Equal Error Rate is crossed
at 72.54% for ISMe and 18.93% for ABH. The performance of the laser based classifier is
compared with AJDC in Fig. 10-right and also in this case CRF has better results with respect
to AJDC. Precision at EER is 74.89% for CRF and 70.57% for AJDC. It is interesting to notice
that cars are in general easier to detect with respect to pedestrians. Intuitively, cars are rigid
objects with much less geometrical and visual variability than visually complex pedestrians.

Tracking and fusion for the pedestrian category is evaluated in Fig. 9. Weshow the
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Figure 8: Quantitative evaluation for pedestrian detection. Our approach outperforms the other
methods for both sensor modalities. The image based detection is compared with Histogram of
Oriented Gradients detector (HOG) and an AdaBoost classifierusing Haar features (ABH). We
show a comparison between Boosted CRF and AdaBoost classification of JDC segments (AJDC)
in order to visualize the introduced performance enhancements.
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Figure 9: Quantitative evaluation of tracking and fusion for pedestrian detection. Precision-Recall
graph (left) and ’Recall-false positives per frame’ show that the fusion method enhances the results
of single classifiers.
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precision-recall graph and a ’Recall-false positives per frame’ plot inorder to show the per-
formance increase. It is interesting to see in the plot of Fig. 9-left that the camera and laser
detectors are very complementary sources of information: their combined contribution allows
to have a fused detection that is higher that each single one; this phenomenon is even more evi-
dent when precision is low. The tracked and fused precision at EER is 69.8%. In Figure 9-right
we show that we improved also that: by fixing a certain false positive rate perframe, we obtain
a higher Recall value. Tracking and fusion for cars is shown in Fig. 11.Similar conclusions
to the sensor fusion on pedestrians could be given. Tracking allows a better detection rate than
each single classifier and a reduced number of false positives per frame; precision at EER is
78.4%. This value of precision is significantly higher than the pedestrian category due to the
higher performances of vision and laser detectors.

From this experiments we can draw some interesting conclusions. Image and range data are
two very different sensor modalities, with very different characteristics. With this experiments
we proved that image and range based detectors can be combined for obtaining a fused detector
that is more robust than its components. Range data has the advantage of a precise and instan-
taneous target localization and it helps to distinguish objects that have a low image information
content, for instance people in shadow areas, or partial views of cars.Image, instead, plays an
important role when range data is ambiguous, for instance when a person isobserved from the
side or in presence of clutter. Both of this examples show how single sensormodalities could
fail and how the multimodal fusion overcomes this flaws. Moreover it is interesting to notice,
that in case of limited visibility, poor/no light conditions or camera failure, this approach still
produces a usable output, see for instance Figure 12-middle or Figure 12-bottom.

Certainly, this approach presents shortcomings. The technique is limited to the range of
15m due to sparsity of the retrieved laser data points. At such distance cars and specially
people are described by too few points to obtain good range data classification results. Severe
street slopes could also contribute toshort-sightednessof the fused detector. This aspect has
been addressed in a previous work[Spinelloet al., 2008a] by using 3D ground plane estimate
with a 3D laser.

Some qualitative results are shown in Figure 12 where a passing car and a crossing pedes-
trian are correctly detected and tracked. It is important to notice that even though images and
laser data show very low contrast, partial occlusions and clutter, the system manages to detect
and track the objects in the scene. For a video extracted from the experiments see Extension 1
(Appendix A).

8 Conclusions

We have presented a method to reliably detect and track multiple object classesin outdoor
scenarios using vision and 2D laser range data. We showed that the overall performance of
the system is improved using a multiple-sensor system. We have introduced several extensions
to the ISM based image detection to cope with multiple classes. We showed that laser detec-
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Figure 10: Quantitative evaluation for car detection. Our approach outperforms the other methods
for both sensor modalities. The image based detection is compared with an AdaBoost classifier
using Haar features (ABH). We show a comparison between Boosted CRF and AdaBoost classifi-
cation of JDC segments (AJDC) in order to visualize the introduced performance enhancements.
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Figure 11: Quantitative evaluation of fusion for car detection. Precision-Recall graph (left) and
’Recall-false positives per frame’ show that the fusion method enhances the results of single clas-
sifiers.

tion based on Boosted CRFs performs better than a simpler AdaBoost classifier and presented
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Figure 12: Cars and pedestrian detected and tracked under occlusion, clutter and partial views.
In the camera images, left column, blue boxes indicate car detections, orange boxes pedestrian
detections. The colored circlise on the upper left corner ofeach box is the track identifier. Tracks
are shown in color in the right column and plotted with respect to the robot reference frame. Green
vectors show direction of motion for cars.
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Figure 13: Quantitative evaluation for pedestrian detection. From left to right we compared the
newly introduced multiclass technique with other approaches. The multiclass image based de-
tector, ISMe2.0 is evaluated for the pedestrian category and it is compared with standard ISM
(ISMnaive), a previous single class pedestrian detector ISMe (ISMe1.0) and AdaBoost with Haar
features (ABH) classifier.

tracking results on combined data. Finally, we showed the usefulness of our approach through
extended experimental results and comparisons on real-world data.

Future developments of this research are concerned specially with the integration of long
range people detection. People in long range is described by few pixels in the image and
few to none laser points. The idea is to integrate small scale detection methods[Spinelloet
al., 2009] in the multimodal system by considering a more advanced tracking able to cope
with very unreliable hypothesis. Other research directions involve development of robust data
association filters, like MHT or JPDAF modeled for the multimodal detection problem.

9 Acknowledgement

This work has been partly supported by European Union under contract numbers BACS-FP6-
IST-027140 and EUROPA-FP7-231888.
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Extension Type Description

1 Video Multimodal detection and tracking of people and cars
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Abstract— This paper presents a novel semantic categoriza-
tion method for 3D point cloud data using supervised, multi-
class Gaussian Process (GP) classification. In contrast to other
approaches, and particularly Support Vector Machines, which
probably are the most used method for this task to date, GPs
have the major advantage of providing informative uncertainty
estimates about the resulting class labels. As we show in
experiments, these uncertainty estimates can either be used to
improve the classification by neglecting uncertain class labels
or - more importantly - they can serve as an indication of
the under-representation of certain classes in the training data.
This means that GP classifiers are much better suited in a life-
long learning framework, where not all classes are represented
initially, but instead new training data arrives during the
operation of the robot.

I. Introduction

To be able to perform complex tasks in its environment
and at the same time communicate with a human user on
a semantic level, any mobile robotic system needs some
kind of semantic information about the environment. In most
cases, and also in the context of this work, this semantic in-
formation is given in terms of object or class labels attached
to sensor data that was acquired by the robot. To obtain such
a labeling automatically, a mapping is usually learned from
a set of feature vectors extracted from the sensor data into
a given set of class labels. This can only be done using su-
pervised learning methods, where a human expert manually
annotates training examples which are then presented to a
classification algorithm. The reason is obvious: class labels
are defined by humans and can therefore not be “discovered”
with unsupervised or similar learning techniques. In the
robotics literature, a large body of work is already available
on supervised learning methods for semantic annotation (e.g.
object detection, scene analysis). Most of them use learning
methods such as AdaBoost [1], Support Vector Machines
(SVMs) [2], Probabilistic Graphical Models [3], [4], or other
techniques such as Implicit Shape Models (ISM) [5]. Despite
the impressive results of some of these systems, they all have
one major drawback, which is of particular importance in
mobile robotics: They assume the number of different class
labels to be known beforehand. This means that the training
data has to contain examples of all classes that can potentially
be encountered during operation of the robot. All instances
of unknown classes are then forced to correspond to one of
the known classes, which leads to incorrect classifications.

In this paper, we propose a supervised learning method that
has the potential to overcome this drawback.

We achieve this with a classifier that is based on a multi-
class Gaussian Process (GP) classification algorithm. As we
will show in experiments, our GP classifier can report uncer-
tainty estimates about class labels in cases where the training
data contained less classes than encountered in the test set.
Thus, from these uncertainties there is implicit evidence that
the classifier was trained with too few classes. Furthermore,
these uncertainties can be used to select the next sensor
observation that should be annotated by the human and
added to the training data. This is a key requirement for
an active learning system that is able to adapt its knowledge
as it moves into new environments and thus learns during
operation. Such an active and life-long learning system is
currently the major goal of our line of research, which is the
motivation for the need of the multi-class GP classification
approach presented in this paper.

II. RelatedWork

Several methods for classification and labeling of 3D point
cloud data have been presented in the literature. Here we
review some related efforts. Anguelov et al. [3] proposed a
classifier based on an undirected graphical model (UGM),
that automatically distinguishes between buildings, trees,
shrubs and ground. This was later extended and applied to
indoor data by Triebel et al. [4]. Posner et al. [6] present a
multi-level classification framework for semantic annotation
of urban maps using vision and laser features. The algo-
rithm combines a probabilistic bag-of-words classifier with
a Markov Random Field (MRF) model to incorporate spatial
and temporal information. Xiong et al. [7] explicitly avoid
the use of graphical models and suggest learning contextual
relationships between 3D points based on logistic regression.

In contrast, Nüchter and Hertzberg [2] use a Support
Vector Machine (SVM) to classify indoor objects in 3D range
data. Marton et al. [8] introduce global radius-based surface
descriptors (GRSD) and then use also an SVM for object
classification. Golovinskiy et al. [9] segment 3D point clouds
and compare several classifiers such as SVMs and random
forests to detect objects in urban environments.

Several researchers have applied GPs in robotics mostly
for regression applications rather than classification prob-
lems. For example, Plagemann et al. [10] and Vasudevan
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et al. [11] use GPs for terrain modeling. Krause et al. [12]
use GP regression for the problem of optimal placement
of sensors and present a near-optimal mutual information
based selection criterion. Stachniss et al. [13] employ a GP
regression to determine a two-dimensional spatial model of
gas distributions.

Classification using GPs has been addressed by Murphy
and Newman [14], who present an approach for planning
paths using terrain classification information from overhead
imagery. Image regions are first classified using a multi-class
GP classifier followed by spatial interpolation of uncertain
terrain costs. Furthermore, Kapoor et al. [15] use GPs
in an active learning framework for object categorization.
However, in contrast to our approach, the problem there is
not explicitly modelled as a GP classification problem, but
rather as a GP regression where the labels are determined
by least-squares classification. Also, the authors use a one-
vs-all strategy based on binary classification rather than an
explicit multi-class classifier.

III. Segmentation and Feature Extraction

Our algorithm operates on 3D point clouds acquired with
a rotating laser scanner device. The first step in our tool
chain after acquiring a new 3D point cloud, is to produce a
triangular mesh by connecting neighboring data points if they
are closer than a given threshold. We then compute normal
vectors for all triangles and apply a segmentation algorithm
based on the work of Felzenszwalb and Huttenlocher [16],
where the similarity of two adjacent triangles is defined
by the angles of their normal vectors. Each resulting mesh
segment consists of a single connected component and is
consistent with respect to the orientation of the triangles it
contains. Thus, segments are consistently shaped, e.g. all
triangles are all mostly co-planar or they are all similarly
distributed in orientation. An example result of our segmen-
tation algorithm can be seen in Figure 1.

In the next step, we compute feature vectors for all mesh
segments. We use similar features as in earlier work [17],
namely shape factors, shape distributions based on Euclidean
distance, on angles between normal vectors and on the
elevation of the normal vectors, and finally spin images,
where the latter are computed per data point and then an
average is computed per mesh segment. As a result, we
obtain a 113 dimensional feature vector for each mesh
segment, where 50 account for the 5×10 spin image, 20 for
each shape distribution (i.e. the number of histogram bins)
and 3 for the shape factors. These feature vectors, together
with a set of ground truth class labels are then fed into the
training algorithm of the GP multiclass classifier as described
next.

IV. Multi-class Classification using Gaussian Processes

Let x = x1, . . . , xn be a given set of n feature vectors
with dimensionality d and y = y1, . . . , yn corresponding class
labels where yi ∈ {1, . . . , k} and k is the number of classes.
To formulate the multi-class classification problem using a
Gaussian Process (GP), a latent function f j(x) is introduced

Fig. 1: Mesh segmentation. Every segment has a different color assigned.
In this example, the mesh has self-overlapping parts, which is why e.g. the
building is split into several segments. Note that “rough” surfaces such as
those on the trees are segmented as well as smoother regions such as the
ground.

for each class along with the probit regression model. The
probability of a class label yi for a given feature vector xi is
defined as:

p(yi = j | xi) = Φ( f j(xi)) i = 1, . . . , n, j = 1, . . . , k, (1)

where Φ denotes the standard normal cumulative distribution
function, i.e. Φ(z) =

∫ z
−∞ N(x | 0, 1)dx. The latent function

f is represented by a Gaussian Process. determined by a
mean function – which in our case is the zero function –
and a covariance function k(xp, xq), usually denoted as the
kernel function. Several different kinds of kernel functions
are used in the literature, where the most common ones
are the squared exponential, which is also denoted as the
Gaussian kernel function. It is defined as

k(xp, xq) = exp
(
(xp − xq)T D(xp − xq)

)
p, q = 1, . . . , n,

(2)
where D is a d × d diagonal matrix. The diagonal entries of
D are known as the hyper-parameters of the model.

In contrast to other supervised learning methods for classi-
fication such as Support Vector Machines (SVMs), Gaussian
Processes are non-parametric, which means that there is no
explicit computation of model parameters in the training
step. However, in GP classification there still needs to be
done some training to obtain the hyperparameters of the
covariance function and the posterior distribution of the latent
function. More specifically, the aim of the classifier is to find
the distribution over values of the latent function given the
training data and some test input x∗, i.e.

(3)

p( f ∗|x1, . . . , xn, y, x∗)
=∫

p( f ∗|x1, . . . , xn, x∗, f)p(f|x1, . . . , xn, y)df,
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where we use the notation x∗, f ∗ to refer to the test input and
its function value. This distribution is then used to compute
the class probabilities:

p(y∗ = j|x1, . . . , xn, y, x∗) =∫
p(y∗| f ∗j )p( f ∗j |x1, . . . , xn, y)d f ∗j .

(4)

The main problem here is that the latent posterior p(f |
x1, . . . , xn, y) is not Gaussian and hence Equation (3) can
not be computed in closed form. Therefore, approximations
need to be done, and the main approaches to do this are
the Laplace approximation and Expectation Propagation, as
described in [18]. In this paper, we follow the approach
of Girolami and Rogers [19], where a variational Bayes
formulation is used. During training the hyperparameters
are learned by gradient ascent on the estimated marginal
likelihood. Once the hyperparameters and the latent posterior
are obtained from training data, inference is performed on
new test input by applying Equation (4).

The full GP classification procedure scales as O(kn3)
where k is the number of classes and n is the total number
of sample points. The scaling is dominated by the cubic
dependence on n due to the matrix inversion required to
obtain the posterior mean for the GP variables. The varia-
tional bayes multi-class GP formulation [19] is amenable to a
sparse approximation by constraining the maximum number
of samples s included in the model. This results in an O(kns2)
scaling where s & n. The informative points are picked
according to the posterior predictive probability of the target
value, intuitively picking points from class boundary regions
which are most influential in updating the approximation of
the target posteriors. For a detailed exposition please refer
to [19], [20] and [21].

Compared to a discriminative classifier like SVM, the
GP classification framework offers certain benefits making
it particularly suitable for our application. GPs possess a
probabilistic formulation and express belief over the latent
function via marginalization as opposed to minimization
in SVMs and hence provide uncertainty estimates for the
distribution over classification labels [22]. This is more
principled than a heuristic approach of using the distance
from the classification boundary (margin). A high uncertainty
in the GP classification output distribution can give evidence
for a category not modeled during training and hence can
be used to actively seek examples for incremental training.
Additionally, the GP kernel parameters and noise models are
interpretable and can be learned without cross validation,
which is significant if less data is available for a rare
category.

V. Experimental Results

In the following experiments, four statements will be
shown. First, the multi-class GP classifier gives very good
classification results on our 3D outdoor data. Second, mis-
classifications can be detected, because the GP classifier
provides uncertainty estimates about the resulting labels. This

Fig. 2: Our robotic car, equipped with a 3D laser range finder on the top
of the roof.

Fig. 3: Mesh representation of our test site. The area mainly consists of
buildings, trees, hedges, and roads. The data was acquired with our robotic
car “Wildcat”, which is equipped with a 3D laser scanning device and very
accurate positioning sensors.

can be used to improve the precision of the classifier even
further. Third, in comparison with SVMs, which are probably
the most often used method in robotics, GPs perform at least
equally well, even if they are chosen to be sparser than
the SVM. And finally and most importantly, when trained
with too few classes (in our case two instead of six), the
estimated class label uncertainties are much higher when
using GPs, making them much more useful for detecting
unknown classes in the training set.

A. Data sets and training

We acquired data with our autonomous car Wildcat (see
Figure 2), equipped with a 3D scanning device consisting
of three SICK LMS-151 laser scanners that are mounted
vertically on a rotating turn table. The rotation frequency
was set to 0.1Hz. For our experiments, we drove the car
slowly (≈ 15km/h) around our research site at Begbroke
science park in Oxfordshire. A mesh representation of the
acquired data is shown in Figure 3. The data we obtained is
comparably dense: each point cloud consists of 100,000 to
150,000 points.

PCA was used for dimensionality reduction retaining 10
principal components from the original 113 dimensional
feature vector. Figure 4 (left) plots the eigen magnitudes
obtained. Note that very few principal directions capture
most of the data variance. To perform the multi-class GP
classification we used the Variational Bayes Sparse Gaussian
Process approach by Girolami and Rogers [19]. During
training the (in-sample) marginal likelihood was monitored
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Fig. 4: Left: Plot of eigen value magnitudes after PCA on 113 dimensional
feature vectors. Note that very few principal directions capture most of the
data variance. Right: F0.5-measure comparison of GP classifier with a naive
classifier making random decisions based on relative sample frequency. The
random classifier performs much worse than the GP classifier.

for convergence within 1% increase tolerance. The process
converged for all runs within 45 conjugate gradient iterations.

For evaluating the classification performance of the sys-
tem, a subset consisting of 1497 segments from 53 lidar
point clouds was hand-labeled into six categories frequently
encountered in outdoor urban scenes: building, tree, ground,
hedge, car and background. The data set was randomly
split into test and training with test fractions varying as
0.3, 0.5 and 0.8. Note that our test data was unbalanced,
there were more segment instances for some classes like
trees and ground compared to building and cars due to
their shape complexity (reflecting in the number of segments)
and natural occurrence frequency in the environment. As
suggested in [6], for a more realistic evaluation of the
classifier in real settings the data set was not equalized. Thus,
we report classifier performance per-class instead of average
due to unbalanced class sizes.

B. Quantitative results

The GP classifier gives a distribution over labels for test
data. By taking the maximum-likelihood class assignment,
the per-class precision and recall values were estimated
and listed in Table I for the run with test fraction 0.5.
Precision and recall can be combined into a Fβ-measure as
given in Equation 5. Here, parameter β refers to the relative
importance assigned to recall performance over precision. As
suggested in literature [6], we use β = 0.5 assigning greater
importance to precision accuracy over recall.

Fβ =
(1 + β2)(precision × recall)

(β2 precision + recall)
(5)

The classifier attains high F0.5-measure performance for
ground (0.98) and building (0.95) and lower accuracy for
classes hedge (0.89), car (0.82) and background (0.77).

Figure 4 (right) compares the GP classifier performance
(F0.5-measure) with a naive classifier making random de-
cisions based on class frequencies in training data. The
accuracy of the random classifier is much worse than the
GP classifier.

Figure 5 visualizes the confusion matrix where values are
normalized along rows. Hence, diagonal values represent
per-class recall, indicating the extent to which the ground
truth assignments are retrieved. Note that categories car,
background and hedge are confused in recall with the tree

Fig. 5: Confusion matrix (normalized) resulting from the GP classifier.
Recall values appear along the diagonal. Results with test fraction: 0.5.

Fig. 6: Confusion matrix (normalized) resulting from the GP classifier.
Precision values appear along the diagonal. Results with test fraction: 0.5.

class. Figure 6 presents the confusion matrix with values
normalized vertically. Each column represents the accuracy
of the classifier labeling and the diagonal values represent
precision. Overall, the classifier shows good precision per-
formance. Some confusion is observed between hedge and
car categories.

Next, we calculated the entropy values for each label
distribution for a segment to quantify the uncertainty in
the classification of that segment. This was normalized to
0 to 1 range by dividing by log(k) the maximum entropy
of a uniform distribution over k class labels. An incorrect
maximum likelihood assignment frequently results when the
label distribution entropy is high. By thresholding the nor-
malized entropy in increments from 0 to 1 and considering
assignments only where the classifier is certain above the
threshold, the class-specific precision and recall values are
calculated. Figure 7 plots the precision-recall curves for two
runs with test fractions 0.5 and 0.8. For the case with test

TABLE I: Precision, Recall and F0.5-measure peformance for GP classifi-
cation for all six categories in the data set. Test fraction: 0.5

Name train:test Precision Recall F0.5-measure
Building 70 : 62 0.94 1.00 0.95

Tree 362 : 357 0.90 0.98 0.91
Ground 114 : 115 0.99 0.96 0.98
Hedge 91 : 100 0.90 0.86 0.89

Car 74 : 75 0.88 0.64 0.82
Background 37 : 45 0.82 0.62 0.77
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Fig. 7: Precision-recall curves (per-class) obtained by thresholding on the
normalized entropy of the label distribution for classes. Left: Classes tree,
car and background. Right: Classes building, ground, and hedge. Top: Plots
with test fraction: 0.5. Below: Plots with test fraction: 0.8. Note the scale
on y-axis.

fraction 0.5, Figure 7 (top), classes ground, building and
hedge attain 100% precision at a maximum recall of 93%,
56% and 54% respectively. By accepting a slightly lower
precision of 90%, nearly 100% of the ground truth can be
retrieved for building and ground classes and 86% for class
hedge. The curves for classes car and background are lower.
At 90% precision both classes have a lower recall of 60%.

When the GP is trained with a higher test fraction of
0.8 a general decline is observed in the precision-recall
performance as shown in Figure 7 (bottom). The decrease is
small for classes like building, ground and hedge and is more
significant for the class car for which recall decreases from
60% to 27% at 90% precision level. In both experiments,
class tree displays a gradually declining curve which may be
attributed to significant variation in the entropy values from a
large number and varied segments obtained as category sam-
ples. In general, using a lower normalized entropy threshold
was found to improve precision at the cost of lowering recall
since uncertain true positive class labels are also suppressed.
This allows the user to obtain an application specific value
of the entropy threshold.

C. Qualitative results

Figure 8 shows an example of the classification result for
one triangle mesh from our data set. The left image shows
the ground truth labeling obtained from manual annotation.
The center image depicts our classification result using the
multi-class GP classifier. One can clearly see that there are
only minor classification errors. The most obvious ones are
in the front on the hedge surrounding the car park. Here,
the classifier generated the label car. However, the labels
in that area are not very certain, which can be seen from
the right image in the figure. Here, the normalized entropy
is visualized with color values between green (no entropy)
and red (entropy equal to 1). We can see that the class
label distributions of the segments in the front have a much
higher entropy than others such as those on the ground. This

means that the classification result can be improved even
further, if required, by neglecting all label assignments where
the entropy of the label distribution is too high. Of course,
such a conservative classifier will have a weaker recall
performance (as shown in the previous section), but in some
applications the reduction of false-positive classifications is
more important.

Figure 9 shows the classification result of 9 consecutive
meshes in one common image. We note that there are slight
labeling errors even in the ground truth (left image). This is
caused by imperfections in the segmentation process, which
lead to under-segmentation. For example, some few segments
contain sensor readings from the building and the ground.
As it is impossible to determine a single true label for these
segments, we decided to assign the ground truth label based
on a majority voting during annotation. From the figure we
can see that the qualitative result corroborates the outcome
of the quantitative evaluation: in general, the classification
is very good, only the under-represented classes such as car
and hedge are classified slightly worse.

D. Classifier Comparison

We compared the generative GP classifier with a discrim-
inative SVM classifier using the LIBSVM implementation
of Chang and Lin [23]. In all cases, we employed the
squared exponential kernel to facilitate comparison. Table II
compares the F0.5-measure performance of the two classifiers
with test fractions: 0.3, 0.5 and 0.8. The total number of
support vectors (indicating model sparsity) obtained during
SVM training were noted for each run. The GP classifier
sparsity parameter S was set to a value close to but smaller
than the number of support vectors used by SVM. The F0.5-
measure performance for the GP and SVM classifiers was
very similar, even with a sparser representation used for the
GP. The experimental result accords with similar findings by
Naish-Guzman et al. in [24].

Next, we compared the uncertainty estimates of the proba-
bilistic classification output of the two classifiers to new ob-
ject classes not used in training. We trained the GP and SVM
classifiers only on segments from two classes (randomly
picked): building and ground. Data from the remaining
un-modeled classes was presented to both classifiers for
inference, resulting in a classification distribution over binary
labels. The normalized entropy values measuring uncertainty
in the classification decision were computed for each label
distribution.

Figure 10 presents the normalized entropy histograms for
the inference set. The SVM classifier commits a large major-
ity of the un-modeled points to one of the modeled classes
with high certainty, resulting in a peaked distribution over
one of the two labels. As a result, for a majority of the data
points, the label distribution has lower normalized entropy. In
contrast, the GP classifier assigns higher normalized entropy
for a majority of the test points. The same pattern was found
consistent for other choices of training and testing classes.
The classifier uncertainty for the test points from new classes
is expressed as a more uncertain (uniform) distribution over
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Fig. 8: Classification result and normalized entropy for one example mesh. Left: Ground truth labeling. In this scene, no background objects were present.
Center: Classification result using multi-class GP classification. Note the classification error of the hedge in the front, which is classified as car. Right:
Normalized entropy of the class label distributions for each mesh segment. For most segments the classifier is very confident. For some, such as the (wrong
classified) hedge in the front, the normalized entropy is high and thus the classification confidence low.
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Fig. 9: Classification result after 9 point clouds (time steps). Left: Ground truth. Note that even in the ground truth some areas are not labeled correctly,
e.g. on the ground close to the building. This is due to the fact that the mesh segmentation is not perfect and a correct manual labeling of segments that
actually correspond to more than one class is not possible. In our evaluation we abstract from such segmentation errors. Right: Classification result. Only
minor errors are visible. Note again the hedge in the front, but also on some cars.
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Fig. 10: Histogram of normalized entropy values of the label distribution
for SVM and GP classifiers. Both classifiers were trained explicitly on two
classes. The data from the remaining classes was presented for inference.
Left: SVM classifier assigns a majority of the points to a particular class
with high certainty. Right: As a contrast, GP classifier assigns greater
classification uncertainty to a majority of the points, providing evidence
for a potential new class. Note the scale on y-axis.

labels, indicating the presence of one or more potentially
un-modeled classes.

VI. Conclusions and FutureWork

The mid-term goal in our current research is an actively
learning mobile robotic system that acquires semantic knowl-
edge by supervision, but during system operation, i.e. in a
life-long learning framework. However, this knowledge needs
to be added incrementally and selectively, because no human
would be willing to annotate all new sensor observations
from the robot. Unfortunately, none of the currently used
supervised learning algorithms can provide sufficient means

to select the next observation that needs human annotation.
In this paper, we show that when using multi-class GP
classification this selection actually can be done based on the
uncertainty estimates of the class labels that the GP classifier
inherently provides. We also show that there is no loss in
performance when using a GP classifier, even if a higher
level of sparsification is chosen. These results demonstrate
the power of the GP classifier for this purpose, and thus
provide an important step towards life-long learning robot
systems.
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Abstract— Classification precision and recall have been
widely adopted by roboticists as canonical metrics to quantify
the performance of learning algorithms. This paper advocates
that for robotics applications, which often involve mission-
critical decision making, good performance according to these
standard metrics is desirable but insufficient to appropriately
characterise system performance. We introduce and motivate
the importance of a classifier’s introspective capacity: the
ability to mitigate potentially overconfident classifications by an
appropriate assessment of how qualified the system is to make
a judgement on the current test datum. We provide an intuition
as to how this introspective capacity can be achieved and
systematically investigate it in a selection of classification frame-
works commonly used in robotics: support vector machines,
LogitBoost classifiers and Gaussian Process classifiers (GPCs).
Our experiments demonstrate that for common robotics tasks
a framework such as a GPC exhibits a superior introspective
capacity while maintaining commensurate classification perfor-
mance to more popular, alternative approaches.

I. Introduction

The semantic mapping of a robot’s workspace has become
a popular line of research in recent years. A rich body of
work now exists in which semantic labels are generated
based on a variety of sensor modalities and classification
frameworks (see, for example, [1]–[7]). Often, this is done
with an implicit understanding that the application is agnostic
to the classification method used: after all, for a number of
classification frameworks the resulting precision and recall
— quantities commonly used to characterise performance —
are often commensurate across a wide variety of applications.

Contrary to this now established status-quo, we advocate
that high precision and recall are desirable but do not suffice
to fully characterise classification performance in robotics.
The dimension missed is that spawned by a robot’s ability
to take action in ambiguous situations. For example, the
robot may query a human operator or seek additional data
for disambiguation rather than committing to a potentially
incorrect class decision. Crucially, and central to this paper,
this requires the classifier output to reflect an amount of
ambiguity appropriate to a given situation. Even when hard
class assignments are avoided by optimising an expected cost
or reward, as is the case for most mission-critical decision
making, a realistic estimate of uncertainty when modelling
the state of the world is crucial; an autonomous car that
misses a single traffic light with high confidence can suffer
disastrous consequences (see, for example, Fig. 1).

We argue that a classifier which is uncertain when it
makes mistakes but certain when classification is correct,
is more desirable than a classifier which makes correct and
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Fig. 1: Uncertainty in classification output as measured using normalised
entropy for traffic light detectors based on five different classification
frameworks applied to the window shown in green. Note that all classifiers
incorrectly label this window as background (class decisions are not shown).
However, the GPC variants do so with a significant amount of uncertainty
while the others are inappropriately overconfident. Mission-critical decisions
based on overconfident output will lead to catastrophic failure while an
appropriately high amount of uncertainty when committing a mistake allows
for remedial action to be taken. Providing this more germane output is the
introspective quality we seek.

incorrect decisions with similarly high confidence. We are
therefore looking for a classifier’s capacity to mitigate its
assessment by an appropriate measure as to how ‘qualified’
it is to make a call given its own prior experience, usually
in the form of training data. Following classical decision
theory (e.g. [8]), mistakes are penalised by means of a loss
function. However, if the underlying classification framework
leads to an overconfident estimate of the class label, then
it will often be ineffective regardless of the high costs
imposed. Our work investigates this introspective capacity
in a number of classification frameworks commonly used
in robotics: support vector machines (SVMs), LogitBoosting
and Gaussian Process classifiers (GPCs). Our treatment and
findings apply to any aspect of robotics where action is
required based on inference driven by raw sensor data.
Here we choose to frame our exposition in the domain of
autonomous driving, where mission-critical decisions equate
to safety-critical decisions. To the best of our knowledge this
is the first work in robotics characterising the introspective
properties of commonly used classification frameworks.
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II. RelatedWorks

For a number of years now robots have routinely generated
and consumed higher-order abstractions from raw sensor
data. Successful applications are as diverse as the detection
of ground traversability (e.g. [9]), the detection of lanes for
autonomous driving (e.g. [10]), the consideration of classifier
output to guide trajectory planning and exploration (see,
for example, [11], [12]) or the active disambiguation of
human-robot dialogue [13]. These works commonly exploit
classification output on a model-trust basis: systems are opti-
mised with respect to precision and recall and egregious mis-
classifications — including vastly over-confident marginal
distributions obtained from some classification frameworks
— are accepted as par for the course. However, the suitability
of the classification framework employed with respect to its
introspective capacity has not previously been considered
in robotics. Thus, we consider motivating, defining and
investigating introspection in a robotics context to be the
primary contribution of our work.

The concept of introspection as introduced here is closely
related to considerations in active learning, where uncertainty
estimates and model selection steps are often employed
to guide data selection and gathering for an incremental
learning algorithm. Kapoor et al. [14], for example, present
an active learning framework for object categorization using
a GPC where classifications of large uncertainty (as judged
by posterior variance) lead to a query for a ground-truth
label and are subsequently used to improve classification
performance. Joshi et al. [15] address multi-class image clas-
sification using SVMs and propose criteria based on entropy
and best-versus-second-best measures (see Section III) for
disambiguating uncertain classifications. Holub et al. [16]
propose an information-theoretic criterion that maximises
expected information gain with respect to the entire pool
of unlabeled data available. Hospedales et al. [17] discuss
optimising rare class discovery and classification using a
combination of generative and discriminative classifiers.

Our treatment of introspection is further informed by
an ongoing discussion in the machine learning community
regarding how to best account for variance in the space of
feasible classifier models when training on, essentially, an
incomplete set of data. For example, Tong and Koller [18]
present an incremental algorithm for text classification using
SVMs and the notion of a version space, the set of consistent
hyperplanes separating the data in a feature space induced
by the kernel function. Zhang et al. [19] introduce a max-
margin classifier achieving better generalisation to unseen
test data given a limited training corpus. Here, distinctiveness
of training instances is assessed using the local classification
uncertainty. A global classifier then incorporates these un-
certainties as margin constraints, yielding a classifier that
places less confusing instances farther away from the global
decision boundary. We share the intuition that accounting for
variance in version space when selecting a model leads to
an increased introspective capacity. As a secondary contri-
bution, therefore, our results serve to further corroborate this
intuition.

III. Introspection and Uncertainty
Introspection concerns not the final class decision but

rather the confidence with which this decision is made. The
concept is motivated by the desire to take appropriate action
when a classifier indicates high uncertainty. Our approach
to introspection is grounded in the fact that the often cited
assumption of independent and identically distributed (iid)
training and test data is routinely violated in robotics: in
the limit of continuous operation in the real world, one-shot
classifier training is unlikely to be performed on a complete
(or even fully representative) set of data.

Let a classifier map an input x ∈ �d to one of a set of
classes C = {C1, . . . ,C|C|} via an associated label y ∈ C.
Prior to training, domain specific knowledge is often used to
constrain the family of classification models employed (for
example in the form of a kernel, a covariance function or
a type of base classifier). Classifier training then involves
learning a set of (hyper-) parameters given a training dataset
{X,Y}, where X = {x1, . . . , x|X|} denotes the set of feature
vectors and Y denotes the set of corresponding class labels.
The training data implicitly give rise to a probability distri-
bution over the set of all possible models within the chosen
family, M, such that

{X,Y} → p(m | X,Y) , m ∈ M. (1)

With a slight abuse of notation, m here denotes any member
of the family of possible models, M. In reality it is a
function of the datum evaluated. In the following we make
this relationship explicit by conditioning on both a model (or
family of models) as well as on a test datum x∗. Typically,
training leads to the selection of a single model, m̃ from M
such that a prediction y∗ for a new, unseen feature vector x∗
is obtained by approximating

p(y∗ | X,Y, x∗) ≈ p(y∗ | m̃, x∗) , m̃ ∈ M. (2)

This is illustrated in Figure 2(a). Common examples of this
type of classification framework include SVMs and Boosting
classifiers, where an optimisation is performed to select the
best model given the training data (see Section IV). The
iid assumption here is inherent since it is assumed that m̃
remains the best model for all predictions of unseen data.
Breaking this assumption therefore often renders the chosen
model suboptimal.

An alternative to the single model approach are classifi-
cation frameworks which take into account the entire set of
possible models in the specified family, such that

p(y∗ | X,Y, x∗) ≈ p(y∗ | M, x∗). (3)

This case is illustrated in Figure 2(b). Here the shading
indicates the distribution p(m | X,Y) with darker shades
indicating increased probability. To aid intuition, predictions
of four randomly selected members ofM are also illustrated.
Final predictions are made by taking into account opinions
from all members of M, often via the computation of an
expectation such as for a GPC (see Section IV). Crucially,
when considering an expectation over all ofM, the increased
variance in feasible (and therefore likely) models at a dis-
tance from the training data leads to a moderation of the
class predictions. This is the introspective quality we seek.
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Fig. 2: An illustration of the two types of classification frameworks considered: (a) during training a single model is selected to classify an unknown
datum x∗ some way removed from the training data; (b) training leads to a distribution over models which is considered entirely to arrive at the final
prediction. This illustration is for the family of linear models (indicated by solid (a) and dashed (b) lines). Each predictor is further annotated with its
individual prediction. The overall predictive distribution is shown in the bottom right of each subplot. The shading in part (b) indicates the probability
weights associated with individual models. Darker regions contain more weight. Note that the overall predictive distribution in (a) stems from the single
model used and is, in this case, inappropriately confident. In part (b), however, the overall predictive distribution is moderated by computing the expectation
over all models. This gives rise to a much more appropriate uncertainty estimate — the introspective quality we seek. (Best viewed in colour.)

A. Quantifying Introspection

In order to characterise the introspective capacity of a clas-
sification framework a transferable measure of the inherent
uncertainty in the classification output is required. For this
purpose, we use an information-theoretic quantity known as
normalised entropy, HN , defined as

HN = −
∑

Ci∈C
p(y = Ci | x) log|C|

[
p(y = Ci | x)

]
. (4)

This is equivalent to the Shannon entropy measure nor-
malised by its maximum, which is the entropy of the |C|-
dimensional uniform distribution, log(|C|). The result is a
measure ranging between 0 and 1 where a higher value
indicates greater uncertainty in the classifier’s belief.

An alternative uncertainty measure proposed in the active
learning literature is the best-versus-second-best (BvSB)
heuristic [15] calculated as the difference between the largest
and the second largest class likelihood estimates. This mea-
sure attempts to characterise the reliability of the maximum
likelihood estimate rather than encoding the shape of the full
distribution over class labels. The BvSB and normalised en-
tropy measures are closely related in the binary-classification
setting which is the case in this paper. We use normalised
entropy throughout the remainder of this work due to its
appealing information-theoretic interpretation.

IV. Classification Frameworks

We now present a brief overview of the specific classifica-
tion frameworks considered in this work: SVMs, LogitBoost
classifiers and GPCs. We focus on properties pertinent to
introspection. Specifically, we describe the mechanism by
which parameters are learned and how probabilistic output
is obtained. For simplicity, but without loss of generality, this
work considers predominantly binary classification such that
C = {C1,C2}. For consistency we adhere to notation com-
monly found in the literature where a discriminant function

is often denoted as f (·). We note that this is equivalent to a
particular model m as described in the previous section.

A. Support Vector Classification

SVM classification is well established in robotics so that
we provide here only an overview1. SVMs are based on a
linear discriminant framework which aims to maximise the
margin between two classes. The model parameters are found
by solving a convex optimisation problem, thereby guaran-
teeing the final classifier to be the best feasible discriminant
given the training data. Once training is complete, predictions
on future observations are made based on the signed distance
of the observed feature vector from the optimal hyperplane,
such that

f (x∗) =

N∑

i=1

αiyik(xi, x∗) + b, (5)

where N is the size of the training set, αi refers to a Lagrange
multiplier associated with datum i, b denotes a bias parameter
and k(xi, x j) denotes the kernel function. Both αi and b are
obtained by training, and αi is then non-zero only for support
vectors xi. The kernel function amounts to a scalar product
between two data, which have been transformed from d-
dimensional feature space into some higher dimensional
space. The nature of this mapping between spaces is inherent
in the choice of kernel and need not be specified explicitly
(the kernel trick). The regularization and kernel parameters
are learnt using cross-validation. We discuss our choices of
kernel functions in Section IV-D.

In its original form, the SVM classifier output is an
uncalibrated real value. A common means of obtaining
a probabilistic interpretation is Platt’s method [21]. Here,
using a hold-out set not used for classifier training, a para-
metric sigmoid model is fit directly to the class posterior

1For a detailed account the reader is referred to, for example, [20].
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p(y∗ = C1 | f (x∗)), such that

p(y∗ = C1 | f (x∗)) =
1

1 + exp(a f (x∗) + b)
. (6)

The sigmoid parameters a and b are chosen via cross-
validation using a model-trust optimisation procedure. Note
that class likelihoods are derived here using only a single
estimate of the discriminative boundary obtained from the
classifier training procedure. No other feasible solutions
are considered. Hence, the predictive variance of the dis-
criminant f (x) is not taken into account while determining
probabilistic output [22]. Further, no guarantees exist that the
optimisation itself is well-behaved2.

B. LogitBoosting Classifiers

Boosting is a widely used classification framework which
involves training an ensemble of weak learners in sequence.
The error function used to train a particular weak learner
depends on the performance of the previous models [8].
Each weak learner, h(x) is trained using a weighted form
of the dataset in which the data weights depend on the
performance of the previous classifiers. Predictions from a
boosted classifier are obtained using a weighted combination
of the individual weak learner outputs such that

sgn( f (x∗)) = sgn


M∑

i=1

wihi(x∗)
 , (7)

where M is the number of weak learners used.
LogitBoost [24] is a popular choice for a boosting-based

classifier as it directly outputs class probability estimates.
Weak learners are often chosen to be decision trees and
training is conducted by fitting additive logistic regression
models by stage-wise optimisation (using Newton steps) of
the Bernoulli log-likelihood. The algorithm works in the
logistic framework and yields a predictor function f (x) learnt
from iterative hypothesis training. Cross-validation is used
to set hyper-parameters like the learning rate, tree depth,
and the number of boosting rounds. The class-conditional
probabilities are obtained from the predictor function as

p(y∗ = C1 | x∗) =
exp( f (x∗))

exp( f (x∗)) + exp(− f (x∗))
. (8)

The procedure possesses asymptotic optimality as a maxi-
mum likelihood predictor [24], [25]. However, the method
of converting the output of the predictor function to class-
conditional probabilities is not fully probabilistic and does
not account for variance in the underlying predictor func-
tion3.

C. Gaussian Process Classification

Binary classification using a Gaussian Process (GP) [22],
[26] is formulated by first introducing a latent function
f (x) and then applying a logistic function σ to obtain
the prediction p(y∗ = C1 | x∗) = σ( f (x∗)). A GP prior

2Throughout this work we use LIBSVM [23] for SVM training, calibra-
tion and testing.

3Throughout this work we use the Matlab implementation of LogitBoost
for classifier training and testing.

is placed on the latent function f (x) ∼ GP(µ(x), k(x, x′ ))
characterized by a mean function µ(x) and a covariance
(or kernel) function k(x, x′ ). GPC training establishes values
for the hyper-parameters specifying the kernel function k by
maximising the log marginal likelihood of the training data.

Probabilistic predictions for a test point are obtained in
two steps. First, the distribution over the latent variable
corresponding to the test input is obtained using Equation (9).
Here, p( f | X,Y) = p(Y | f )p( f | X)/p(Y | X) is the
posterior distribution over latent variables.

p( f∗ | X,Y, x∗) =

∫
p( f∗ | X, x∗, f )p( f | X,Y)d f . (9)

This is followed by marginalising over the latent f∗ to yield
the class likelihood p(y∗=C1 | X,Y, x∗) as

p(y∗ = C1 | X,Y, x∗) =

∫
σ( f∗)p( f∗ | X,Y, x∗)d f∗. (10)

Exact inference is analytically intractable due to the non-
Gaussian logistic likelihood function. Instead we leverage
expectation propagation (EP) [27], a method widely used
for this purpose.

The GPC framework offers two key benefits over the other
approaches discussed here [22]. Firstly, the classification
output has a clear probabilistic interpretation as it directly
results in the class likelihood. In contrast, neither the SVM
nor the Boosting framework provide inherently probabilistic
output but instead estimate a suitable calibration. Secondly,
and crucially, the GP formulation addresses uncertainty or
predictive variance in the latent function f (x) via marginali-
sation (or averaging) over all models induced by the training
set resulting in the estimate p(y∗=C1 | X,Y, x∗) from Equa-
tion (10)4. Again this is in contrast to the SVM or Boosting
estimate p(y = Ci | f̂ , x∗) that rely on a single discriminant
estimate f̂ : X → Y learnt via minimisation. In the context
of introspection, the ability to account for predictive variance
is a key advantage of generative classification approaches5.

D. Kernel Types
Evaluation of the discriminant function for an SVM and

the covariance matrix for GPC inference both require the
specification of a kernel function, k(·, ·). A rich body of
literature exists on different choices of kernels for both
frameworks. However, since our focus here is on a like-
for-like comparison of different classification frameworks
we choose two representative kernels rather than performing
exhaustive model selection to optimise performance for a
particular application. Firstly, as an example of the simplest
kernel function available, we consider the linear kernel
defined as

kLIN(xi, x j) = xT
i x j + c, (11)

where c is a constant real number. The linear kernel is an
apt choice where a linear separation of the data in feature
space leads to adequate performance or where computational

4This process also gives rise to the well known property of increased
variance while far away from the data in GP regression.

5Throughout this work we use the GPML toolbox [28] for GPC training
and testing.
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efficiency is of the essence. Often, however, a more sophis-
ticated, non-linear kernel is required. In this category we
use the squared exponential (SE) function as a canonical
representative. The SE kernel with length scale parameter l
is defined as

kS E(xi, x j) = exp
(
− 1

2l2
||xi − x j||2

)
. (12)

In the context of an SVM, the SE function is more
commonly known as a radial basis function (RBF). In the
following we will adhere to convention and refer to SE GPCs
and RBF SVMs.

V. Experimental Results

Our experiments investigate the introspective capacity of
the classifiers introduced in Section IV in an autonomous
driving setting. Specifically, we focus on the classification of
road signs and the detection of traffic lights. In investigating
both classification and detection we aim to address the full
spectrum of applications commonly encountered in robotics.
The two are distinct in that classification addresses the case
where a decision is made between two, well-defined classes
(e.g. two types of traffic signs) and investigates classifier
performance as a third, previously unseen class is presented.
The detection case is arguably the more common one in
semantic mapping where a single class is separated from
a broad (in terms of intra-class variation) background class.
Here, the concept of a previously unseen class does not exist
but the inherent assumption is that the data representing the
background class are sufficiently representative to capture
any non-class object likely to be encountered. In practice,
this is often not the case, leading to a significant number of
misclassifications. While it could be argued that this problem
is ameliorated somewhat by expanding the dataset used for
training, we propose that the complexity of the workspaces
encountered during persistent, long-term autonomy will keep
perplexing even the most rigorously trained classifier.

A rich body of work on the detection and classification
of road signs and traffic lights has established a successful
track record of template-based features for this purpose.
Specifically, we leverage the approach proposed by Tor-
ralba et al. [29] in which a dictionary of partial templates
is constructed, against which test instances are matched. A
single feature consists of an image patch (ranging in size
from 8×8 to 14×14 pixels) and its location within the object
as indicated by a binary mask (32×32 pixels). For any given
test instance, the normalised cross-correlation is computed
for each feature in the dictionary. Therefore, per instance (or
window, in the detection case) a feature vector of length d
is obtained, where d is the size of the dictionary. We found
empirically that d > 200 leads to negligible performance
increase in classification. Throughout our experiments we
therefore set d = 200.

A. Introspection in Classification

This section investigates classification output when a third,
previously unseen class is presented to the classifier. As
examples of classes typically encountered in autonomous
driving applications we use a subset of the German Traffic

roadworks ahead right ahead stop keep left
(1500) (688) (780) (298)

lorries prohibited speed limit yield
(420) (1980) (2159)

TABLE I: The seven classes of the German Traffic Sign Recognition
Benchmark dataset considered in our work. The numbers in brackets indicate
the number of data available per class.

Classifier Precision Recall F1

SE GPC 1.000 0.990 0.995
RBF SVM 1.000 0.995 0.997
Linear GPC 1.000 0.990 0.995
Linear SVM 1.000 0.990 0.995
LogitBoost 1.000 0.965 0.982

TABLE II: Classification performance when separating stop sign from the
lorries prohibited signs. Note that different class combinations were found
to yield classifiers of similar quality.

Sign Benchmark (GTSRB) dataset [30], which comprises
over 50, 000 loosely-cropped images of 42 classes of road
signs, with associated bounding boxes and class labels. From
this dataset we specifically focus on the seven classes shown
in Table I. We arbitrarily select two classes for training: stop
and lorries prohibited. To investigate the efficacy of the fea-
tures used and training procedures employed, classifiers were
trained separating these two classes using a balanced training
set of 400 data (200 per class) and applying a canonical
training procedure for each classifier type, including five-fold
cross-validation where appropriate. Classifier performance
was evaluated using standard metrics on a hold-out set of
another 400 class instances (200 of each class) of the same
two classes. The results are shown in Table II. Classification
performance is commensurate across all classifiers. The cor-
responding precision-recall curve confirms the near-perfect
separation of the classes and has been omitted here as it is
otherwise uninformative. The classifiers are next retrained
using the full 800 training data (400 per class) and the same
canonical training procedures. They are then applied to 500
instances of the previously unseen class roadworks ahead.
The resulting normalised entropy histograms are shown in
Figure 3. The mean normalised entropies for the GPC-based
classifiers are significantly higher than those of the other
classification frameworks, indicating that the the GPC-based
classifiers exhibit greater uncertainty in their judgement.
Conversely, the RBF SVM and the LogitBoost classifier are
extremely confident in their classifications with a very narrow
distribution around a relatively low value of normalised
entropy. This was an effect consistently observed throughout
our experiments, which we attribute to the relatively gradual
decay of the estimated class posterior probabilities through
feature space often encountered far away from the decision
boundary. Features from an unseen class which are located
in feature space at a distance from the decision boundary
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Fig. 3: Normalised entropy histograms of the marginal probabilities for five classifiers trained on the road sign classes stop and lorries prohibited and
tested on 500 instances of the unseen class roadworks ahead. Higher normalised entropy implies more uncertainty in classifier output. Note that the mean
normalised entropy for the SE GPC is higher than that of the others.

Test Class Classifier Normalised Entropy
µ± std. err. σ± std. err.

SE GPC 0.504 ± 1.92E-03 0.110 ± 9.35E-05
RBF SVM 0.313 ± 1.33E-04 0.012 ± 2.12E-06
Lin GPC 0.245 ± 9.34E-04 0.173 ± 9.19E-05
Lin SVM 0.106 ± 4.77E-04 0.107 ± 2.51E-04
Logit 0.015 ± 2.72E-05 0.009 ± 4.11E-05
SE GPC 0.487 ± 1.70E-03 0.139 ± 7.67E-05
RBF SVM 0.310 ± 1.13E-04 0.017 ± 3.72E-06
Lin GPC 0.286 ± 8.09E-04 0.179 ± 6.24E-05
Lin SVM 0.076 ± 3.72E-04 0.097 ± 2.43E-04
Logit 0.012 ± 1.79E-05 0.007 ± 1.27E-05
SE GPC 0.723 ± 4.91E-04 0.186 ± 1.59E-04
RBF SVM 0.306 ± 1.03E-04 0.095 ± 7.96E-05
Lin GPC 0.680 ± 4.75E-04 0.235 ± 1.11E-04
Lin SVM 0.634 ± 7.29E-04 0.267 ± 4.28E-05
Logit 0.021 ± 1.07E-04 0.031 ± 7.10E-04
SE GPC 0.804 ± 6.08E-04 0.163 ± 1.72E-04
RBF SVM 0.335 ± 1.43E-04 0.050 ± 1.26E-05
Lin GPC 0.811 ± 4.39E-04 0.184 ± 1.66E-04
Lin SVM 0.642 ± 3.24E-04 0.294 ± 9.19E-05
Logit 0.017 ± 3.62E-05 0.018 ± 2.06E-04
SE GPC 0.259 ± 2.36E-03 0.116 ± 1.37E-04
RBF SVM 0.255 ± 1.28E-04 0.027 ± 5.26E-06
Lin GPC 0.155 ± 9.27E-04 0.140 ± 2.61E-04
Lin SVM 0.043 ± 7.82E-05 0.059 ± 1.26E-04
Logit 0.007 ± 1.29E-07 0.007 ± 2.31E-05

TABLE III: Mean and standard deviation normalised entropies (including
standard errors) from ten iterations of classifier training and testing, each
with a randomly created dictionary and both training and test datasets
resampled. Results are presented for classifiers trained on the road sign
classes stop and lorries prohibited and tested on five different unseen classes
as shown.

therefore only span a very narrow range of estimated class
posterior probabilities.

In order to mitigate any influences of the specific feature
set used and the specific training and test data selected we
repeated the above experiment across a number of random
dictionaries, data samples and unseen classes. Specifically,
for each of five different unseen classes, we perform ten
iterations of classifier training and testing with a random
dictionary and training and test datasets resampled for each
run. The results, presented in Table III, are consistent with
those in Figure 3 in that the GPCs tend to be more uncer-
tain while SVM and LogitBoost are more confident with
an often significantly narrower distribution of normalised
entropy values. The results in Table III indicate that the
gap in uncertainty between the different frameworks is more
pronounced for some unseen classes than for others. We
attribute this to the varying degree of similarity in feature
space between the unseen class and the classes in the training
set. A more in-depth analysis of this phenomenon remains
future work.

Classifier Precision Recall F1

SE GPC 0.976 0.909 0.941
RBF SVM 0.982 0.931 0.956
Linear GPC 0.970 0.912 0.940
Linear SVM 0.979 0.929 0.953
LogitBoost 0.963 0.928 0.945

TABLE IV: Performance on a holdout set of 2000 instances of classifiers
trained on data from the TLR data set.

B. Introspection in Detection

We investigate the same classification frameworks as be-
fore on the task of traffic light detection. To this end we use
the Traffic Lights Recognition (TLR) dataset [31], which is
a sequence of colour images taken by a monocular camera
from a car driving through central Paris. The TLR dataset
comprises of just over 11,000 frames, where most of the
traffic lights have been labeled with bounding boxes and
further metadata such as the status of the signal or whether
a particular label is ambiguous (e.g. the image suffers from
motion blur, the scale is inappropriate or a traffic light is
facing the wrong way). A few traffic lights have been omitted
altogether. As suggested by the authors of [31], we exclude
from our experiments any labels of class ambiguous or
yellow signal and any instances which are partially occluded.
We also remove any section of the sequence where the car
is stationary and the lights are not changing. We split the
dataset into two parts (at frame 7, 200 of 11, 178), with an
approximately equal number of remaining labels in each
part and with no physical traffic lights in common. Positive
data are extracted as labeled. Negative background data are
extracted by sampling patches of random size and position
from scenes in the dataset while ensuring that the patches do
not overlap with positive instances. The data are then split
into training and test sets and classifiers are trained as before.

Again, we first verify the efficacy of the features selected
and the training procedures employed. Table IV shows the
classification performance for classifiers trained on 1,000
examples and evaluated on a hold-out set of 2,000 data. For
completeness, Figure 4 shows the corresponding precision-
recall curve. As before, classification performance accord-
ing to conventional metrics is commensurate across all
frameworks. In Figure 5, however, we demonstrate how the
lack of introspection can impact classification performance
when accept/reject decisions are guided by classification
confidence. Specifically, we show the cumulative effect of
accepting classifications below a given uncertainty threshold.
First we note that when classifications are accepted at any
level of uncertainty (i.e. up to and including unity normalised
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Fig. 5: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives) against normalised entropy.
The classifiers have been trained on 500 traffic lights against 500 background patches, and tested on 1,000 instances of each. Note that lower normalised
entropy implies more certainty in classification. A more introspective classifier is one that exhibits higher uncertainty (as witnessed by larger normalised
entropy in its output) when processing difficult instances. Consequently, class decisions on output above a given normalised entropy threshold are deferred
since the output is deemed ambiguous. This is desirable since a single bad decision can have disastrous consequences. (Best viewed in colour.)
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Fig. 4: Precision-recall graph for traffic light detection. Classifier perfor-
mance is commensurate for all frameworks. (Best viewed in colour.)

entropy) all classification frameworks are commensurate
in terms of true positives and true negatives (top row of
Figure 5). This further corroborates the accuracy figures in
Table IV. However, true positive and negative classifications
occur generally at higher certainty (i.e. as normalised entropy
tends to zero) for SVMs and LogitBoost classifiers than for
the GPC variants. The latter are overall less certain about a
significant number of correct classifications. The bottom row
of Figure 5 indicates that SVMs and LogitBoost classifiers
are also significantly more confident when misclassifying
data (an example of this is also shown in Fig. 1). Significant
numbers of mistakes are made at relatively low normalised
entropy thresholds. The GPC variants, in contrast, accu-

mulate comparable numbers of classification errors only at
higher normalised entropy thresholds. The price paid for this
more realistic assessment of the classification output is a
reduction in correct classifications above the normalised en-
tropy threshold. Note that this does not mean that subsequent
samples are misclassified. It only implies that some other
remedial action might be taken — for example obtaining
label confirmation from a human or gathering otherwise
additional data to aid disambiguation.

VI. Conclusions

This work demonstrates how performance metrics tra-
ditionally used in machine learning for classifier training
and evaluation may be insufficient to characterise system
performance in a robotics context, where a single misjudge-
ment can have disastrous consequences. To remedy this
shortcoming, we propose the concept of introspection: the
ability to mitigate potentially overconfident classifications by
a realistic assessment of predictive variance. Our experimen-
tal results imply that, despite commensurate performance
as measured by more conventional metrics, GPCs possess
a more pronounced introspective capacity than other clas-
sification frameworks commonly employed in robotics. We
attribute this to their accounting, at test time, for predictive
variance over the space of feasible classification models. This
is in contrast to other commonly employed classification
frameworks which often only consider a one-shot (ML or
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MAP) solution. GPCs appear therefore better suited than
the other frameworks investigated to applications where a
realistic assessment of classification accuracy is required.
Crucially, this includes many decision-making problems
commonly encountered in robotics.

We have not, at this stage, considered the computational
complexity of the approaches presented. Though GPCs in
their basic form are notoriously expensive, more elaborate
schemes exist which reduce the computational burden re-
quired for GPC inference. Our future work will investigate a
variety of these schemes for suitability for real-time perfor-
mance in autonomous driving tasks. Our work also holds
implications for robotic active learning and exploration,
which opens up additional avenues of research we intend
to explore.
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Abstract— This paper concerns the recently introduced no-
tion of introspective classification. We introduce a variant of the
point-biserial correlation coefficient (PBCC) as a measure to
characterise the introspective capacity of a classifier and apply
it to investigate further the introspective capacity of boosting
– a well established, efficient machine learning framework
commonly used in robotics. While recent evidence suggests
that boosting is prone to providing overconfident classification
output (i.e. it has a low introspective capacity), we investigate
whether optimising this criterion directly leads to an improved
introspective capacity. We show that with only a slight modifica-
tion in the AdaBoost algorithm the resulting classifier becomes
less confident when making incorrect predictions, rendering
it significantly more useful when it comes to efficient robot
decision making.

I. Introduction

Machine learning algorithms are changing the face of
mobile robotics. Their reach now extends to a significant
number of robotic tasks including perception, planning,
navigation, and manipulation. As a result, most modern
mobile robotic systems already rely to a significant degree
on machine learning methods. However, for these methods to
be useful in robotics, some very specific requirements have
to be beyond those commonly considered in other research
areas. In particular, these requirements include efficiency
in terms of memory requirements, computation time and
energy consumption as well as plasticity and robustness in
order to provide true long-term autonomy. Algorithms that
particularly meet this latter criterion are often identified as
online or life-long learning methods.

In this work, we focus on boosting, a machine learning
framework commonly used in robotics both for its efficiency
and often competitive classification performance. Here we
investigate its usefulness in mission-critical applications,
where a single error in the classification can have desastrous
consequences for the entire mission. As an example, consider
an autonomous car that fails to detect a red traffic light.
As was shown by Grimmett et al. [1], these applications
require, in addition to a low rate of false detections (espe-
cially false negatives), a classifier that is able to provide a
realistic estimate of its classification confidence along with
the predicted class label. Classifiers with this capability are
denoted as introspective. In this work, we investigate this
further and particularly address two main questions. Firstly,
what could be a good measure of this relationship between
confidence and correctness? And secondly, can we use such

a measure to improve the introspective capabilities of one
of the most prevalent classification algorithms in robotics?
The preliminary findings we present here suggest that while
boosting may not be as intrinsically introspective as, for
example, a Gaussian Process Classifier (GPC) [1], its intro-
spective capacity can be increased significanly by optimising
it explicitly as part of the standard Boosting framework. We
point out that we do not provide any theoretical proofs here,
but instead present empirical results along the lines of those
presented in [1].

Our modification specifically applies to the standard Ad-
aBoost [2] algorithm. However, our findings are also likely
to be replicable for other variants of boosting such as
LogitBoost, GentleBoost [3], or robust variants [4].

A. Related Work

Apart from the seminal work on boosting in general [2]–
[4], most of the references related to this work are already
given in [1]. Boosting has a long and successful track
record in mobile robotics (see, for example, the work of
Martinez Mozos et al. [5], [6]). Introspection has been
recently introduced by Grimmett et al. [1].

This paper further investigates the introspective capabili-
ties of one particular classification framework.

II. Approach

In this section we first describe the standard binary Ad-
aBoost [2] algorithm (see Algorithm 1). Then, we introduce
Confidence Boosting, our new introspective variant of Ad-
aBoost. It uses an empirical measure of “introspectiveness”,
which is a new idea to quantify and assess this property
in classifiers. We propose a variant of the point-biserial
correlation coefficient (PBCC) for this measure, which we
briefly explain.

A. Standard Boosting

The main principle of boosting is to assign weights to
the n training data points X = {x1, . . . , xn} with xi ∈ Rd

and to run a given number m of training rounds through the
data, where at each training round a classifier is obtained that
particularly focusses on the misclassified samples from the
previous rounds. This is done by updating the data weights
according to a classification loss function, which is usually
the 01-loss. In more detail the steps are: first, the weights
are all equally initialized with 1/n. Then, in each round a
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weak classifier fi : R→ {−1, 1} is learned from the weighted
training data, and its training error εi is computed. Here, I()
denotes the identity function, which is 1 if the argument is
true and 0 otherwise. From the training error the coefficient
αi is computed and the data weights are updated so that
the misclassified points obtain a higher weight while the
weights of the other points remain unchanged. The obtained
coefficients αi are then used to classify a new test datum x∗
using the weighted sum

∑m
i=1 αi fi(x∗), which is simply tested

for its sign: if it is positive, the predicted class label is 1,
otherwise it is −1.

Algorithm 1: AdaBoost for binary classification
Data: training data (X, y) consisting of n labeled

feature vectors, where y j ∈ {−1, 1}
Input: Number m of training rounds
Output: coefficients (α1, . . . , αm)

1 w(1) ← (1/n, . . . , 1/n)
2 for i← 1 to m do
3 fi ← LearnWeakClassifier (w,X, y)

4 εi ←
∑N

j=1 w(i)
j I( fi(x j) 6=yi)

∑N
j=1 w(i)

j

5 αi ← ln
(

1−εi
εi

)

6 for j← 1 to n do
7 w(i+1)

j ← w(i)
j exp(αiI( fi(x j) 6= y j))

8 end
9 end

B. Confidence Boosting

The main benefits of the boosting algorithm are its arbitrar-
ily small training error (it decreases monotonically with the
number of training rounds), and its very efficient inference
step. However, as was shown in [1], in terms of introspec-
tion the standard boosting algorithm performs much worse
than other classification algorithms such as the Gaussian
Process classifier (GPC), which means that it tends to be
overconfident in its class predictions. This can for example
be seen when the algorithm is first trained on two classes,
and then elements of a third, unseen class are presented in
the classification step. In that case, the algorithm returns
class predictions with a very high certainty, although all
predicted class labels must be incorrect. As a consequence,
standard boosting can not be used in situations where the
class label uncertainty is needed for further processing, e.g.
to detect potential misclassifications or for active learning.
In the experimental section, we will give more evidence for
this.

To address this issue, we first have a closer look at line 3
in Algorithm 1: Here, a weak classifier fi is determined that
assigns class labels to given input data. The only requirement
for fi to be a weak classifier is that the weighted training
error εi computed in line 4 is not larger than 0.5. One
simple example for a weak classifier, which is often used
in boosting, is the decision stump, which operates on a
projection of the data onto a single feature dimension k and
determines a threshold θ and an orientation s ∈ {−1, 1} so

that most of the positively labeled training points are on the
positive side of the resulting decision boundary, i.e.

|{(xk
j , y)∀ j = 1, . . . , n | s(xk

j − θ) ≥ 0}|≥ n
2
, (1)

where k is a fixed dimension of the feature vector x j, and
|.| denotes the size of a set. To find a weak classifier fi,
one common method is to loop over all feature dimensions
k = 1, . . . , d and to use the decision stump that provides the
smallest weighted training error, i.e. εi is then the smallest
over all dimensions. The benefit of this is that the number of
training points that need re-weighting is smallest and that the
overall training error decreases fast. However, for an intro-
spective classifier, one is more interested in a realistic relation
between a correct classification and one with low uncertainty,
rather than in a low training error. In the next section, we
will give more details how this “introspectiveness” relation
can be formulized. For now, we just state that all decision
stumps can be used as a weak classifier, because they all
return a weighted training error less than 0.5. Thus, if we
choose the one that is most introspective in a given sense,
instead of the one with the smallest training error, then the
strong classifier that results from boosting is more likely to
be introspective, too. This is the main idea of confidence
boosting.

Of course, this brings also some drawback: as we don’t
choose the optimal decision stump in terms of classification
performance, the resulting strong classifier will usually also
perform worse. However, this can be adressed by simply
increasing the number of used decision stumps, because the
training error still decreases in each training round, although
at a slower rate. Thus, the aim of obtaining an introspective
classifier is traded off with the need to reduce the training
error. This suggests a weighted sum of classification per-
formance and introspectiveness as an assessment method for
decision stumps, however in this first version of the algorithm
we only consider the introspective part to avoid introducing
a parameter for the algorithm. To measure introspectiveness,
we suggest a function similar to the point-biserial correlation
coefficient, which is described next.

C. The Point-Biserial Correlation Coefficient

In many probabilistic reasoning applications the problem
arises how to measure the relation between two random
variables, and there are a number of different measures in
the literature that can provide such a relation. In principle,
these measures try to answer questions like: “how strong is
the statistical dependence between the variables?”, or “how
much information does one variable give about the other?”,
or “how much are the variables correlated?”. Examples of
these measures are the Kullback-Leibler (KL-) divergence,
the mutual information (MI), or the correlation coefficient.
However, most of these measures require both random vari-
ables to be continuous, whereas in our case we want to relate
the discrete, binary variable of “classification correctness”
with the continuous variable “classification uncertainty”. The
intuition behind this is that a classifier that is very often
correct when it is certain and only incorrect when it is
uncertain should be denoted as introspective. One way to
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determine such a relation is by using the Point-Biserial
Correlation Coefficient (PBCC), a variant of the standard
correlation coefficient. The PBCC is defined as follows:

rpb :=
µ1 − µ2

σn

√
n1n2

n2 , (2)

where µ1 and µ2 are the mean values of the continous variable
for those parts of the data, for which the binary variable is
either 0 or 1, respectively. In our case, these are the average
uncertainties for the incorrectly and the correctly classified
data points. Furthermore, σn is the standard deviation of the
continuous variable, i.e. the classification uncertainty, and n1
and n2 are the numbers of incorrectly and correctly classified
samples with n = n1 + n2.

While the PBCC provides a good measure of introspec-
tiveness in cases where there are enough correctly and
incorrectly classified samples, it has the drawback that its
range decreases when theses numbers are very unbalanced,
for example when there are no incorrectly classified samples.
In that case, the PBCC is 0, although the correctly classified
samples can all be very certain, in which case the classi-
fier would be more introspective than the PBCC suggests.
Therefore, in our experiments, we use a simpler version of
the PBCC, which only considers the first term, i.e.:

r∗pb :=
µ1 − µ2

σn
. (3)

In the following, we will refer to this measure as the
simplified PBCC (sPBCC).

To summarize, the modified version of the function
LearnWeakClassifier trains a decision stump for a pro-
jection of the training data onto each dimension k = 1, . . . , d
and chooses the one that maximises either rpb or r∗pb. This re-
quires a measure of uncertainty from a class label prediction
returned from a decision stump, but these only return either
0 or 1, depending on whether the feature is on the positive
or the negative side of the decision boundary. To obtain a
probability value, we apply a sigmoid function to the distance
of the feature value from the decision boundary of the stump,
specifically we use the cumulative Gaussian function. As a
result, we obtain a probability of a given test point x j to
have label 1. From this probability we then compute the
normalized entropy to obtain an uncertainty estimate for the
predicted class label, as was already done in [1].

III. Experimental Results

The aim of our experiments is two-fold: first we see
whether our simplified PBCC measure is consistent with
our intuitive notion of introspection. Secondly, we show that
ConfidenceBoost, our modified version of AdaBoost, leads
to a more introspective classifier. Our feature selection is
the same as presented in [1], namely a dictionary-based
correlation of randomly chosen image patches (originally
introduced by Torralba et al. [7]). We also use the GTSRB
data set, which comprises images of road signs in urban
environments.

In our first experiment, we compute the sPBCC value for
the classifiers that were already used in [1]: the GPC and
SVM, both with linear and squared-exponential (SE) kernels,

Classifier Precision Recall Accuracy sPBCC
SE GPC 1.000 1.000 1.000 -0.720

RBF SVM 1.000 1.000 1.000 -0.959
Linear GPC 1.000 1.000 1.000 -0.863
Linear SVM 1.000 1.000 1.000 -1.270
LogitBoost 1.000 1.000 1.000 -196189.581
ConfBoost 1.000 0.995 0.997 9.113

TABLE I: Classification performance when separating stop sign from the
lorries prohibited signs. In addition to precision, recall, and accuracy, we
also report the sPBCC value, which quantifies the introspective capabilities
of a classifier. We can see that the GP classifiers are more introspective
than the SVMs according to that measure, which underlines our findings
from [1]
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Fig. 1: Histogram of normalised entropies for the probabilities of the
predicted class labels, where an unknown class was shown to the AdaBoost
and the ConfidenceBoost classifier. Both classifiers are unconfident about
the given class labels, but ConfidenceBoosting shows this to a larger extent.
Note that the histograms are normalized so that the sum of all bins is 1.

LogitBoost, and our new ConfidenceBoost algorithm. We
train each on 200 instances of stop and lorry prohibited
sign, and test on an equally-sized set of the same classes.
The results are shown in Table I.

We can see that both GPCs have a higher correlation
between false classification and uncertainty than their SVM
equivalents, as we would expect given their already estab-
lished introspective capacity. We also see that the ConfBoost
algorithm also performs very highly in this regard.

In the second experiment, we train both the standard
AdaBoost and ConfidenceBoost on the same two classes
of road sign, and test on a novel third class – we use
the roadworks ahead sign – computing the histogram of
normalised entropies for both. These histograms compare the
distribution over the uncertainties in the class predictions of
the classifiers, and can be seen in Fig. 1. They show that
both classifiers are fairly uncertain about the predicted class
labels, which is reasonable given that the presented data are
from a class unseen during training. However, the labels
returned from ConfidenceBoost are even more uncertain,
leading to a more realistic assessment of the classification
result. Hence, we can conclude that the ConfidenceBoost
algorithm leads to a more introspective classifier.
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IV. Conclusions and FutureWork

The two contributions of this work are a way to quantify
the introspectiveness of a classifier – a notion that only
recently has been introduced, and a simple method to im-
prove the introspective capabilities of the standard AdaBoost
algorithm. However, many new questions arise from that,
where one is that of a more theoretical foundation for the
experimental results shown here. Another one addresses the
implications of our findings in a more general way, such as:
can this method be applied to other classification algorithms?
For example, one could think of using other established
methods for weak classification, thereby optimizing them in
the introspective sense. Our preliminary results at least justify
some further research along these lines.
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Abstract. Many man-made and natural structures consist of similar elements
arranged in regular patterns. In this paper we present an unsupervised approach
for discovering and reasoning on repetitive patterns of objects in a singleimage.
We propose an unsupervised detection technique based on a voting scheme of
image descriptors. We then introduce the concept oflatticelets: minimal sets of
arcs that generalize the connectivity of repetitive patterns. Latticelets areused for
building polygonal cycles where the smallest cycles define the sought groups of
repetitive elements. The proposed method can be used for pattern prediction and
completion and high-level image compression. Conditional Random Fieldsare
used as a formalism to predict the location of elements at places where theyare
partially occluded or detected with very low confidence. Model compression is
achieved by extracting and efficiently representing the repetitive structures in the
image. Our method has been tested on simulated and real data and the quantitative
and qualitative result show the effectiveness of the approach.

1 Introduction

Man-made and natural environments frequently contain setsof similar basic elements
that are arranged in regular patterns. Examples include architectural elements such as
windows, pillars, arcs, or structures in urban environments such as equidistant trees,
street lights, or similar houses built in a regular distanceto each other. There are at
least two applications where models of repetitive structures are useful pieces of infor-
mation: occlusion handling and data compression. For the former, pattern information
can be used to predict the shape and position of occluded or low confidence detections
of objects in the same scene. This introduces a scheme in which low-level detections
are mutually reinforced by high-level model information. For model compression, rep-
resenting the repetitive structure by a generalized objectand pattern description makes
it possible to represent the structure of interest in the image very efficiently.

In this paper, we present a technique to find such repetitive patterns in an unsuper-
vised fashion and to exploit this information for occlusionhandling and compression.
Specifically, we evaluate our method on the problem of building facade analysis.

The contributions of this paper are:

1. Unsupervised detection of mutually similar objects. Closed contours are extracted
and robustly matched using a growing codebook approach inspired by the Implicit
Shape Models (ISM) [1].
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2. Analysis of pattern repetitions by the concept oflatticelets: a selected set of fre-
quent distances between elements of the same object category in the Cartesian
plane. Latticelets are generalizations of the repetition pattern.

3. A probabilistic method to geometrically analyze cyclic element repetitions. Using
Conditional Random Fields (CRF) [2], the method infers missing object occur-
rences in case of weak hypotheses. Element detection probability and geometrical
neighborhood consistency are used as node and edge features.

Our method is a general procedure to discover and reason on repetitive patterns, not
restricted to images. The only requirement is that a method for detecting similar objects
in a scene is available and that a suitable latticelet parameterization is available in the
space of interest, e.g. the image or Cartesian space.

To the authors’ best knowledge, there is no other work in the literature that pursues
the same goals addressing the problem in a principled way.

This paper is organized as follows: the next section discusses related work. Section 3
gives an overview of our technique while in Section 4, the process of element discovery
is explained. Section 5 presents the way we analyze repetitive patterns and Section 6
describes how to use CRFs for the task of repetitive structure inference. Section 7 shows
how to obtain an high-level image compression with the proposed method. In Section 8
the quantitative and qualitative experiments are presented followed by the conclusions
in Section 9.

2 Related Work

In this work we specifically analyze repetitions from a single static image. The work
of [3] uses Bayesian reasoning to model buildings by architectural primitives such as
windows or doors parametrized by priors and assembled together like a ’Lego kit’. The
work of [4] interprets facades by detecting windows with an ISM approach. A prede-
fined training set is provided. Both works address the problem with a Markov Chain
Monte Carlo (MCMC) technique. Unlike our approach, they do not exploit information
on the connectivity between the detected elements. Our workuses ISM in an unsu-
pervised fashion without a priori knowledge. We consider closed contours to create
codebooks that generalize the appearance of repeated elements. Thereby, we are able to
recognize such elements with high appearance variability thanks to the Hough-voting
scheme. In the field of computer graphics, grammar based procedural modeling [5–7]
has been formally introduced to describe a way of representing man-made buildings.
Most of these works do not discover patterns but reconstructthe 3D appearance of the
facade and require human intervention.

Approaches based on RANSAC [8] and the Hough transform [9] have been used to
find regular, planar patterns. More sophisticated methods relax the assumption of the
regular pattern using Near-Regular Textures (NRT) [10, 11]. Similar to our work is [12]
in which the authors propose a method to find repeated patterns in a facade by using
NRT with MCMC optimization using rules of intersection between elements. They are
able to extract a single pattern based on a 4-connectivity lattice. Our approach allows
detection of arbitrary patterns without relying on a fixed model. Further, it can detect
multiple object categories and associate for each categorymultiple repetition patterns.
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Fig. 1.Schematic overview of the algorithm.

3 Overview

The first step of our algorithm (see Fig. 1) is to compute a set of standard descriptors
on a given input image. Then, we compute closed contours thatrepresent the candi-
dates for repetitive objects such as windows or pillars. Thekey idea is that we do not
classify these objects using a model that was previously learned from training data, but
instead, obtain evidence of their occurrence by extractingsimilarities directly from the
given scene. The advantage of this is twofold: first, we are independent of a previously
hand-labeled training data set. Second, by grouping similar objects into categories and
considering only those categories with at least two object instances, we can filter out
outlier categories for which no repetitive pattern can be found. Our measure of mu-
tual similarity is based on the object detection approach byLeibeet al. [1]. In the next
step, we analyze repetitive patterns inside each category.This is done by analyzing the
Euclidean distances between elements in the image accumulated in a frequency map.
These relative positions are represented as edges in a lattice graph in which nodes rep-
resent objects positions. The most dominant edges by which all nodes in this graph can
be connected are found using a Minimum Spanning Tree algorithm and grouped into a
set that we call latticelet. For reasoning on higher-level repetitions we extract a set of
polygonal repetitions composed of latticelet arcs. Such polygonal repetitions are used
to build a graph for predicting the position of occluded or weakly detected elements.
An inference engine based on CRFs is used to determine if the occurrence of an object
instance at a predicted position is likely or not. In an imagecompression application,
we use a visual template of each object category, the medium background color and the
lattice structure to efficiently store and retrieve a given input image.

4 Extraction of Mutually Similar Object Instances

In this section we explain the process of discovering repetitive elements present in an
image based on closed contours. As first step of the algorithm, Shape Context descrip-
tors [13] are computed at Hessian-Laplace interest points.Contours are computed by
using the binary output of the Canny edge detector [14] encoded via Freeman chain
code [15]. We refer to the content in each contour as an objectinstanceOe. Matching
contours in real world images can be very hard due to shadows and low contrast areas.
We therefore employ an Implicit Shape Model-like (ISM) technique in which the con-
tours act as containers to define a codebook of included descriptors. This way, we can
robustly match objects. In summary, an ISM consists of a set of local region descriptors,
calledcodebook, and a set of displacements, usually namedvotes, for each descriptor.
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Fig. 2.Extraction of mutually similar objects. For each closed contour, a codebook of descriptors
is created that contains relative displacements to the object centers (votes). Then, the descriptors
of each object are matched against the descriptors in the image.

The idea is that each descriptor can be found at different positions inside an object and
at different scales. Thus, a vote points from the position ofa matched descriptor to the
center of the object as it was associated in the codebook construction. In our case all
the descriptors found inside a contour are included in the codebookCe as well as the
relative displacement of the respective interest points with respect to the center of the
contour. To retrieve objects repetitions we match objects in the following way:

1. All descriptors found in the image are matched against an object’s codebookCe.
Those with a Euclidean distance to the best match inCe that is bigger than a thresh-
old θd are discarded.

2. Votes casted by the matching descriptors are collected ina 2D voting space
3. We use mean shift mode estimation to find the object center from all votes. This is

referred to as an object hypothesis.

To select valid hypotheses we propose a quality function that balances the strength of
the votes with their spatial origin. Votes are accumulated in a circular histogram around
the hypothetical object center. The detection quality function is given by:

qi = wa ·
fh(αi,αe)

fh(αe,αe)
+(1−wa) ·

si

se
qi ∈ [0,1] (1)

whereαe is the vote orientation histogram of the objectCe; αi is the vote orientation
histogram of the hypothesisi; fh is a function that applies anAND operator between
the bins of two histograms and sums the resulting not empty bins.si,se are respectively
the score (number of votes received for the hypothesis) and the score ofOe. wa is the
bias that is introduced between the two members. This is a simplified version of the cost
function explained in [16]. Detected objects are selected by a simple minimum thresh-
old θq on the detection qualityqi. All the objects matching withOe constitute the object
categoryτ that is defined by a codebook composed by descriptors that contributed to
each match and all the entries ofCe. Thus, a more complete description of the visual
variability of the initial object instanceOe is achieved. It is important to notice that it
is not required that every object in the image has a closed contour as soon as there is
at least one of its category. In other words: if an image of a facade contains several
windows of the same type, only one of them is required to have aclosed contour. In this
work we aim to match objects with the same scale. Same objectspresent at different
scales in the image are treated as different object categories.
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Fig. 3.Latticelet discovery process. Objects of the same category are detected. A complete graph
is built and the relative distances are accumulated in the Cartesian plane.

As a last step we use an hierarchical agglomerative clustering with average linkage
to group visually similar categories by using a measure described by their codebook

entriesd
(

τ i
C ,τ j

C

)
=

L
(

τ i
C ,τ j

C

)

min
(
|τ i

C |,|τ j
C

) whereL computes the number of corresponding de-

scriptors from the two codebooks with a Euclidean distance of less thanθd and|τ i
C | the

number of codebook entries.

5 Analysis of Repetitive Objects

5.1 Latticelets

In this section we introduce the space frequency analysis for the discovered object cate-
gories. We name the detected object locations in the image asnodes. In order to analyze
the repetition pattern of each object category we build a complete graph that connects
all the nodes. Our aim is to select in this graph edges that have a repeated length and
orientation. Moreover, we require our arc selection to include all the nodes. Our pro-
posed solution is based on the use of a Minimum Spanning Tree (MST). From the
complete graph we build a frequency map (see scheme Fig. 3 andFig. 4), in which we
store the distances|dx|, |dy| in pixels between nodes of the graph. The map represents
the complete distance distribution between the nodes. We therefore have to select from
this map the most representative modes. In order to estimatelocal density maxima in
the frequency map we employ a two dimensional mean shift algorithm, with a simple
circular kernel. Each convergence mode is expressed by a point in the mapdx̂,dŷ and
its score repetitiveness that is given by the number of points contributing to the basin
of attraction. All the graph edges that contribute to each mode convergency are then
labeled with their associated distance. At the end of this process we have obtained a
graph in which the distances between the nodes have been relaxed by averaging similar
consistent distances/orientations. Each edge is tagged with its repetitiveness score.
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Fig. 4.Repetitive distances in x and y are clustered via mean-shift, the arcs are reweighed by their
mode convergency score. The solid and dotted lines in the latticelet figure represent the possible
directions espressed by the selected|dx| and|dy|.

As last step of this processing we employ Kruskal’s algorithm [17] to find the min-
imum spanning tree by using the nodes, their edge connectivity and the weight of the
arcs. The resulting tree represents the most repetitive arcs sufficient to connect all the
nodes. In order to compact the information we select each kind of arc just once. We call
it latticelet, the minimal set of repetitive arcs that are needed to represent the original
lattice. Each object category is associated to a latticeletthat generalize its repetition
pattern. Our method is able to cope with small perspective distortions thanks to the re-
laxation step. For larger deviations from a fronto-parallel image view, the problem of
perspective estimation can be naturally decoupled from theone of analyzing repetitive
patterns. The problem of image rectification could be addressed with many existing
methods (e.g. [18]) that are far beyond the scope of this paper.

5.2 Cycles and chains

Latticelets contain very local information, they explain the direction of a possible pre-
dicted element from a given position. In order to incorporate higher level knowledge of
the repetitive pattern of the neighborhood, we use cycles composed of latticelets arcs.
Our aim is to find minimal size repetitive polygons. They provide the effective object
repetition that is used in later stages to obtain predictionand simplification. For each
category we sort the the weight of its latticelet arcs and we select the one with highest
weight. We compose a new graph by using the selected arc to build connection between
nodes and compute the smallest available cycle by computingits girth (i.e. length)γ.

A cycleΓ is computed by using an approach based on a Breadth-first Search algo-
rithm. Starting from a node of choice in the graph, arcs are followed once, and nodes
are marked with their number of visits. A cycle is found as soon as the number of visits
for a node reaches two. This is done for all the nodes present in the object category
detection set. We then collect all the cycles, and we select the one with the smallest
number of nodes. We create a graph by using the connectivity offered byΓ and mark
as removed the nodes that are connected by it. Thus, we add another latticelet arc until
all the nodes are connected or all the latticelet arcs are used. We obtained a polygon
set composed of frequent displacements suitable to describe the object distribution in
the image (see scheme Fig. 5) and to generalize higher ordersrepetitions. An object
category is therefore associated tok small cycles:G = {Γ1, . . . ,Γk}.
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Fig. 5. From the graph created by an incremental set of latticelet’s arcs, small repetitive cyclesΓ
are selected by using a Breadth-first Search algorithm. Chains are created on the remaining nodes
that have not been satisfied by any polygonal cyclesG .

In addition to what has been explained above, the algorithm tries to represent with
chains the nodes that cannot be described with polygonal cycles. The procedure is anal-
ogous to the former one: chain arcs are selected by using the sorted latticelet set. The
procedure is run for each object category.

6 Structure Inference using Conditional Random Fields

So far, we showed our method to detect objects represented asclosed contours and to
find repetitive patterns in the occurrence of such objects. However, in many cases, ob-
jects can not be detected due to occlusions or low contrast inthe image. In general,
the problem of these false negative detections can not be solved, as there is not enough
evidence of the occurrence of an object. In our case, we can use the additional knowl-
edge that similar objects have been detected in the same scene and that all objects of
the same kind are grouped according to a repetitive pattern.Using these two sources
of information, we can infer the existence of an object, evenif its detection quality is
very low. We achieve this by using a probabilistic model: each possible location of an
object of a given categoryτ is represented as a binary random variablelτ(x) which is
true if an object of categoryτ occurs at positionx and false otherwise. In general, the
state of these random variables can not be observed, i.e. they arehidden, but we can
observe a set of featuresz(x) at the given positionx. The featuresz here correspond
to the detection quality defined in Eqn. (1). The idea now is tofind states of all binary
variableslτ = {lτ(x) | x ∈ X } so that the likelihoodp(lτ | z) is maximized. In our for-
mulation we will not only reflect the dependence between the variablesl andz, but also
theconditional dependence between variableslτ(x1) andlτ(x2) givenz(x1) andz(x2),
wherex1 andx2 are positions that are very close to each other. The intuition behind this
is that the occurrence probability of an object at positionx1 is higher if the same object
already occurred at positionx2. We model this conditional dependence by expressing
the overall likelihoodp(lτ | z) as a CRF.

6.1 Conditional Random Fields

A CRF is an undirected graphical model that represents the joint conditional probability
of a set of hidden variables (in our caselτ ) given a set of observationsz. A node in
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the graph represents a hidden variable, and an edge between two nodes reflects the
conditional dependence of the two adjacent variables. To computep(lτ | z), we define
node potentials ϕ andedge potentials ψ as

ϕ(zi, lτ i) = ewn·fn(zi,lτ i) and ψ(zi,zj,yi,y j) = ewe·fe(zi,zj ,lτ i,lτ j), (2)

where fn and fe are feature functions for the nodes and the edges in the graph(see
below), andwn andwe are the feature weights that are determined in a training phase
from hand-labeled training data. Using this, the overall likelihood is computed as

p(lτ | z) =
1

Z(z)

N

∏
i=1

ϕ(zi, lτ i) ∏
(i, j)∈E

ψ(zi,zj, lτ i, lτ j), (3)

whereZ is thepartition function, N the number of nodes, andE the set of edges in the
graph. The computation of the partition functionZ is intractable due to the exponential
number of possible stateslτ . Instead, we compute thelog-pseudo-likelihood, which
approximates logp(lτ | z)

In the training phase, we compute the weightswn andwe that minimize the negative
log pseudo-likelihood together with a Gaussian shrinkage prior. In our implementation,
we use the Fletcher-Reeves method [19]. Once the weights areobtained, they are used
in the detection phase to find thelτ that maximizes Eq. (3). Here, we do not need
to compute the partition functionZ, as it is not dependent onlτ . We use max-product
loopy belief propagation [20] to find the distributions of each lτ i. The final classification
is then obtained as the one that is maximal at each node.

6.2 Node and Edge Features

As mentioned above, the features in our case are directly related to the detection qual-
ity obtained from Eqn. (1). In particular, we define the node features asfn(qi, lτ ,i) =
1− lτ ,i + (2lτ ,i − 1)qi, i.e. if the labellτ ,i is 1 for a detected object, we use its de-
tection qualityqi, otherwise we use 1− qi. The edge feature functionfe computes a
two-dimensional vector as follows:

fe(qi,q j, lτ i, lτ j) =

{ 1
γ ( fe1 fe2) if lτ i = lτ j

(0 0) else
with

fe1 = max(fn(qi, lτ i), fn(q j, lτ j))
fe2 = maxG∈Gi j(fn(η(G), lτ i)),

whereGi j is the set of (maximal two) minimum cyclesΓ that contain the edge between
nodesi and j, andη(Γ ) is a function that counts the number of detected objects along
the cycleΓ , i.e. for which the detection quality is aboveθq.

6.3 Network Structure

The standard way to apply CRFs to our problem would consist incollecting a large
training data set where all objects are labeled by hand and for each object categoryτ a
pair of node and edge features is learned so thatp(lτ | z) is maximized. However, this
approach has two major drawbacks:
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– For a given object categoryτ, there are different kinds of lattice structures in which
the objects may appear in the training data. This means that the connectivity of a
given object inside its network varies over the training examples. Thus, the impor-
tance of the edges over the nodes can not be estimated in a meaningful way.

– In such a supervised learning approach, only objects of categories that are present
in the training data can be detected. I.e., if the CRF is trained only on, say, some
different kinds of windows, it will be impossible to detect other kinds of objects that
might occur in repetitive patterns in a scene. Our goal however, is to be independent
of the object category itself and to infer only the structureof the network. In fact, the
object category is already determined by the similarity detection described above.

To address these issues, we propose a different approach. Considering the fact that
from the training phase we only obtain a set of node and edge weightswn andwe, which
do not depend on the network geometry but only on its topology, we can artificially
generate training instances by setting up networks with a given topology and assigning
combinations of low and high detection qualitiesqi to the nodes. The advantage of this
is that we can create a higher variability of possible situations than seen in real data and
thus obtain a higher generalization of the algorithm. The topology we use for training
has a girthγ of 3 and is shown in Fig. 6 on the left. Other topologies are possible for
training, e.g. using squared or hexagonal cycles, but from experiments we carried out it
turns out that the use of such topologies does not increase the classification result. The
graph in Fig. 6 right illustrates that. It shows the true positive and the true negative rates
from an experiment with 100 test data sets, each consisting of networks with a total
of 5000 to 10000 nodes. The training was done once only with a triangular topology
(TriTop) and once also including square and hexagonal topologies (MixTop), which
represent all possible regular tessellations of the plane.As the graph shows, there is no
significant difference in the two classification results. Incontrast to the topology, the
number of outgoing edges per node, i.e. theconnectivity, has a strong influence on the
learned weights. Thus, we use a training instance where all possible connectivities from
2 to 6 are considered, as shown in Fig. 6 left.

In the inference phase, we create a CRF by growing an initial network. From the
analysis of repetitive patterns described above, we obtainthe setG for each category,
the topology and edge lengths of the lattice. By subsequently adding cycles fromG to
the initial network obtained from the already detected objects, we grow the network
beyond its current borders. After each growing step, we run loopy belief propagation to
infer the occurrence of objects with low detection quality.The growth of the network is
stopped as soon as no new objects are detected in any of the 4 directions from the last
inference steps.

7 Model Compression

One aim of our work is to show that the information contained in an image (e.g. a fa-
cade) can be compressed using the proposed repetition detection technique. We reduce
the image to a simple set of detected object categories, their repetition scheme, and a
simplified background extraction. More in detail: each object category is stored as a
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Fig. 6. Left: Triangular lattice topology used for training the CRF. The numbers inside thenodes
show the connectivity of the nodes.Right: Comparison of CRF performances using TriTop and
MixTop datasets for training. True positive and the true negative rates are evaluated. The result
from the TriTop data are shown in box-and-whiskers mode, the MixTop result as dots. We can see
that using different topologies for learning gives no significant change in the classification result.

set of codebook descriptors and vote vectors, a rectangularcolorscale bitmap result-
ing from averaging the image areas inside the detected elements bounding boxes. To
visually simplify the image background, we assume that the space between detected
elements in a category is covered by textures of the same kind. We sort object cate-
gories by their cardinality. Then, as a texture simplification, we compute the median
color between the elements by sampling squared image patches. This color is assigned
to a rectangle patch that extends from top to the bottom of each category. We iterate this
procedure until all the image is covered. Missing empty spaces are filled with the color
of the most populous group. Some examples are shown in the right part of Fig. 9.

An image compressed with our method can be used in a number of applications
such as visual based localization, in which information is extracted only from the re-
peated pattern, or low-bitrate storage for embedded systems (e.g. UAV) that have to
store/transmit large urban environments. In a more generalfashion we consider that our
approach should be useful in all those cases where the main goal is to identify places
where repetitive patterns are present, although it is not aswell suited to provide detailed
reconstructions of the represented objects.

8 Experiments

The goal of our experimental evaluation is to investigate towhich extent the proposed
algorithm is capable to detect different categories of objects, to detect repetition rules
and to run inference based on that information.

In order to obtain rich statistics on a wide range of object categories we prepared an
image evaluation set composed of high contrast polygons at different sizes. 150 pictures
of 450× 150 pixels size have been computer generated, each one containing 2 to 8
different object categories. An object category is defined by a type of a polygon. It is
important to stress that such set evaluates not the detection capabilities but the capacity
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Fig. 7.Samples from the evaluation data set

of grouping similar elements, detecting latticelets and inferring high level cycles and
chains for model compression and completion. Polygons are described by few pixels
to introduce ambiguity in the description of repetitive elements. Fig. 7 shows some
samples from the evaluation dataset.

One of our goals is to assess the quality of object category distinction and grouping,
that is fundamental for the creation of the graph, as well as its analysis. It is important
to note that the angle difference between an hexagon and a pentagon is just 12◦ and
in small scales, due to pixel aliasing, this difference may not be easy to distinguish.
Fig. 8 left shows the average difference between the number of detected categories and
annotated categories. The graph is plotted with respect to the minimum detection quality
θb needed for each node. We can notice that the algorithm tends to under-explain the
data trying to not overfit single detections. This is the result of the soft detection and
grouping strategy we use that favors the merging of similar categories to the creation of
a new one.

Moreover, we evaluate the contribution of the CRF to the detection rate of repetitive
elements present in the image. We plot, in Fig. 8 right, this measure with respect toθb

and we overlay the results using CRF. The left side of the graph shows the CRF contri-
bution ( 4%) when many annotated objects have been already detected by the discovery
process, the right one shows the performance when just few elements are detected. In
the latter case, a sound 20% detection rate improvement is achieved: it suffices that a
small group of elements is detected for generating a set ofG used for inferring many
missing aligned low-detection nodes. Important to mentionis the average of false pos-
itives per image: 0.2. CRF therefore increases the true positive rate and it guarantees a
very low false positive rate.

We also performed a quantitative analysis of compression ratio for the images in
the evaluation set and the real-world images displayed in Fig. 9-right. The resulting
compressed image is very compact and it stores just one bitmap for each object cate-
gory and a list of 2D coordinates of elements locations. If weemploy the ratio in bytes
between the compressed image and the raw input image for the testing set images we
obtain 1.4% ratio, for the pictures displayed in Fig. 9 (top to bottom order), we ob-
tain: 2%,1.2%,2.3%,0.8%,2.8%,8%. Even though this method aggressively reduces
the amount of image details, the salient repetitive patternis preserved.
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Fig. 8. Left: Average difference between the number of detected categories and annotated cate-
gories. The algorithm tends to under-explain the data trying to not overfit single detections.Right:
Discovery only detection and discovery + CRF detection. The contribution of CRF for detecting
missing elements is particularly evident when a low detection rate is obtained. Graphs are plotted
with respect to the minimum detection qualityθb needed for each node.

A set of images of facades and other repetitive elements havebeen downloaded
from internet and treated as input for our algorithm, Fig. 9.On each of the examples the
difference from discovery and CRF-completed image is shown. It is interesting to notice
that the algorithm works also for not rectified facades and several kind of architectural
or repetitive elements. In the scope of this work it is evident that training on a simulated
data, sufficiently rich in variability, satisfies also real world examples.

9 Conclusions

In this paper we presented a probabilistic technique to discover and reason about repeti-
tive patterns of objects in a single image. We introduced theconcepts of latticelets, gen-
eralized building blocks of repetitive patterns. For high-level inference on the patterns,
CRFs are used to soundly couple low-level detections with high-level model informa-
tion.

The method has been tested on simulated and real data showingthe effectiveness
of the approach. From a set of synthetic images, it was verified that the method is able
to correctly learn different object categories in an unsupervised fashion regardless the
detection thresholds. For the task of object detection by model prediction and comple-
tion, the experiments showed that the method is able to significantly improve detection
rate by reinforcing weak detection hypotheses with the high-level model information
from the repetitive pattern. This is especially true for large thresholds for which detec-
tion only, without our method, tends to break down. For the task of model compression,
i.e. retaining and efficiently representing the discoveredrepetitive patterns, a very high
compression ratio of up to 98% with respect to the raw image has been achieved.

Beyond the tasks of model completion and compression, we seeapplications of this
method in image inpainting, environment modeling of urban scenes and robot naviga-
tion in man-made buildings.
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Fig. 9. Left Column: Extracted self-similar objects (red boxes). Note that often only a few num-
ber of instances are found.Center Column: Final CRF lattice (dots and lines) and inferred posi-
tion of objects (boxes).Right Column: Reconstruction of images based on our model compres-
sion.
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Abstract— Most large-scale public environments provide di-
rection signs to facilitate the orientation for humans and to
find their way to a goal location in the environment. Thus,
for a robot operating in the same environment, it would be
beneficial to interpret such signs correctly for a safe and efficient
navigation.

In this work, we propose a novel approach to infer the
meaning of direction signs and to use that for navigation, i.e.,
to find a mapping of a detected sign to a motion direction.
Our method uses a hierarchical extension of the Implicit Shape
Model framework called HISM that does not require any
hand-labeled training data to detect the signs. On the lower
level of this two-stage hierarchy, ISM is applied to image
descriptors as in the standard approach. On the higher level,
ISM operates on subparts of signs called tokens, using weights
learned from data. The interpretation of the signs is inferred
by associating navigation data to direction instructions. We
conducted experiments from image data acquired in an airport
terminal, aiming towards the implementation of a robotic guide,
with promising results.

I. I NTRODUCTION

Human beings can relatively easily find their way in an
unknown environment using direction signs. The first use of
these artifacts goes back to the Roman Empire, where mile-
stones were placed along the dense road network to indicate
the distances to the nearby major cities. Since that time, signs
evolved in a more convenient form which generally consists
of a symbol suggesting the direction, a distance indicator,
and a part identifying the destination. Signs are nowadays
not only restricted to roads. They actually serve as the main
cues for navigation in most public places like train stations,
airport terminals, or event venues. Given the high density of
direction signs in our daily environment, it would thus be
beneficial for a robot to be able to read these signs correctly
for an efficient navigation. This paper explores this idea and
applies it to a typical environment where the signs are of
particular importance: an airport terminal.

Our approach addresses this challenge by reasoning on
single images. The method presented in this paper is not
based on models that are manually designed beforehand, but
instead infers them from data. Moreover, we design a system
that is able to generalize over several categories of signs
by using object detection techniques. Whenever a sign is
presented to the system, it is divided into subparts ortokens.
The sign is therefore characterized by a hierarchical method
which builds on a hierarchy of Implicit Shape Models
(ISM) [1]. Specifically, a sign is defined by a geometrical

arrangement of subparts and these subparts are again defined
by a geometrical arrangement of primitive image feature
descriptors. We term this methodHierarchical Implicit Shape
Models (HISM). Furthermore, if several kinds of signs are
presented to the robot, this method allows to understand
which are the most distinctive subparts by using a smart
weighting approach. For further learning, we use our sign
detection technique to find a mapping between detections and
motion directions, thus inferring the meaning of direction
arrows. This is achieved by analyzing the frequency of
certain subparts related to signs.

In this paper, we show possible applications for a robotic
guide that navigates in an unknown environment or for a
robotic assistant that identifies which sign to follow to reach
a desired goal.

In particular, the major contributions of this work are:
• Hierarchical Implicit Shape Models (HISM): a hierar-

chical subdivision and voting strategy of a sign. This
allows robustness and subpart weighting.

• Unsupervised subpart clustering and description as an
object: uniformly clustered color regions are described
by a geometrical voting model of standard image fea-
tures.

• Mapping actions to detections to learn semantical sign
information: unsupervised detection of direction arrows.

The rest of the paper is organized as follows. Section II
reviews the related work in the domain. Section III describes
our approach for learning signs. Section IV shows how we
achieve sign detection. Section V demonstrates how to map
actions to sign detections. Section VI presents experiments.
Section VII outlines our conclusions and future work.

II. RELATED WORK

To our knowledge, there has been little work in the topic
of unsupervised sign analysis. The work of Quingjiet al. [2]
is based on a similar experimental environment. It makes use
of a Pan-Tilt-Zoom camera for obtaining detection based on
SIFT features [3] without any further reasoning.

Other literature focuses on traffic signs: either their de-
tection, their recognition, or both. For detection, the most
interesting approaches are inspired by the object detection
method proposed by [4], which is based on a cascade of
boosted classifiers working on Haar-like features. Several
authors report promising results with this technique [5], [6],
[7]. Some other detection algorithms are based on color
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segmentation or geometrical features [8] [9], and finally
on Distance Transform (DT) matching [10].

For traffic sign recognition, several machine-learning
methods have been experimented, including Support Vector
Machines [7], [8], a Bayesian generative model [6] and an
Error-Correcting Output Code (ECOC) framework [5].

Most relevant to HISM is the work by Andrilukaet
al. [11]. There, the authors propose a part-based model for
pedestrian detection in which each part votes for the object
center. With our method, we overcome the need of manual
subpart annotation: subparts are individuated automatically
by a consistency segmentation rule. Moreover, we do not
employ any supervised learning technique: our method is
able to generalize recognition of the same sign with signs
that consist of similar appearance and similar geometrical
subparts distributions in an unsupervised manner. Further-
more, [11] learns a Gaussian distribution of the position of
each manually labeled part relative to the object center that
acts as a soft skeletal model; we do not impose any subpart
spatial distribution and each subpart can independently vote
for an object center.

III. L EARNING HUMAN SIGNS

Our algorithm takes as input a picture of a sign, called
target sign, that describes a desired destination. The method
is then able to analyze any newly recorded image for the
presence and the position of such a sign, probabilistically
and without any hand-tuned models. Techniques like chamfer
matching [12] or cross-correlation [13] aim at matching
the exact visual appearance of the target sign with a test
image. However, in cluttered and crowded environments
these methods are prone to fail due to the weak description
of the object. Moreover, the user might show a target sign
not precisely aligned or totally visible. This can produce
problems to a simple gradient matching method. Instead,
we can achieve a higher level of robustness by describing
a target sign with standard local image descriptors [14].
By matching such local descriptors, we obtain a far more
reliable correspondence. Unfortunately, such an approach
does not take into account that some parts of a sign are
more important than others. As an example, numbers contain
just a few features but they are a very descriptive part of a
sign. Therefore, we developed a novel unsupervised match-
ing method that overcomes these problems by producing
a hierarchy in the object: a sign is automatically divided
into subparts, described by standard local image descriptors;
subparts compose a sign by defining geometrical constraints.
Furthermore, the subpart description of our method allows
importance weighting of each single subpart.

A. Features Extraction

The first step to robustly describe signs is to extract a
set of local image descriptors. As we expect to match basic
geometrical shapes contained in the signs, we make use of
Shape Context descriptors [15] computed at Hessian-Laplace
interest points [16]. This allows a quite dense descriptionof
the sign and, at the same time, a robust representation of local

image regions. We denote interest points as vectorsxi =
(x, y), their scalesγi, and a set of interest points asX . A
descriptor computed atxi is represented as ad-dimensional
vectorhi that is part of a descriptor setH.

It is important to notice that rotational invariance of the
descriptors is not desired in our case, since we want to
distinguish a6 from a 9. We also note that our method
is not only restricted to Shape Context descriptors, but can
work properly with any other robust image features.

B. Sign Decomposition

In the next step of our algorithm, we divide a given sign
into smaller subparts, calledtokens. Signs are intrinsically
designed to be clearly distinguishable by human eyes in
any environment. For example, for traffic signs, the color
schemes are regulated by an international convention [17].
Signs for public places generally follow the same rules.
The colors used for the shapes are chosen to have a high
contrast with respect to the background. By following these
reasons, we define that uniform coherent and high-contrast
areas delineate subparts. We thus proceed by binarizing the
sign. Otsu’s segmentation method [18] is able to accomplish
this task in a robust and fast manner. It automatically selects
the best thresholding value by minimizing the intra-class
variance of foreground and background estimated pixels.

Then, a region growing algorithm [19] is applied to the
active pixels of the binary image in order to group adjacent
neighboring pixels into coherent regions. In order to remove
inherent noise, we fix a minimum number of pixelsσ
per region. Finally, an agglomerative hierarchical clustering
algorithm with average link [20] groups nearby regions
into clusters by considering the distance between centers of
gravity and using a thresholdθd. This process avoids that a
sign is decomposed into too many small regions. We then
compute the bounding boxB for each cluster and define the
set of all interest points and corresponding descriptors inside
B as asign tokenT :

T := {(x1,h1), . . . , (xm,hm), B}
where xi ∈ B ∀i = 1, . . . ,m (1)

and hi is computed atxi ∀i

It is important to remark that this method does not exploit
the color or the shape of the cluster as a subpart descriptor,
but it just uses the cluster as a coherent container for robust
local image descriptors. Furthermore, our algorithm is not
restricted to this procedure. Actually, any fast and robust
segmentation method could be used at this stage.

C. Learning the Sign Hierarchy

Once a sign has been divided into tokensT , we extract
geometrical informationin addition to theappearance infor-
mationgiven by the descriptorshi in eachT . An elegant and
well established way to achieve this is by means of Implicit
Shape Models (ISM) [1]. An Implicit Shape Model describes
an object by acodebookof local appearance, i.e., a collection
of local image descriptors, and the displacements between

Articles on Unsupervised Offline Learning (Chapter 5)

Appeared in: Proc. of the Intern. Conf. on Robotics and Automation (ICRA), 2010 193



their associated interest points and the object center. In our
case, this means that a codebookCT for a tokenT consists
of all image descriptorshi ∈ T and all corresponding
displacement vectorsvi, wherevi = xi − cT and cT is
the center of gravity ofT . Thus, we define:

CT := {(h1,v1), . . . , (hm,vm)}. (2)

Now, using CT , we can describe sign tokens, but for
a reasoning on the higher level of signs, we need more
information about the arrangement of the tokens in a sign.
We proceed by introducing a hierarchical ISM of tokens,
called HISM. A codebookCS of this hierarchical ISM is
defined as the set of all tokensTi of a signS along with
the displacements between the tokens’ centroidscTi and the
centercS of the sign, and a weighting factorgi, i.e.:

CS := {(T1,w1, g1), . . . , (Tn,wn, gn)}
where wi = cTi − cS ∀i = 1, . . . , n (3)

and gi is the weight of Ti (defined below)

At this point, we note that the boundaries of a signS
must be given to be able to compute its centercS . Also,
information about which tokens belong to which sign must
be available to be able to create the codebookCS . In this
paper, we assume that a sign is always given in form of
its bounding box. This ensures thatcS and the tokens that
belong to a sign are uniquely defined. This is nevertheless
possible to remove this limitation with a clever segmentation
algorithm, but this was not the focus of our work. The entire
target sign processing is illustrated in Fig. 1.

D. Learning Token Weights

Using the HISM as described so far, we can compute a
high-level codebookCS for each target sign and use it to
find matching signs in new images presented to the robot.
The details of this detection step are described in the next
section. Before, however, we note that signs often differ
only by a very small fraction, such as, e.g., one digit in the
two signs forCheck-in 1 andCheck-in 3. Using the
HISM to match two signs like these would result in a high
matching score, although the signs are significantly different.
To address this issue, we additionally extract information
about which tokens in a sign are most distinctive.

The intuition we use here is the fact that distinctive tokens
occur only rarely in a given set of target signs. Assuming we
are given a set of target signsS = {S1, . . . ,Sm′}. Now, for
each signSi in S, we match all tokensT i

j of Si with all
tokens from the other signs inS. As a result, we obtain
a matching scores, defined below, for the correspondence
between the tokensT i

j and T i′
j′ . This score is high if the

tokens match well and low otherwise. A measuregj of how
well a tokenT i

j matchesin generalcan then be determined
by summing up all matching scores:

gj(T i
j ) :=

m′∑

i′=1

m(i′)∑

j′=1

s(T i
j , T i′

j′ ), (4)

wherem(i′) is the number of tokens encountered in sign
Si′ . Using this definition, the value ofgj for each tokenT i

j

characterizes its discriminative factor and is used at a later
stage as a voting weight.

IV. SIGN DETECTION

Whenever a user shows a target signS to the robot, its task
is to navigate to the goal position whereS is encountered.
To achieve this, it needs to match all new images withS
and extract a direction indicator, i.e., an arrow, to infer its
direction of motion. As a first step, the signS is matched
within the existing databaseS. In caseS /∈ S, its HISM is
computed and stored inS. Moreover, all the token weights
gj are updated.

Then, for a given new imageI presented to the robot, all
the interest pointsxI

i and shape descriptorshI
i are computed.

These are then matched with all descriptorshj found in the
codebookCTk of S. The matching is carried out using a
nearest neighbor distance ratio strategy [14]. The Euclidean
distanced(hI

i ,hj) defines the matching score betweenhI
i

and hj . Let the first and second best matching descriptors
behj1 andhj2 . A matching pair(hI

i1
,hj1) is detected, if

d(hI
i1 ,hj1) ≤ ϑm d(hI

i1 ,hj2), (5)

whereϑm is a distance ratio.
Each descriptorhI

i that matches a descriptorhj in a
codebookCTk casts avote for an occurrence of the token
Tk at the position

pij = xi − vj δij

δij =
γi
γj

, (6)

wherexi andγi are the interest point and scale related to
hI
i , vj andγj are the stored displacement vector and scale

related tohj , andδij is the scale of the vote. Moreover, each
vote is weighted inversely proportionally to the matching
distance:

wij :=
1

1 + d(hI
i ,hj)

(7)

All votes qij = (pij , δij) are then collected in a voting
spaceW. Occurrences of the tokenTk are determined by
finding high density loci inW. To this end, we use mean shift
mode estimation [21] with a spherical uniform kernel and a
scale-adaptive bandwidth. This method starts at a random
point q ∈ W and iterates over computing the meanq̄ in
a local vicinity of q and assigninḡq to q until a minimal
distance betweenq and q̄ is reached. The resultinḡq is a
modem of the underlying points distribution and we call
M the set of pointsq which supportm. The process is
repeated until each pointqij has been assigned to a mode
mi′ = (pi′ , δi′). The resulting modes yieldhypothesesfor
the location of the tokenTk. The modemi′ defines the token
Ti′ with a matching score:
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Fig. 1. Template processing. The input image1 is binarized into image2 with Otsu’s segmentation method. A region growing algorithm finds clusters
of coherent colors in image2 and outputs them in image3. An agglomerative clustering algorithm groups the regions of image3 into tokens in image4.
Image5 shows the codebooks for each token of image4. Image6 shows the codebook for the entire sign from the tokens codebooks of image5.

s(Ti′ , Tk) :=
∑

∀i,j qij∈Mi′

wij (8)

Finding the entire sign inI is then done in a similar
fashion as for the tokens. A tokenT I

i′ that matches a token
Tk of CS casts a vote for an occurence of the signS at the
position:

ri′k = pi′ −wk δi′ (9)

ζi′k = δi′

where pi′ and δi′ represent the hypothesismi′ for the
position and scale of the tokenT I

i′ , andwk is the distance
vector stored in the codebook. Furthermore, each vote has a
weight defined by:

vi′k := s(T I
i′ , Tk)

1

gk
(10)

As before, we collect the votesti′k = (ri′k, ζi′k) that are
hypotheses for possible locations of a signS in a voting
spaceV. Again, we run mean shift mode estimation to find
local density maxima inV. The resulting location hypotheses
mS

j′ = (rj′ , ζj′) supported byMS
j′ for an occurrence of the

sign S in I have a score defined by:

s(mS
j′) :=

∑

∀i′,k ti′k∈MS
j′

vi′k (11)

The final scores(mS
j′) can be compared to a detection

thresholdϑd in order to validate the presence of the signS
in I at locationrj′ and scaleζj′ . This threshold influences
directly the performance of the sign detector: high values of
ϑd reduce the number of false positive detections and thus
increase the precision of the detector. Low values however
increase the recall value. A detailed analysis on this is given
in Sec. VI. We finally note that our system could be used
in a probabilistic framework instead of outputting a binary
answer.

V. M APPING ACTIONS TODETECTIONS

We described in the previous sections how HISM repre-
sents a reliable sign matching method. In this section, we go

a step further and analyze how it is possible to map actions
to sign detections.

For a robot to navigate in asign-rich environment like an
airport, we not only need a reliable sign matching algorithm.
We also have to associate the instruction related to the sign
occurrence to a specific action of the robot, i.e., understand
the direction arrows. We present two methods: in one we
build an arrow detector, in the other we show how to exploit
the full potential of HISM and infer it from the data.

A. Geometric Approach

A direct way of mapping actions to detections is to
explicitly build an arrow detector. A simple arrow detectoris
described by an heuristic built on a given geometrical model,
composed by piecewise linear segments. In order to detect
an arrow, the image is segmented with Otsu’s binarization
algorithm. Regions with a certain minimal size and uniform
color are extracted by using the same connected component
approach as fortokenextraction. The following geometrical
properties are taken into account for arrow detection:

• Aspect ratio of the bounding box computed on each
extracted region.

• Filled ratio, i.e. number of pixels in the clustered region
over the number of pixels of the bounding box.

• Horizontal or vertical symmetry axis of the cluster.
• Position of bounding box centroid.
We can efficiently compute these key geometrical proper-

ties by using the integral image technique introduced by [4].
The idea is to halve the bounding box by an horizontal
line, and then by a vertical line. The integral image allows
to easily compute the sum of the pixels in the subdivided
bounding box areas, thus the symmetry ratios. We encode8
types of arrows (up, down, left, right, and their 45-degrees
rotated counterparts). We first detect the four cardinal arrows.
Then we apply the same technique by rotating of 45-degree
the detector for the remaining diagonal arrows. Classifica-
tion is obtained by empirical thresholding on each of the
geometrical property. Henceforth, this method introduces
several free parameters to tune, lacks of generality, and is
not adaptive.

B. Learning Approach

By using HISM, we can easily develop a robust and
elegant method for mapping a sign to a robot action. The
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resulting algorithm is able to deal not only with arrows, but
with any kind of geometrical shapes representing a direction,
like triangles or complex direction symbols.

The idea is to collect with a robot several pictures of
signs, and each time an image is taken, a label is associated.
The label represents the high-level action that an operator
has commanded to the robot: ”turn left”, ”turn right”, ”go
up”, and so on. As soon as this dataset is built, all the
images associated with the same action are collected into
I =

(
Iup, Ileft, Iright, Idown

)
.

The intuition is to find the most recurrenttokenby simply
comparing the signs of an image action set together. Thus,
we consider each setIi separately and detect all the signs
in each set by running our algorithm on that. Therefore,
similarly to the procedure of Section III, we produce a
frequency analysis. All thetokensrelated to detected signs
are discarded, therefore we count how many times each
remaining token is repeated inIi by computing the usual
token matching score. In order to avoid ambiguities (e.g.
another arrow of another sign in the image) we produce the
assumption that the repeated tokens must be in an area close
to a detected sign. We then store thetoken as a part of a
sign, described by its ISM, related to the direction change
Ii. This procedure is run in for allI.

VI. EXPERIMENTS

We show in this section the results of our implementation
and particularly analyze the qualitative and quantitativeper-
formance of our algorithms. Although we do not present an
experiment involving a robotic platform, we outline in the
conclusion the necessary steps for an integration.

All the experiments are based on a database of images
collected at Zurich Airport with a standard digital camera.
The original format of the images (JPEG, 3264x2448 pixels)
is shrunk to a more reasonable 816x612 pixels BMP format.
A gamma correction of 2 is also applied to increase the
contrast. The majority of the images contain various signs at
different scales, including background scenes of the airport.
Some images contain no signs.

As mentioned before, our algorithm relies on several
parameters: the descriptors matching distance ratioϑm, the
clustering threshold in the template imageθd, the minimum
area of a region in the template imageσ, and the sign
matching thresholdϑd. In the following experiments, we
empirically fixed ϑm to 0.5, and madeθd and σ scale
dependent. The discriminative thresholdϑd was then iterated
in order to find the optimal parameter.

A. Classification

In the first set of experiments we evaluate the general
quantitative performance of our classifier in the case of target
signs and arrows classification in random sample images.

1) Signs: As exposed above, the target signs are firstly
matched against each other in order to determine the most
distinctive token. In this experiment, we want to match the
Check-in 3 sign and we have 6 different target signs
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Fig. 2. Precision and Recall graph for signs and arrows classification. The
plot shows that HISM outperforms ISM for signs detection, andthat the
arrows detection performs reliably.

(Check-in 1/2/3, Arrival 1/2, Railway). The to-
ken containing the number3 will get the higher voting
weight after the matching process.

The Check-in 3 sign is matched with all the images
of the database which is manually labeled to have a ground
truth. The database contains 57 images with aCheck-in 3
occurrence out of 124 images.

The performance of the classification is evaluated with the
Precision and Recall (PR) graph in Fig. 2, which shows the
iterative discriminative thresholdϑd variation. The detection
reaches 90 % at the Equal Error Rate (EER). For comparison
purpose, Fig. 2 also reports the results using the standard
ISM approach, which gets 60.25 % at EER. In this case,
a lot of false positives are introduced, sinceCheck-in 1
andCheck-in 2 signs are counted as positives. Although
we do not report their PR graph, we obtained similar results
with the other target signs.

As a consequence of these experiments, we can state that
our algorithm is able to correctly label the images belonging
to the same path. Moreover, the accuracy of the detection
might come to 100 %, if we refine our system by fusing
multiple hypothesis of the same spot at different scales.

2) Arrows: In this second experiment, we aim at extract-
ing the high-level navigation instructions contained in the
signs. In our example of Zurich Airport, these instructions
are represented by 8 types of arrows (right, left, up, down,
and their 45-degrees rotated counterparts).

23 images containing an arrow pointing to the right are
collected. They are matched against each other in order
to extract their common token. The descriptors selected
in each image are then again matched against each other.
The token which gets the highest summed matching score
will represent this kind of arrow. The extracted token is
finally matched with the entire image collection to assess
the performance of the arrow classification. The database
contains 35 occurrences of right arrows out of 124 images.

The results are expressed in the PR graph in Fig. 2.
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Fig. 3. Example of exploration and mapping in Zurich Airport. The robot
starts from the garage and is able to reach theCheck-In 3by following the
instructions on the sign. In the end, a topological map is alsobuilt.

The detection reaches 83.33 % at EER. We believe that
these results could also be improved by using temporal
integration. Although we only show here the classification
of right arrows, these results are generalizable to any kind
of direction instructions.

For comparison purpose, we also assess the performance
of our geometrical arrow detector on the same set of images.
We obtain anaccuracyof 93.54 %, which is slightly better
than with the learning method. However, this approach is
computationally more expensive and not as easily scalable
in other environments.

B. Exploration and Topological Map Creation

In this experiment, we show how the combination of the
previous results can yield an interesting robotic application.
Assuming that a robot has an arrow and a sign detector, we
can for instance put it in the garage of the airport in front ofa
direction sign and show him an image of theCheck-in 3
destination sign it has to reach. The robot uses the sign
detector to find which part in the current image is relevant
to the destination. It then maps the direction instruction to
a motor action of its base. The result of this action leads
him to the next sign until it reaches the destination. Fig. 3
qualitatively shows the result of this experiment.

This experiment shows that our algorithm is not only
suitable for finding its way in an airport. It can also be used
with a robot to build a topological map of the airport.

VII. C ONCLUSION

In this paper, we introduced the concept of Hierarchi-
cal Implicit Shape Models for robustly recognizing and
generalizing over different kinds of signs in unstructured
environments. It consists of a two-level hierarchy: one based
on image primitives and the other on subparts of signs with

weights learned from data. We showed that with HISM,
it is easy to map semantics to detections by learning the
meaning of the direction arrows in an unsupervised manner.
Experiments have been conducted from datasets retrieved in
a crowded airport terminal, that show typical guiding robot
applications, with promising results.

As future work, we aim to extend this approach by using
temporal integration and to develop learning and detection
into a robotic mobile platform ready to be deployed in man-
made environments.
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Abstract— We present a novel approach for unsupervised
discovery of repetitive objects from 3D point clouds. Our
method assumes that objects are geometrically consistent, and
uses multiple occurrences of an object as the evidence for
its existence. We segment input range data by superpixel
segmentation, extract features for each segment, then find a set
of segments that have a matching set using a joint compatibility
test. The discovered objects are then verified by the Iterative
Closest Point algorithm to remove false matches. The presented
method was tested on real data of complex objects. The
experiments demonstrate that the proposed approach is capable
of finding objects that occur multiple times in a scene and
distinguish apart those objects of different types.

I. Introduction

For a robot that interacts with people, it is essential to
semantically analyze its surroundings. In particular, home
environments usually contain various objects, which often
define the particular location at which they are encountered
(e.g. furniture). The ability to detect and distinguish objects
autonomously is thus a key for a robots’ independence when
working in a home environment. For instance, if a robot
can determine that a dining room contains a set of chairs,
which are multiple occurrences of the same object, and a
table, which is different from chairs, then it can use such
information to classify a dining room as a place with two
types of objects - many chairs and one table. Then, when it
encounters an unfamiliar room, it can simply search for the
characteristics of the room - many instances of one object
type and one instance of a different object type - and the
fingerprints of the objects found in the room. When both are
verified, the robot can label the room as a dining room. Such
an automatic process eliminates the necessity of training a
robot with every object it is likely to find in the environment.
Instead, we can simply label each type of object a robot
finds in the appropriate language of the household, e.g. chair
or Sessel. In this work, we investigate the possibility of
unsupervised discovery of objects that occur multiple times,
such as chairs in a dining room, from data taken with a 3D
laser scanner.

Unsupervised discovery of repetitive objects in a given
scene is a challenging task because we do not know a priori
the definition of an object, the number of occurrences of a
certain object type, nor the number of different object types
present in the scene. In addition, the method must be able to
distinguish real objects - chairs and couches - from walls,
ground, and ceiling as we do not pre-segment them out.
The method thus should be able to hypothesize on objects

Fig. 1. An example of a scene observed with a nodding SICK laser scanner.
Objects that are discovered through the algorithm are colored, where all
points which belong to the same object are assigned to one color. Arrows
are drawn between two segments that match.

while handling lots of clutter in the scene. As an indoor
robot can easily collect more evidence to support or refute a
hypothesis without any harm, it is better for a robot to claim
no knowledge than have a false belief when the uncertainty
is high. To minimize false discovery, we take a conservative
approach and only accept the output when the uncertainty is
low.

Figure 1 depicts a typical scene of interest in this paper,
which is captured using a nodding SICK laser scanner. The
scene contains two working chairs and two arm chairs along
with some ceiling light fixures and a plant. Of these, we are
interested in discovering the two types of repeating objects
- the working chairs and the arm chairs. If the process is
successful, each instance of the object gets its own color,
and arrows are drawn between all segments that match.

We propose an approach to discover, without supervision,
objects that occur multiple times in a scene. Using 3D point
clouds from a laser scanner as input, we first segment the
points according to their surface property using superpixel
segmentation and extract features for each segment. We use
an extended joint compatibility test to discover object models
and their matching objects, and verify these objects by the
Iterative Closest Point algorithm to remove false matches.
Through this work, we demonstrate that repetition can aid
the discovery of objects and define object models.

The organization of the paper is as follows. We discuss
related work in Section II. Section III explains how the input
scene is segmented and how features are extracted from each
segment. In Section IV, we discuss the object discovery
method and the verification step. Section V presents the
experimental results. The paper concludes with Section VI.
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II. RELATED WORK

Repetition detection has been well-explored in the field of
image analysis. In particular, many authors have investigated
methods for detecting regularly repeating patterns [1], [2].
More recently, Loy and Eklundh [3] focused on grouping of
features based on symmetry, and Wenzel et al. [4] proposed
an algorithm that uses symmetry to detect repetitive struc-
tures in facade images. They argued that symmetry is a strong
clue to group features together. Likewise, we group together
segments upon a discovery of a matching set, but we do not
explicitly search for the symmetric plane between the two
objects. In this way, our approach is similar to Zeng and van
Gool [5], where the authors employ point-wise repetition to
improve segmentation results. They use mutual information
to determine if two segments of an intially oversegmented
image are of the same group. We instead extract features for
every segment and compare these features to measure the
similarity between two segments.

In terms of 3D, discovery and utilization of repetition
has been adressed in computer aided design and other
synthetic models [6], [7], [8]. They focused on detection
of symmetry or regular patterns in 3D with applications in
graphics and image compression. Work of Bokeloh et al. [9]
is more closely related to this work. The authors proposed an
algorithm for detecting structural redundancy by matching
symmetric constellations of feature lines. We also search
for a collection of elements that repeat as a group, but we
do not assume symmetry as the repetition pattern. To our
knowledge, no work has dealt with discovery of objects by
repetition in laser data.

In unsupervised object detection, several have proposed
adaptation of text analysis methods in image analysis. For
example, Liu and Chen [10] has proposed a modified proba-
blilistic latent semantic analysis method to detect foreground
objects from images. In [11], Endres et al. use Latent
Dirichlet Allocation to detect object classes from range data
without supervision. While this approach can classify objects
of multiple classes, they assume that a ground plane and
walls are extracted a priori and the objects are spatially dis-
connected. In our work, we do not make such assumptions.
We consider every segment as a potential object part and test
them to determine if they belong to an object.

The way we define an object is parts-based. We search
for objects using the joint compatibility branch-and-bound
algorithm [12]. Shin et al. [13] has shown that objects defined
by parts can be represented by a grammar and recognized
using a joint compatibility test. In our work, we do not
perform a separate parts detection, nor require object parts
to have physical meanings.

We employ feature-based approaches to recognize objects.
Among various feature descriptors for 3D data, spin images
have been shown to be successful and popular [14], [15].
Other features of interest for this work are shape distribu-
tion [16] and shape factors [17].

III. SEGMENTATION AND FEATURE EXTRACTION

The proposed algorithm is a three-step process. First, we
extract segments from the input point cloud and extract
features for every segment. We apply a joint compatibility
test on these segments to detect objects and then verify them
using the Iterative Closest Point algorithm. In this section,
we describe the segmentation method and shape descriptors.

A. Range Data Segmentation

The goal of segmentation is to find labels L(x) for all
data points x, where points that are close to each other and
similar in some predefined way, should have the same label.
We use the superpixel segmentation method by Felzenszwalb
and Huttenlocher [18], originally proposed for 2D images,
to group together similar points. This algorithm creates a
graph G = {V,E} of vertices V and edges E, where each
pixel in a given image corresponds to a vertex and the edges
connect adjacent image pixels. Each edge e = (vi, v j) has an
associated weight w(e) representing the dissimilarity of the
connected vertices vi and v j. In the case of an image, this can
be, for example, the difference of the pixel intensities. The
algorithm starts with a segmentation where each vertex is its
own segment. Then, the edges are processed by increasing
weights and the two segments Ci and C j connected by a
given edge e are merged whenever

w(e) ≤ min
(
d(Ci) +

k
|Ci| , d(C j) +

k
|C j|

)
,

where d(C) is the internal difference function defined by the
maximal edge weight of all edges in the minimum spanning
tree of the segment C ⊆ V, and k is a consistency parameter
that influences the granularity of the segmentation: a low
value of k requires segments to be more consistent and thus
produces more but smaller segments. The interal difference
function ensures that two segments are merged only when
the difference between the two is smaller than the difference
within each segment with some tolerance.

In this work, we define each point x of a 3D point cloud
X as a vertex and form an edge between two neighboring
vertices, where neighbors are determined by a triangular
mesh built on the data. We use the dot product ni · n j as
edge weight where ni is the surface normal vector computed
at point xi. Thus, regions with a smooth surface, e.g. a plane
or a sphere, are segmented as one region while surfaces
with sharp edges, e.g. between two sides of a box, are
segmented into two regions. As a modification of the original
algorithm, we do not force every point to be in a segment.
This is because we cannot calculate the normal for the
points with an insufficient number of neighboring points. For
these isolated points, no vertices are generated in the graph,
and thus no label is assigned. In addition, after termination
we remove segments that contain less points than a given
minimal value msize. Such small segments are often caused by
sensor imperfections or occlusions and do not reveal enough
information for the later matching process.
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B. Shape Descriptors

As shape descriptors, we use spin images [14], shape
distributions [16], and shape factors [17], and weigh them
accordingly. For a given point x with normal vector n, a
spin image is defined as a 2D histogram Hs oriented along
the line l through x with direction n. Each bin of Hs counts
the points with a certain distance to l and the plane through
x with normal vector n. For the spin image descriptor of
a segment C, we form vectors hs

i of stacked lines of the
histograms Hs

i for all points xi ∈ C and compute the average
h̄s over all hs

i .
A shape distribution is defined as a histogram of values

of a predefined function f : Cr → �, where r is the
arity of f and is usually a value between 1 and 4. In our
implementation, we use two binary functions fd(xi, x j) and
fa(xi, x j), namely the Euclidean distance of the points xi and
x j and the scalar product of their normal vectors ni and n j.
The resulting histogram vectors hd and ha are computed by
evaluating fd and fa on all pairs of points in a segment C. To
make the feature vectors invariant with respect to the sample
density, we normalize the histograms hd and ha by the total
number of bin entries. A normalization with respect to the
maximum distance encountered in a segment is not done, as
this would result in scale-invariant features, and we consider
scale as a feature to be distinguished between objects.

Finally, we compute shape factors per segment, i.e. the
normalized eigenvalues of the covariance matrix Ci of all
points in segment Ci, collected in a vector h f . All individ-
ual descriptors are used to define a distance metric dc on
segments as

dc(Ci,C j) = λ1∆h̄s + λ2∆hd + λ3∆ha + λ4∆h f ,

where the λi are weight factors and ∆h is the Euclidean
distance between two feature vectors h(Ci) and h(C j).

IV. OBJECT DISCOVERY

The challenge of unsupervised discovery of repetitive
objects is that we have neither an a-priori definition of an
object, nor the number of occurrences per object type. With-
out such information, we cannot determine for each segment
if the segment is an instance of an object. To overcome this
problem, we search for only those objects that occur multiple
times in the scene. The multiplicity allows us to reason on
the object by comparing it against another instance of the
same object. In addition, we only focus on complex objects
and define an object as a collection of segments. Discovering
objects composed of only one segment requires us to rely
entirely on the shape descriptors for matching. The minimum
segment constraint allows us to use physical constraints as
an additional evidence for an object. Therefore, we consider
an object hypothesis valid only when it is composed of at
least two segments. To reduce false matches, we verify the
hypotheses for objects by finding correspondences between
the point clouds of discovered objects.

Algorithm 1: JCBB The joint compatibility branch-and-
bound test for discovering a pair of repetitive objects.

Data: Segments C of the scene

Input: Current model hypothesis HM ⊂ C and its
matching test hypothesis HT ⊂ C
Output: A pair of hypotheses BM ⊂ C and BT ⊂ C that
yield the highest matching score.

Procedure:
if |HM | ≥ |BM | and dc(HM ,HT ) > dc(BM ,BT ) then
BM ← HM ;
BT ← HT ;

end

I ← |C| ;
for i = 1 to I do
Ci

M ← random select f rom(C) ;
Ci

T ← random select f rom(C \ {Ci
M}) ;

if individual match(Ci
M ,Ci

T ) and
relation match(HM ∪Ci

M ,HT ∪ Ci
T ) then

JCBB (HM ∪ Ci
M ,HT ∪ Ci

T ,C \ {Ci
M ,Ci

T }) ;
end

end

A. Repetitive Object Discovery

To find repeating objects, we use a joint compatibility
test with branch-and-bound [12], a popular solution for
data association problems. Data association is a well-known
problem in robotics. The joint compatibility test addresses
the data association problem by finding test points that not
only correspond to the model points individually but also
match well as a set. The branch-and-bound aspect enables
the algorithm to search efficiently by growing a hypothesis
when necessary and terminating one when no appropriate
part is found.

In an ordinary data association problem, the model set is
predetermined, and the goal is to find the best mapping from
the test set to the model set. In our framework, however, we
do not have a model. Our goal is to discover a model through
the detection of matching pairs of segments. We thus propose
a modification to the algorithm that is capable of extracting
an object model and its matching test object from the input
segments.

The overall algorithm is shown in Algorithm 1. Given
segments as input to the algorithm, we search for a set of
segments that occur multiple times in the scene. We perform
the search in two steps. In the first step, we discover an
object model, i.e. a collection of segments, and its matching
object. Since the only evidence we have for an object is the
presence of a matching object, the process will always return
two hypotheses. In the second step, the algorithm searches
for the remaining occurrences of the object using as a model,
the objects found in the first step.

The first step is as follows: We begin with a randomly
selected segment C0

M and look for a segment C0
T in the scene
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that match well with it. If we find C0
T , then we begin two

hypotheses, HM and HT , one for the model set and the other
for the test set. The distinction of model and test hypotheses
is arbitrary as one hypothesis is only valid with the existence
of a matching hypothesis. Therefore, there is no definitive
model hypothesis to which a test hypothesis must match.
Rather, a pair of segments must be similar enough to support
each other’s validity.

The hypotheses HM and HT grow as we select a new
segment C1

M and search for C1
T that is individually compatible

to C1
M , and its combination with HT is jointly compatible to

HM∪C1
M . The hypothesesHM andHT continue to grow until

the n-th model segment Cn
M no longer finds a compatible

test segment Cn
T . The algorithm then starts a new pair of

hypotheses with a different seed segment pairs, in search of
the best pair of hypotheses BM and BT . The best pair of
hypotheses contains the most number of segments with the
smallest distance between the hypotheses. At the end of the
process, we label BM and BT as objects O1 and O2 of type
O.

Upon the discovery of an object type O, we begin the
second step. To find the remaining instances of O in the
scene, we apply the algorithm again, but this time, using
O1 and O2 as the model. Now the goal is to find a set of
segments that matches the model best. Each time we find
such a hypothesis Hk, we label it as an object Ok of the type
O. The search for an object of type O ends when we no
longer find a hypothesis that matches either O1 or O2. We
repeat this two-step process of finding a pair of hypotheses
and detecting other instances of the object until we no longer
find a valid hypothesis.

In the presented algorithm, the invidiual and the joint
match score play a crucial role in deciding on a match. We
use the shape descriptors as described in Section III-B to
evaluate a match. For an individual match, we consider a
pair of segments CM and CT compatible if

dc(CM ,CT ) < Ti,

where Ti is a thresholding value for individual compatibil-
ity. For the joint compatibility, in addition to calculating
dc(HM∪CM ,HT∪CT ), we compute the Mahalanobis distance
dm(VC,HM ,VC,HT ) between the new segement pairs to the
segments in their corresponding hypotheses, where VC,HM

indicates a vector from the center of the input segment CM

to a segment in the hypothesis HM . We require that for all
segments in HM and HT ,

dm(VC,HM ,VC,HM) < T j.

The physical constraints enable us to reject segments that are
similar in features but are inconsistent with the hypotheses
in their arrangement.

B. Match Verification

The goal of the verification step is to minimize falsely dis-
covered objects by confirming that the discovered objects are
consistent among themselves. We achieve this by mapping all
points of an object Oi to the points that belong to its matching

(a) Without initialization (b) With initialization

Fig. 2. Correspondences between two point clouds without the spin image
initalization 2(a) and with the initialization 2(b). Without the initialization,
ICP performs poorly when the two point clouds have a high rotational
transformation as shown in 2(a). 2(b) shows that the same two sets match
well with the initialization.

pair O j by the Iterative Closest Point (ICP) algorithm [19].
ICP, often used in localization, finds the transformation from
one point cloud to the other by minimizing the difference
between the two sets. Since ICP finds a local minimum, it
works well only when the initial correspondence between
two point clouds is close to the global minimum. As the
objects Oi and O j can be in any orientation, the initial
estimation cannot rely purely on the nearest neighbors in
the Euclidean space. We instead estimate the initial transfor-
mation by computing features at various randomly selected
points in Oi and finding their corresponding points from O j

in the feature space. We use spin images as the features,
as presented in [14]. Figure 2 shows the effect of the
initialization by the feature-space correspondence. As the
figure indicates, without the initialization, the verification
step performs poorly when the objects are mirrored.

The initialization is as follows: Given two objects Oi and
O j, we first center them with their respective mean values Ōi

and Ō j in x- and y-direction, and randomly select a subset
of points (x1, ..., xn) in Oi. We assume that objects are in
their natural vertical position and do not center the points in
z-direction. This helps us eliminate wall-ceiling, wall-floor,
and ceiling-floor matches. For each point xk, we calculate
its spin image and search for all points (yk

1, ..., y
k
m) in O j,

whose spin image is similar to xi. These points are then
used as the initial correspondence points for ICP. Once the
transformation between the two point clouds is found, we
count all the points in Oi that have a corresponding point
in O j and vice versa. We consider the two objects Oi and
O j matched if the total number of matched points is greater
than 70 percent of the sum of points in Oi and O j.

V. RESULTS

In this section, we test the algorithm on scans from real
world scenes. We took data using a nodding SICK laser with
a width of 100 degrees and a height of 90 degrees. Each set
was captured at the horizontal resolution of 0.25 degrees
and the vertical resolution of 15 degrees a second. The test
set was composed of 55 data sets from four different rooms.
Overall, the scenes had four types of working chairs and one
type of arm chairs along with trash cans, a flip chart, and a
plant as background. Objects were placed up to 90 degrees
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Fig. 4. A test scene with no repeating object. The algorithm discovers no
object.

TABLE I
The effect of segmentation parameters on the object discovery rate

msize 50 75 100 120 150
k = 6 56% 48% 51% 45% 40%
k = 9 59% 48% 59% 45% 40%
k = 12 42% 34% 36% 36% 36%
k = 15 47% 47% 36% 36% 36%

of rotation from each other. Most scenes contained two or
three objects of the same type, but some scenes contained
two objects of two kinds. Four scenes contained contained
no repeating objects. In total, there were 138 instances of
objects that the algorithm could discover.

We evalute the algorithm by the rate of discovery and
precision. The discovery rate is the number of objects the
algorithm found over the number of objects we expect
it to discover. We calculate precision as the number of
correctly discovered objects over the number of correctly
and incorrectly discovered objects. The rates for object types
are computed likewise. For example, if a scene contains
three chairs of type A and one of type B, then we define
the ground truth as three chairs and one object type. As
mentioned earlier, the program does not detect objects of
single occurrence.

Figure 3 and Figure 4 contain some of the results of
the presented algorithm. All points that belong to the same
object have the same color, and an arrow connects two
matching segments. The arrow starts from a model segment
and points at the corresponding test segment. The overall
rate of object discovery is 59% and that of object types is
68%. The precision is 98% for objects and 97% for object
types. The precision is high because our method eliminates
every uncertain object. In a home environment, it is better
for a robot to take more data when it is uncertain about
the environment than to make a false assumption about its
surroundings. If we set the minimum segment requirement
to one, i.e. an object is composed of one or more segments,
then the discovery rate goes up to 76% for objects and 84%
for object types, but the precision drops to 51% for objects
and 49% for object types. The drastic decrease of precision
is due to the false matches among segments that belong to
wall, ceiling, and floor.

Our method does not assume a perfect segmentation.

Fig. 5. No object is discovered due to sufficient number of segments. When
an object is segmented as one segment (top), the program fails to discover
it as an object (bottom).

Fig. 6. No object is discovered because of a failure in the verification step.
Objects that are found in the discovery phase (top) are falsely eliminated
during the verification phase, yielding no detection (bottom).

However, the final outcome is affected by the quality of
segmentation. Table I shows the rate of discovery against
the consistency parameter k and the minimum segment size
parameter msize. Our experiment revealed that k = 9 and
msize = 100 yields the highest discovery rate and precision.
This is partially due to our assumption that an object is com-
posed of at least two segments. The requirement naturally
favors objects that are segmented into multiple segments.
Therefore, for a high discovery rate without suffering the
precision, it is crucial that the segmentation is done in such
a way to allow multiple parts per object while each segment
being large enough to be discriminative. One major source
of no discovery was the lack of sufficient object segments.
When an object is segmented into a single segment, the
program fails to discover the object as it is invalid according
to our definition of object, as shown in Figure 5. Another
source of no detection was the lack of sufficient points on
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Fig. 3. Some test scenes with discovered objects in color. Points that belong to the same object have the same color

objects. In addition to occlusion and the natural sparsity of
data, the incident angle limits the number of usable points
in laser data. Without sufficient points, however, we cannot
extract segments and features reliably. This causes a lack
of object discovery. Lastly, while the verification step most
often improved the quality of results, it sometimes eliminated
correct hypotheses due to incorrect initialization of point
clouds, shown in Figure 6.

VI. CONCLUSION AND OUTLOOK

We presented an approach for unsupervised discovery of
repeated objects in range data without a prior knowledge on
parts, location, or the number of occurrences. It determines
potential object parts by applying a modified superpixel
segmentation on the point cloud and extracts features on
these segments using spin images, shape distributions, and
shape factors. It then discovers objects by finding a set of
segments that has a matching set using a joint compatibility
test. The objects are verified by the Iterative Closest Point
algorithm to minimize false matches. We tested the algorithm
on real world data sets to demonstrate its ability to detect re-
peated objects. The whole process is performed without any
supervision and without presegmentation of the background.

There are several avenues for improvement. Work pre-
sented in this paper has so far only been tested indoor. While
outdoor also contains repetitive structure, using the current
algorithm for outdoor scenes poses challenges because out-
door objects are often much bigger than indoor objects. A
single scan of an outdoor scene often fails to capture multiple
instances of the same object at the level of detail necessary
for the algorithm. To overcome this problem, it is necessary
to merge several images together to obtain more dense data.
Such utilization of a robot’s mobility would also improve the
indoor results as some objects were undiscovered due to an
insufficient number of points on the object. The ultimate goal
is to enable a robot to learn the characteristics of a place,
which requires to extend the approach as to find matches
among several places of the same type.
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Abstract—In this paper, we present an unsupervised technique
to segment and detect objects in indoor environments. The main
idea of this work is to identify object instances whenever there
is evidence for at least one other occurence of an object of the
same kind. In contrast to former approaches, we do not assume
any given segmentation of the data, but instead estimate the
segmentation and the existence of object instances concurrently.
We apply graph-based clustering in feature and in geometric
space to presegmented input data. Each segment is treated
as a potential object part, and the inter-dependence of object
labels assigned to part clusters are modeled using a Conditional
Random Field (CRF) named the “parts graph”. Another CRF is
then applied to the scene graph to smooth the class labels using
the distributions obtained from the parts graph. First results on
indoor 3D laser range data are evaluated and presented.

I. INTRODUCTION

The ability for a robot to learn and discover objects without

any human guidance enhances its autonomy and makes it more

independent. Such a robot requires no prior training and can

more easily adapt to new, unknown environments. It is also

able to autonomously draw conclusions about the structure

of its environment. This functionality is useful when robots

operate fully autonomously without human interaction. But

also when robots live with humans, a high-level semantic

analysis of the environment helps the robot to communicate

with a human. As an example, a robot which can detect

similarities of objects encountered in the environment, no

longer requires a human to first label all occurences of objects

in a previously acquired data set. Instead, it may ask the

human, “I discovered several instances of something that looks

like an interesting object. What is the name of the object?” In

this paper, we take a first step in this direction.

We propose an approach to segment and discover objects

of multiple occurrences without supervision, where an object

is defined as a constellation of object parts. We segment

input point clouds and treat each segment as an instance of a

potential object part. In our work, object parts are determined

by grouping similar segments together using clustering in

a predefined feature space. In addition, the segments are

clustered in the geometric space and the number of resulting

connected components is used as an upper bound on the

number of potential object classes. Then, two major reasonings

are used to determine a class label for each segment: First,

different object parts that often occur close to each other

are more likely to correspond to the same object class. For

Fig. 1: 3D range scan of an indoor scene. Two different types of chairs are
detected by exploiting the fact that particular constellations between back rests
and seats occur more than once in the scene.

example, the fact that a back rest of a chair and a chair seat

are frequently observed in close vicinity to each other rises

the evidence that there is an object class for which more than

one instance appears in the scene (see Fig. 1). Second, an

instance of an object part may appear to correspond to some

object class, but given its physical context it is more likely to

be part of another class. For example, a segment may appear

to be a chair leg, but if surrounded by table parts it is more

likely to be a part of a table. Both ideas are implemented using

probabilistic reasoning based on Conditional Random Fields

(CRFs) [1].

II. RELATEDWORK

Most work on repetition detection has been in the field of

image analysis. Detection of regularly repeating patterns has

been the focus of many researchers [2, 3] with some recent

work by Loy and Eklundh [4] on grouping of features based

on symmetry, and by Wenzel et al. [5] on using symmetry

to detect repetitive structures in facade images. Zeng and

van Gool [6] employ point-wise repetition to improve seg-

mentation results using mutual information. In 3D, discovery

and utilization of repetition has been adressed in computer

aided design and other synthetic models [7, 8, 9]. The work

of Bokeloh et al. [10] is more closely related to this work.

The authors proposed an algorithm for detecting structural

redundancy by matching symmetric constellations of feature

lines. In terms of repetition detection, the main challenge of

our work lies in the lack of a repetition unit as we do not

assume any regularity or symmetry of the repetition pattern.
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In this work, we employ clustering to group similar seg-

ments in feature and geometric space. Clustering has received

a considerable amount of attention by machine learning and

pattern recognition communities. Some classic methods such

as the expectation-maximization algorithm and k-means clus-

tering assume that data can be modeled by a simple distribu-

tion, while other methods such as agglomerative clustering are

sensitive to noise and outliers. To overcome these challenges,

alternative approaches have been proposed. Ng, Jordan, and

Weiss [11] presented a spectral clustering algorithm, which

uses eigenvectors of the data matrix to group points together,

and demonstrate how well the algorithm clusters even chal-

lenging data. Another work of interest is affinity propogation

proposed by Frey and Dueck [12]. Affinity propagation clus-

ters data by finding a subset of exemplars, which are cluster

centers selected from data. This method avoids the pitfalls of

bad initialization and does not require the number of clusters

to be prespecified. In this work, we use affinity propagation

to cluster segments in feature space.

Conditional Random Fields (CRFs) [1] are discriminative

models, that have also been applied to object recognition

problems [13, 14]. Notably, Quattoni, Collins, and Darrell [15]

presented a part-based approach for object class recognition

using a CRF. We also take a parts-based approach for objects.

Ma and Grimson [16] proposed a coupled CRF to allow for

interaction between contour and texture in image data. While

our work does not explicitly use coupled CRFs, the interaction

between part labels and class labels play a critical role in

the success. The main idea in our work which has not been

adressed previously is the use of Conditional Random Fields

without any training set. Instead, we infer from clustering

results the possible object labels.

In unsupervised object detection, several authors have pro-

posed adaptation of text analysis methods in image analysis.

For example, Liu and Chen [17] proposed a modified prob-

ablilistic latent semantic analysis (pLSA) method to detect

foreground objects from images. Sivic et al. [18] compare

pLSA and Latent Dirichlet Allocation (LDA) to discover

object categories from sets of images. Also, Endres et al. [19],

use LDA to discover object classes from range data without su-

pervision. While this approach can classify objects of multiple

classes, it assumes that a ground plane and walls are extracted

a priori and the objects are spatially disconnected. In our work,

we do not make such assumptions. We consider every segment

as a potential object part and test them to determine if they

belong to an object. Lastly, this work is similar to our previous

work [20], which also discovers objects without supervision,

but it does not explicitly label the segments as we do in this

work.

III. SEGMENTATION AND CLUSTERING

Object detection using unsupervised learning is significantly

different from using supervised learning. In fact, objects can

not be detected; that is, it is not possible to identify some

part of the input data by matching it against an instance of a

previously known object class as there is no such known object

Algorithm: SSCGF

data : Point Cloud P = {p1, . . . , pN }
input :

• Segmentation parameters κ and τ
• Cluster parameters ϑ f and ϑg

output:

• low-level segmentation S = {s1, . . . , sM}, si ⊂ P
• feature-space clusters of segments F1, . . . ,FC
• geometric clusters of segments G1, . . . ,GK

• class label distributions d1, . . . , dM, di ∈ [0, 1]K
procedure:

S ← SuperPixelSegmentation(P, κ, τ)
f1, . . . , fM ← FeatureExtraction(S)
F1, . . . ,FC ← ClusterInFeatureSpace(S, ϑ f , {fi})
G1, . . . ,GK ← ClusterInGeometricSpace(S, ϑg)
P← MakePartsGraph({Fi}, {Gi},S)
P← SmoothPartsGraph(P,K)
S← MakeSceneGraph(P, {Gi},S)
S← SmoothSceneGraph(S,K)
d1, . . . , dM ← ReadFromGraphNodes(S)

Alg. 1: Segmentation and smoothed clustering in geometric and in
feature space (SSCGF). Note that the number of segments M, as well
as the numbers C and K of clusters are computed inside the particular
subroutines (see text).

class. Instead, objects can only be discovered by hypothesizing

the existence of an object based on some sort of repetition or

pattern found in the data. Thus, to discover objects, we need to

find similarities in the data. We do this by extracting features

(see Sec. III-B) and comparing them by a clustering algorithm

in the feature space, which is described in Sec. III-C.

Another problem which arises here is that the segmentation

of the data is unknown, i.e. we do not know where the bound-

aries of the objects are. The segmentation problem is tightly

bound to the detection problem because a perfect segmentation

would make object detection very easy – a simple comparison

of the segmented object instances would suffice. To tackle

this problem we perform three steps in our algorithm: first,

we apply a low-level segmentation as described in Sec. III-A.

Then, we obtain a coarser data segmentation by clustering in

the geometric space as presented in Sec. III-C. Finally, we

obtain a further improved segmentation by reasoning on parts

of objects that occur in a similar constellation in different

instances of the scene. The details of this are described in

Sec. IV and Sec. V. An overview of the entire algorithm is

shown in Alg. 1.

A. Low-level Segmentation

The first step in our algorithm is the segmentation of the data

using the graph-based segmentation algorithm of Felzenszwalb

and Huttenlocher [21], adapted to range image data. In the

modified algorithm, we create a graph G = {V,E} of vertices
V and edges E, where each point p in a given point cloud P

Articles on Unsupervised Offline Learning (Chapter 5)

Appeared in: Proc. of Robotics: Science and Systems (RSS), 2010 205



corresponds to a vertex and an edge connects adjacent points.

Here, adjacency of two points is determined from a triangular

mesh built on the point cloud. Every edge (pi, p j) has an

associated weight wi j, which is equal to the dissimilarity ∆ of

the connected points pi and p j. In the case of a camera image,

this can be the difference of the pixel intensities; in our case,

we define ∆(pi, p j) as the dot product of the normal vectors ni
and n j computed at pi and p j. This yields for smooth surfaces,

e.g. a plane or a sphere, being grouped as one segment, while

surfaces with sharp edges, e.g. between two sides of a box,

are grouped into two segments.

The algorithm begins with each vertex in its own segment.

The edges are processed by increasing weights, and the two

segments si and s j connected by a given edge are merged

whenever

wi j ≤ min

(
d(si) +

κ

|si| , d(s j) +
κ

|s j|
)
,

where d(s) is the internal difference function defined by the

maximal edge weight of all edges in the minimum spanning

tree of the segment s ⊆ V, and κ is a consistency parameter

that influences the granularity of the segmentation: a low value

of κ requires segments to be more consistent and thus produces

more but smaller segments.

In addition to introducing a 3D extension, we make other

modifications to the original algorithm. First, as the normal

at points with an insufficient number of neighboring points is

ill-defined, we do not force every point to be in a segment.

No vertices are generated in the graph for these points, and

thus no segments are created containing them. Second, as a

post-processing step, we remove segments that contain fewer

points than a given minimal value τ, which are often caused

by sensor imperfections or occlusions. In our experiments, a

good choice of the segmentation parameters turned out to be

κ = 9 and τ = 100.

B. Feature Extraction

As shape descriptors, we use spin images [22], shape

distributions [23], and shape factors [24]. A spin image for

a given point p with normal vector n is defined as a 2D

histogram H oriented along the line l through p with direction

n. Each bin of H counts the points with a certain distance to

l and the plane through p with normal vector n. For the spin

image descriptor of a segment s, we form vectors hi of stacked

lines of the histograms Hi for all points pi ∈ s and compute

the average hs over all hi.

A shape distribution is defined as a histogram of values of a

predefined function f : Pr → �, where r is the arity of f and

is usually a value between 1 and 4. In our implementation, we

use two binary functions fd(pi, p j) and fa(pi, p j), namely the

Euclidean distance between pi and p j and the dissimilarity

∆(pi, p j) as defined above. The resulting histogram vectors

hd and ha are computed by evaluating fd and fa on all

pairs of points in a segment s. To make the feature vectors

invariant with respect to the sample density, we normalize

the histograms hd and ha by the total number of bin entries.

As we consider scale as a feature of an object, we do not

perform normalization with respect to the maximum distance

encountered in a segment.

Lastly, we compute shape factors per segment, i.e. the nor-

malized eigenvalues of the covariance matrix Ci of all points

in segment si, collected in a vector h f . For each individual

descriptor, we compute a PCA to reduce the dimensionality,

and the results are combined into a feature vector f.

C. Clustering in Feature Space

To find similar segments, we apply a clustering algorithm

in the feature space. The number of existing clustering al-

gorithms is large, and they include agglomerative clustering,

k-means clustering [25], mean-shift estimation [26], spectral

clustering [27, 11], and, more recently, affinity propagation

(AP) [12]. We explored some of these clustering methods and

decided for AP clustering because of its robustness and its

ability to estimate the number of clusters implicitly. The basic

principle is to determine exemplars out of all given points

that are well-suited to explain the remaining data points. The

application of the algorithm to our case is sketched as follows:

First a similarity value ςi j is computed for all pairs (fi, f j)
of feature vectors. In our implementation, we use the negative

squared Euclidean distance between fi and f j. Then, in an

iterative manner, two functions, namely the responsibility

r(i, j) and the availability a(i, j) are computed for each vector

pair, where r expresses how well-suited f j is to serve as an

exemplar for fi and a expresses how appropriate it would be

for fi if f j were its exemplar. These functions are defined as

r(i, j) = ςi j − max
j′ s.t. j′, j

{
a(i, j′) + ςi j′

}
(1)

a(i, j) = min


0, r( j, j) +

∑

i′s.t.i′<{i, j}
max

{
0, r(i′, j)

}

, (2)

where Eq. (2) is applied only if i , j. Initially, a(i, j) is set to
zero for all i and j. For the special case of “self-availability”

the rule

a(i, i) =
∑

i′ s.t.i′,i

max
{
0, r(i′, i)

}
(3)

is used. In each iteration, responsibilities and availabilities are

computed and then, for each fi, an f j is determined so that the

sum a(i, j) + r(i, j) is maximized. If the resulting j equals i,

then fi is identified as an exemplar, otherwise f j serves as

an exemplar for fi. The stopping criterion of the iteration

is met when the assignments of points to exemplars do not

change over a fixed number of iterations or a given number

of maximum iterations is reached. The only parameter ϑ f of

the algorithm is the self-similarity, which can be specified

either for each data point individually or commonly for all data

points. This value influences the number of resulting clusters:

a high value results in more clusters, a low value in fewer

clusters. In our experiments, a good value turned out to be

−0.2, specified equally for all data points.

As a result, we obtain C clusters F1, . . . ,FC of similar

segment instances, where each cluster defines a potential

object part.
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D. Clustering in Geometric Space

From the clustering in feature space we obtain a grouping

of segments into object parts. However, we also want to reason

on the object level, where objects are considered to consist of

several parts. To accomplish this, we also perform a clustering

in the geometric space where segments are represented by their

center of gravity (COG). Unfortunately, affinity propagation

(AP) is not a good choice to perform the clustering in the

geometric space because it produces “star-like” clusters, i.e.

all points in a cluster are connected directly to the cluster

exemplar. This restricts the type of objects that can be detected,

as for many objects such an exemplar part can not be found.

Also, in AP clustering, the distances between points are not

explicitly bounded, which often results in counter-intuitive

clustering results.

Therefore, we apply a different, much simpler strategy to

cluster the segments. We define a distance threshold ϑg and

connect only those pairs of segments (si, s j) with an edge, for

which the COGs are closer to each other than ϑg. As a result,

all connected components will be farther away from each other

than ϑg, which rises the evidence that they correspond to

different object instances. This will be of importance later on.

IV. SCENE GRAPH AND PARTS GRAPH

One important aspect of the work presented here is the

reasoning about object instances solely based on the extrac-

tion of potential object parts, represented as segments. The

challenge here is to find a proper definition of an object class

as we do not know of how many parts an object consists and

whether or not all of its parts are visible. In addition, the

number of observed objects is unknown – we only know the

number of object parts. Two intuitions and one assumption

help us to reason on parts to discover objects: First, we

exploit the fact that segments which occur physically close

to each other are more likely to correspond to the same

object. Second, segments of one type which occur often in

the vicinity to segments of another type give evidence that

several instances from the same object class exist. Referring

back to the introductory example, we can say: if we find many

backrests of a chair that are all close to chair seats, then there is

probably an object class which consists of at least these two

parts. Furthermore, we work under the assumption that the

number of possible object classes is bounded by the number

of connected components in the graph which results from

clustering the geometric space using the distance threshold

ϑg. We call this the scene graph and give details in Sec. IV-A.

Our assumption implicitly states that two objects are always

supposed to be farther away from each other than ϑg. This may

seem very restrictive, but in fact, it limits the applicability of

the algorithm not as much as it appears. The reason is that the

number of connected components only bounds the number of

object classes, not the number of actual object instances. Thus,

even if two different objects are closer to each other than ϑg,
there are usually enough other connected components with at

least two objects of the same class, so that the number of

connected components exceeds the number of object classes.

Fig. 2: Example of the scene graph obtained from the range scan shown in
Fig. 1. Notice that segments with the label G are given the class labels 25
and 27, depending on their neighboring segments. The figure shows the scene
graph after smoothing as described in Sec. V-B.

To analyse the multiple occurence of segments representing

the same object part in constellation with segments that

represent a different part, we define another, simpler graph

structure named the parts graph. The nodes in the parts graph

correspond to clusters in feature space as described in Sec. III-

C and the edges represent connections in the scene graph.

Details on the parts graph are given in Sec. IV-B.

A. The Scene Graph

After clustering the segments in the geometric space, we

obtain K subsets of S, namely G1, . . . ,GK . From our assump-

tion, the number of potential object classes is bounded by K.

To encode the fact that neighboring segments are more likely

to correspond to the same object class, we define the scene

graph S, which consists of the node set Vs = S and the

edge set Es = {(si, s j) | ∃Gi : (si, s j) ⊂ Gi}. Thus, Es consists
of all connections between segments that are closer to each

other than ϑg. Furthermore, to each node in scene graph we

assign a class label y ∈ {1, . . . ,K}. And finally, as each node

s of S corresponds to an instance of an object part, we can

associate it with a part label x ∈ {1, . . . ,C}. At first sight, x
should be fixed to the index of the feature space cluster F
to which s belongs. However, as we formulate our problem

in a probabilistic framework, we say that this index is only

the most likely part label for s and all others are still possible.

Details of this are explained in Sec. V.

An example of a scene graph is shown in Fig. 2. Here,

part labels are represented as capital letters and class labels as

numbers. We can see that many of the connected components

only consist of one segment, as the segments are mostly far

apart from each other. Also observe that there are segments

with the same part label x, but with different class labels y.

This stems from the fact that they occur in different contexts.
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Fig. 3: Example of the parts graph obtained from the scan shown in Fig. 1.
The positions of the nodes are determined at random, as only the topology
of the graph is important. Again, part labels are represented as capital letters
and class labels as numbers.

B. The Parts Graph

As mentioned before, apart from the class labels of specific

segment instances, we also want to reason on the interaction

among different object parts in general. We do this using the

parts graph P. The node set Vp of P corresponds to all

clusters F1, . . . ,FC of the feature space, and the set of edges

Ep is defined as

Ep = {
(Fi,F j) | i , j,∃(sk, sl) ∈ Es : sk ∈ Fi ∧ sl ∈ F j

}
.

This means, whenever there are two segments connected in the

scene graph, there is a connection between the corresponding

segment types in the parts graph. As in the scene graph, each

node of the parts graph has an assigned part label x and a

class label y, although with a slightly different interpretation:

An assignment of a class label y to a node s in S means

that the particular segment instance s is most probably part of

an object of class y, whereas the same assignment to a node

F in P means that in general segments that are elements of

the cluster F are primarily more likely to be of class y. In

contrast to the scene graph, each node of P has a unique

most-likely part label x, because these are directly determined

by the feature space clustering.

In Fig. 3, we see an example of a parts graph. The positions

of the nodes have been defined randomly as only the topology

of the graph is important. Note that this concrete example of

a parts graph is non-planar, although there is an equivalent

planar representation. In general however, parts graphs may

not be representable as planar graphs, for example in the case

of a full connectivity.

V. SMOOTHING

So far, we described the construction of the two graph

structures “scene graph” and “parts graph”, but we did not

specify how these are used to determine class labels for the

segments. We do this using probabilistic reasoning: the nodes

in both graphs are interpreted as random variables and the

edges are used to model conditional dependencies between

adjacent nodes. For the scene graph, this means that the class

label yi of a given segment si not only depends on the local

evidence of the node i, i.e. the features fi extracted from si, but

also on the class labels y j of all neighbors s j in the scene graph.

Intuitively, a strong evidence for si to belong to a certain class

may “outvote” the weaker evidence for s j being of a different

class. Similarly, a class label yi for a given node Fi in the parts

graph may be so strong that it propagates to the class labels

of the neighbors of Fi. The reasoning here is that if a certain

type of segment Fi is very likely to be of a given class, then

all segment types that occur frequently in the vicinity of Fi
are also more likely to be of the same class. Applying this

strategy to a graph leads to a smoothed graph because it tends

to remove sudden changes of class labels between adjacent

graph nodes.

In our implementation, we use Conditional Random Fields

(CRFs) [1] to perform the smoothing. Our CRF models the

conditional distribution

p(y | f) = 1

Z(f)

∏

V
ϕ(fi, yi)

∏

(i, j)∈E
ψ(fi, f j, yi, y j), (4)

where Z(f) =
∑

y′
∏N

i=1 ϕ(fi, y
′
i
)
∏

(i j)∈E ψ(fi, f j, y′i , y
′
j
) is the

partition function, V is either Vs or Vp and E is Es or Ep.
The dinstinction between the scene graph and the parts graph

is made using different definitions for the node potential ϕ and

the edge potential ψ. This will be described next.

However, before we proceed with the definition of the

potentials, we mention some aspects in our formulation of

the CRFs that are slightly different from others found in the

literature. First, we recall that node and edge potentials are

usually defined using the log-linear model so that, for the case

of the node potential

logϕ(fi, yi) = wn · fn(fi, yi), (5)

where wn is a weight vector and fn a feature function, which

is high if fi and yi in some sense match well. For example, it

can be defined as the outcome of a local classification. For our

case of an unsupervised setting, we let fn be the conditional

probability p(yi | fi), i.e. a scalar value that is high if yi matches

well to fi. The same is also done for the edge potentials. As

a result, the feature functions range between 0 and 1. This

simplifies the weighting between node and edge potentials and

turns the weight vectors wn and we into scalars as well. In

contrast to supervised learning with CRFs, we can not learn the

node and edge weights wn and we, as there is no training data

available. Instead, we have to determine them manually. We do

this using an appropriate evaluation measure on a validation

set. This is described in Sec. VI.
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A. Smoothing the Parts Graph

After creating the parts graph, the next step in our algorithm

is to run the inference step using the CRF that corresponds

to P. First, we note that the node features of this CRF are

not equal to the feature vectors f1, . . . , fM extracted from the

segments, because a node in P actually represents a cluster

in feature space and not a single segment. Instead, we define

the node features in P to be the mean f̄ of all feature vectors

inside the corresponding cluster.

Furthermore, we observe that the dependence between fea-

ture vectors f and labels y is only implicit as we cannot model

it directly. We can, however, model conditional probabilities

between segment labels x and class labels y, as well as between

feature vectors f and segment labels x. Following the definition

of the node feature of P as a conditional probability, we have

p(yi | f̄i) =
C∑

x=1

p(yi | x)p(x | f̄i), (6)

where we assume a conditional independence of the labels and

the features given the segment types. To obtain the two terms

in the sum, we proceed as follows.

The class label posterior p(yi | x) is computed using Bayes’

rule with the assumption of a uniform prior of the labels:

p(yi | x) = p(x | yi)p(yi)∑
y′ p(x | y′i)p(y′i)

=
p(x | yi)∑
y′ p(x | y′i)

(7)

The class likelihoods p(x | yi) are determined by counting the

occurence of segments of type x inside the geometric cluster

yi and dividing by the number of all segments in yi. The

posteriors p(yi | x) can be computed at creation time of P

and collected in a K ×C matrix, as they do not depend on the

node features.

For the segment type posterior p(x | f̄i), we perform a

nearest-neighbor search in feature space inside a sphere of

radius ρ around f̄i. Denoting the number of feature vectors in

the sphere with type x as νx and the number of all elements

in the sphere as ν, we approximate p(x | f̄i) with νx/ν.
Similar to Eqn. (6), we define the edge feature of P as

p(yi, y j | f̄i, f̄ j) =
C∑

xi=1

C∑

x j=1

p(yi, y j | xi, x j)p(xi, x j | f̄i, f̄ j). (8)

As is common in literature related to CRFs, the edge features

are designed to be zero whenever the labels yi and y j of

the adjacent nodes are different (“generalized Potts model”,

see [28, 29]). The rationale of this is that only edges between

equally labeled nodes should propagate the belief between the

nodes. Thus, the first term in the sum of Eqn. (8) can be

simplified to p(yi j | xi, x j), where yi j is the common label

of the nodes. We can compute this expression by counting

the occurences of edges between xi and x j in cluster yi j and

applying Bayes rule as in Eq. (7).

For the second term in the sum of Eqn. (8), we apply the

formulation

p(xi, x j | f̄i, f̄ j) = p(xi | f̄i, f̄ j)p(x j | f̄i, f̄ j)
= p(xi | f̄i)p(x j | f̄ j), (9)

which results from the conditional independence assumptions

on xi and x j, and from those for xi and f j, as well as x j and fi.

The resulting terms p(xi | f̄i) and p(x j | f̄ j) are again computed

using nearest-neighbor.

Once the edge and node potentials are defined, we can do

inference on the parts graph. We do this using max-product

loopy belief propagation. This is an approximate algorithm

that returns labels y that maximize the conditional probability

given in Eqn. (4). However, it also returns distributions over

the class labels at each node. These will be used later.

B. Smoothing the Scene Graph

From the output of the inference step run on P, we obtain

at each node of P a distribution over class labels y. As the

nodes of P uniquely represent the segment types x, we can

use that information to read the probability p(y | x) directly
from the parts graph. Thus, when creating the scene graph, we

can again determine values for p(y | x), as we did this for the

parts graph, with the difference that now p(y | x) also reveals

the conditional dependencies between labels of segment types

x, that have been observed in a close distance. This means,

that we again compute a matrix for p(y | x), but now we

simply read the class label distributions off the nodes of P,

as they result from belief propagation. In accordance to the

node feature of P, we define the node feature of S as the

conditional probability

p(yi | fi) =
C∑

x=1

p(yi | x)p(x | fi). (10)

Note that now the feature vectors fi correspond to those that

are actually extracted for each segment, i.e. at each node of

S. As before, the term p(x | fi) is computed with a nearest-

neighbor search in feature space.

Finally, we define the edge feature of S as

p(yi, y j | fi, f j) =
C∑

xi=1

C∑

x j=1

p(yi j | xi, x j)p(xi, x j | fi, f j), (11)

where we denote the common class label with yi j as above

and the right term in the sum is computed according to

Eqn. (9). Unfortunately, the computation of p(yi j | xi, x j) is

not straightfoward, as we can not simply read this value from

the edges of P. Instead, we use the following strategy: The

only interesting case is when the class labels of xi and x j are

equal. Thus, we can interpret the common label yi j as an edge

label that is determined by one of the adjacent node labels.

In a sense, this expresses which of the nodes was responsible

for the common edge label yi j. We can formulate that using a

binary variable c that is true if node xi is responsible for yi j
and false otherwise. Using this, we can estimate p(yi j | xi, x j)
by marginalizing out over c:

p(yi j | xi, x j) =
∑

c

p(yi j | xi, x j, c)p(c, | xi, x j)

= p(yi j | xi, x j, c)p(c) + p(yi j | xi, x j,¬c)p(¬c)
= 0.5 ∗ p(yi j | xi) + 0.5 ∗ p(yi j | x j) (12)
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Here, we assumed that c is independent on xi and x j and that

its prior probability is 0.5. Using Eqn. (12), we can compute

p(yi j | xi, x j) by reading the values for p(yi j | xi) and p(yi j | x j)
from the parts graph. As for the parts graph, we use max-

product loopy belief propagation for the inference in the scene

graph.

C. Obtaining the Class Label Distributions

Once the inference step on the scene graph is performed,

we read the class label distributions d1, . . . , dM from all nodes

of S. This is possible, as mentioned before, because belief

propagation stores these distributions for each node. For the

final discovery result, we report the most likely class label at

each node, but it is important to note that the distributions

may be useful for later reference, for example in an online

application, where several data sets are acquired subsequently

and the discovery of similar objects is done across the data

sets.

VI. EXPERIMENTAL RESULTS

We tested the algorithm on data acquired from real-world

scenes using a nodding SICK laser scanner with a horizontal

opening angle of 100 degrees and a nodding range of 90

degrees. Each set was captured at a horizontal resolution of

0.25 degrees and a vertical resolution of 0.2 degrees. We

evaluated 50 data sets from four different rooms, each room

containing some number of chairs, trash cans, flip charts,

plants, etc. Objects were placed up to 90 degrees of rotation

from each other. Most scenes contained two or three objects

of the same type, but some scenes contained up to four objects

of three different kinds.

A. Qualitative Evaluation

In addition to the result shown in Fig. 1, Fig. 4 shows some

more results of our object dicovery algorithm. All points that

belong to the same object are depicted with the same color, and

the numbers represent the class label to which each segment

belongs. For instance, the scene in Fig. 1 contains four chairs

of two different kinds, and they are correctly labeled as 25

(blue) and 27 (violet). Furthermore, we see that also most of

the background segments, e.g. on the floor, ceiling and walls,

have plausible labels. For many of them, only the local class

label evidence was relevant, as they are not connected in the

scene graph.

B. Quantitative Evaluation

In contrast to supervised learning algorithms, the perfor-

mance of an unsupervised object discovery method is difficult

to evaluate, as there is no real ground truth. The major

problem here is that humans tend to be focused and might miss

similarities in the data that are irrelevant for them. However,

a good way to still evaluate unsupervised object discovery

methods has been recently proposed by Tuytelaars et al. [30].

This method uses the conditional entropy of the “ground truth”

class labels y∗ given the class labels y that resulted from

the discovery algorithm. Applied to our case, the conditional

entropy is computed as

H(Y∗ | Y) =
K∗∑

σ(y)=1

p(σ(y))
K∗∑

y∗=1

p(y∗ | σ(y)) log 1

p(y∗ | σ(y)) ,

where K∗ is the number of ground truth classes and σ is an

oracle mapping from the set of discovered classes to the set

of ground truth classes, which is determined from a tuning

set (for details see [30]). Intuitively, H(Y∗ | Y) determines the

number of ground truth labels a segment can have once its

discovered object label is known. The smaller this number is,

the better is the result of the discovery algorithm. In the best

case it is zero, which means that each discovered class label

directly implies a ground truth label.

We created hand labeled ground truth data consisting of the

five classes “ceiling”, “floor”, “wall”, “chair”, and “other”,

and evaluated the performance of our algorithm for different

values of the parameters ϑg, ρ, and the node and edge weights

(wn,we). The results are shown in Fig. 5. Two conclusions

can be drawn from these graphs: First, with values around 1,

the results are very good compared to the results of similar

algorithms described in [30]. And second, our algorithm is

relatvely robust against small changes in the choice of the

parameters, especially for the distance threshold ϑg, which is

responsible for the clustering in geometric space.

VII. CONCLUSION AND OUTLOOK

We presented a fully unsupervised approach to segment 3D

range scan data and to discover objects of a similar type that

occur more than once in the scene. Our approach uses the only

assumption that the number of actually existing object classes

is not higher than the number of connected components in

the scene, which holds in most cases. We applied probablistic

reasoning based on Conditional Random Fields to model

conditional dependencies of object part labels that are close

to each other. In experiments on real data we showed that our

algorithm is able to discover objects such as chairs in an indoor

environment. In the future, we plan to use this technique in an

online framework where the evidence of existing object classes

is accumulated over time and across different data sets.
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 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

co
n
d
it
io
n
al

en
tr
o
p
y

Algorithm Evaluation for ϑg and ρ

ϑg
ρ

parameter value

 0.6

 0.8

 1

 1.2

 1.4

I II III IV

co
n
d
it
io
n
al

en
tr
o
p
y

E
v

Algorithm Evaluation for w

w

weight setting

Fig. 5: Evaluation of our discovery algorithm using the conditional entropy with its standard deviation over 50 data sets. Left: Results for different values of
ϑg and ρ. As it can be seen, ρ has a stronger influence on the results as ϑg. Right: Results for different settings of the node and edge weights (wn,we). Here,
’I’ corresponds to the pair (0.5, 1.5), ’II’ to (1, 1), ’III’ to (1.5, 0.5) and ’IV’ to (2.0, 0). The best result is obtained for wn = 1.5, we = 0.5.

[4] G. Loy and J.-O. Eklundh, “Detecting symmetry and symmetric con-
stellations of features,” in ECCV, 2006, pp. 508–521.

[5] S. Wenzel, M. Drauschke, and W. Förstner, “Detection of repeated
structures in facade images,” Pattern Recognition and Image Analysis,
vol. 18, no. 3, pp. 406–411, 2008.

[6] G. Zeng and L. van Gool, “Multi-label image segmentation via point-
wise repetition,” in IEEE Conf. on Comp. Vis. and Pat. Recog. (CVPR),
Alaska, USA, June 2008.

[7] D. Shikhare, S. Bhakar, and S. Mudur, “Compression of large 3d
engineering models using automatic discovery of repeating geometric
features,” in Vision, Modeling, and Visualization, 2001.

[8] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and
T. Funkhouser, “A planar-reflective symmetry transform for 3d shapes,”
in SIGGRAPH. New York, NY, USA: ACM, 2006, pp. 549–559.

[9] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas,
“Discovering structural regularity in 3d geometry,” ACM Trans. Graph.,
vol. 27, no. 3, pp. 1–11, 2008.

[10] M. Bokeloh, A. Berner, M. Wand, H. Seidel, and A. Schilling, “Sym-
metry detection using feature lines,” Computer Graphics Forum (Pro-

ceedings of Eurographics), vol. 28, no. 2, pp. 697–706(10), April 2009.
[11] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis

and an algorithm,” in Adv. in Neural Information Processing Systems,
T. Dietterich, S. Becker, and Z. Ghahramani, Eds., 2002.

[12] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, February 2007.

[13] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Be-
longie, “Objects in context,” in IEEE Conf. on Computer Vision, 2007.

[14] C. Galleguillos, A. Rabinovich, and S. Belongie, “Object categorization
using co-occurrence, location and appearance,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2008.
[15] A. Quattoni, M. Collins, and T. Darrell, “Conditional random fields for

object recognition,” in Adv. in Neural Inform. Proc. Systems, L. Saul,
Y. Weiss, and L. Bottou, Eds., 2005, pp. 1097–1104.

[16] X. Ma and W. E. L. Grimson, “Learning coupled conditional random
field for image decomposition with application on object categorization,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[17] D. Liu and T. Chen, “Semantic-shift for unsupervised object detection,”
in Proc. of the Conf. on Comp. Vision and Pattern Rec. Workshop, 2006.

[18] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman, “Discov-
ering object categories in image collections,” in IEEE Conf. on Comp.

Vis. and Pat. Recog. (CVPR), 2005.
[19] F. Endres, C. Plagemann, C. Stachniss, and W. Burgard, “Unsupervised

discovery of object classes from range data using latent dirichlet
allocation,” in Proc. of Robotics: Science and Systems, 2009.

[20] J. Shin, R. Triebel, and R. Siegwart, “Unsupervised discovery of
repetitive objects,” in IEEE Int. Conf. Robotics and Automation, 2010.

[21] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Int. J. Comput. Vision, vol. 59, no. 2, pp. 167–181, 2004.

[22] A. Johnson, “Spin-images: A representation for 3-d surface matching,”
Ph.D. dissertation, Robotics Institute, Carnegie Mellon Univ., 1997.

[23] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distribu-
tions,” ACM Trans. on Graphics, vol. 21, no. 4, pp. 807–832, 2002.

[24] C.-F. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and F. A. Jolesz,
“Geometrical diffusion measures for MRI from tensor basis analysis,”
in ISMRM ’97, Vancouver Canada, April 1997, p. 1742.

[25] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on

Information Theory, vol. 28, no. 2, pp. 129–137, 1982.
[26] D. Comaniciu, P. Meer, and S. Member, “Mean shift: A robust approach

toward feature space analysis,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 24, pp. 603–619, 2002.
[27] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[28] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz,
and A. Ng, “Discriminative learning of markov random fields for
segmentation of 3d scan data,” in IEEE Conf. on Comp. Vis. and Pat.

Recog. (CVPR), 2005, pp. 169–176.
[29] R. B. Potts, “Some generalized order-disorder transformations,” Proc.

Cambridge Phil Soc., vol. 48, 1952.
[30] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine, “Un-

supervised object discovery: A comparison,” Int. Journal of Computer

Vision, vol. 88, no. 2, pp. 284–302, 2009.

Articles on Unsupervised Offline Learning (Chapter 5)

Appeared in: Proc. of Robotics: Science and Systems (RSS), 2010 211



Unsupervised 3D Object Discovery and
Categorization for Mobile Robots

Jiwon Shin Rudolph Triebel Roland Siegwart

Abstract We present a method for mobile robots to learn the concept of objects and
categorize them without supervision using 3D point clouds from a laser scanner as
input. In particular, we address the challenges of categorizing objects discovered in
different scans without knowing the number of categories. The underlying object
discovery algorithm finds objects per scan and gives them locally-consistent labels.
To associate these object labels across all scans, we introduceclass graph which
encodes the relationship among local object class labels. Our algorithm finds the
mapping from local class labels to global category labels byinferring on this graph
and uses this mapping to assign the final category label to thediscovered objects. We
demonstrate on real data our alogrithm’s ability to discover and categorize objects
without supervision.

1 Introduction

A mobile robot that is capable of discovering and categorizing objects without hu-
man supervision has two major benefits. First, it can operatewithout a hand-labeled
training data set, eliminating the laborious labeling process. Second, if a human-
understandable labeling of objects is necessary, automatic discovery and catego-
rization leaves the user with the far less tedious task of labeling categories rather
than raw data points. Unsupervised discovery and categorization, however, require
the robot to understand what an object constitutes. In this work, we address the chal-
lenges of unsupervised object discovery and categorization using 3D scans from a
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2 Jiwon Shin Rudolph Triebel Roland Siegwart

laser as input. Unlike other object discovery algorithms, our approach does not as-
sume presegmentation of background, one-to-one mapping between input scan and
label, nor a particular object symmetry. Instead, we simplyassume that an entity is
an object if it is composed of two or more parts and occurs morethan once.

We propose a method for robots to discover and categorize objects without su-
pervision. This work especially focuses on categorizationof the discovered objects.
The proposed algorithm is composed of three steps: detection of potential object
parts, object discovery, and object categorization. Aftersegmenting the input 3D
point cloud, we extract salient segments to detect regions which are likely to belong
to objects. After detecting these potential object parts, we cluster them in feature
and geometric space to acquire parts labels and object labels. Reasoning on the rela-
tionship between object parts and object labels provides a locally-consistent object
class label for each discovered object. Processing a seriesof scans results in a set
of discovered objects, all labeled according to their localclass labels. To associate
these local class labels, we build aclass graph. Class graph encodes the dependency
among local class labels of similar appearance, and smoothing the graph results in
a distribution of the global category labels for each local class label. Marginalizing
out the local class labels gives the most likely final category label for each discov-
ered object. We demonstrate on real data the feasibility of unsupervised discovery
and categorization of objects.

Contributions of this work are two-folds. First, we improvethe object discovery
process by extracting potential foreground objects using saliency. Instead of relying
entirely on perfect foreground extraction, our algorithm takes the foreground seg-
ments only as potential object parts and performs further processing on them before
accepting them as object parts. It can thus handle imperfectforeground extraction by
removing those potential object parts deemed less fit to be actual object parts. Sec-
ond, we propose a novel categorization method to associate the locally-consistent
object class labels to the global category labels without knowing the number of cat-
egories. Our algorithm improves the results of categorization over pure clustering
and provides a basis for on-line learning. To our knowledge,no other work has ad-
dressed the problem of unsupervised object categorizationfrom discovered objects.

The organization of the paper is as follows. After discussing related work in
Sec. 2, we introduce a saliency-based foreground extraction algorithm and explain
the single-scan object discovery algorithm in Sec. 3. In Sec. 4, we propose a method
for associating the discovered objects for object categorization. After the experimen-
tal results in Sec. 5, the paper concludes with Sec. 6.

2 Related Work

Most previous work on unsupervised object discovery assumeeither a presegmen-
tation of the objects, one object class per image, or a known number of objects
and their classes [5, 14, 2]. In contrast, [17] proposed an unsupervised discovery
algorithm that does not require such assumptions but instead utilizes regularity of
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patterns in which the objects appear. This is very useful forman-made structures
such as facades of buildings. [3] developed a method to detect and segment similar
objects from a single image by growing and merging feature matches.

Our work builds on our previous work [18], which gives nice results for single
scenes but does not address the data association problem across different scenes.
Thus, the above algorithm cannot identify instances of the same object class that
appear in different scenes. In contrast, this approach solves the data association
problem and introduces a reasoning on the object level, instead of only assigning
class labels to object parts.

An important step in our algorithm is the clustering of feature vectors extracted
from image segments. Many different kinds of clustering algorithms have been pro-
posed and their use strongly depends on the application. Some classic methods such
as the Expectation-Maximization (EM) algorithm andk-means clustering assume
that data can be modeled by a simple distribution, while other methods such as ag-
glomerative clustering are sensitive to noise and outliers. To overcome these prob-
lems, alternative approaches have been proposed. [12] presented aspectral clus-
tering algorithm, which uses the eigenvectors of the data matrix togroup points
together, with impressive results even for challenging data. Another recent cluster-
ing approach is namedaffinity propagation, proposed by [6]. It clusters data by
finding a set of exemplar points, which serve as cluster centers and explain the data
points assigned to it. This method avoids the pitfalls of a bad initialization and does
not require the number of clusters to be prespecified. In thiswork, we use affinity
propagation to cluster image segments in feature space.

Our object categorization method is inspired by thebag of words approach [4].
Outside of document analysis, the bag of words method has been applied in com-
puter vision, e.g., for texture analysis or object categorization [11, 16]. Our work
uses it to bridge the gap between reasoning on object parts and object instances.

3 Object Discovery

This section describes the algorithm for discovering objects from a single scan.
Fig. 1 depicts the overall process of the object discovery. Our single-scan object
discovery algorithm is based on our previous work [18], which treats every seg-
ment as a potential object part and accepts them as objects ifafter inference any
nearby segment has the same class label as itself. This algorithm, however, has sev-
eral disadvantages. First, because the original algorithmconsiders all segments as
potential object parts, it makes many false neighborhood connections between fore-
ground and background segments. This results in object candidates composed of
real object parts and background parts. Second, it has relatively high false-positive
rate because it cannot differentiate clutter objects from real objects. Third, it wastes
computation by extracting feature descriptors on background segments. In this pa-
per, we introduce saliency-based foreground extraction algorithm to overcome these
problems.
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Fig. 1: Overview of the discovery process (best seen in color). After performing
segmentation on input data and extracting salient segments, the algorithm clusters
the salient segments in feature and geometric space. The clusters are then used to
create scene graph and parts graph, which encode the relationship between object
parts and objects. Running inference on the graphs result inthe discovery of four
objects as shown on the right.

3.1 Extraction of Potential Object Parts

A simple way to seperate foreground from background is to fit planes into the data
and remove all points that correspond to the planes. This removes all wall, ceiling,
and floor parts as in, e.g., [5], but can cause at least two problems. First, it may also
remove planar segments close to a wall or floor that are actually object parts and
thus should not be removed. Second, it is often insufficient to define background as
planar because background may be truly curved or non-planardue to sensor noise.

Fig. 2: An example image after saliency computation. Colored segments are consid-
ered salient and thus treated as potential object parts. Numbers indicate segment ID.

Inspired by computer vision [8], we suggest a different approach for foreground
extraction usingsaliency. The idea is to classify certain parts of an image as visu-
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ally more interesting or salient than others. This classifications determines saliency
based on difference in entropy of a region to its nearby regions. Most workon
saliency has been on 3D images, but [7] uses saliency for object recognition in
3D range scans. Their technique, however, remaps depth and reflectance images
as greyscale images and applies 2D saliency techniques to find salient points. This
work detects salient segments in true 3D by processing depthvalues of range data
directly.

Our saliency algorithm computes saliency at point level andsegment level. Point
saliency provides saliency of a point while segment saliency represents saliency of a
segment. Apoint saliency sp is composed of alocal saliencysl and aglobal saliency
sg. Local saliencysl is defined as

sl(p) =
1

smax
l

∑

p′ ∈N(p)

n · (p−p′), (1)

wheren is the normal vector at a pointp, andN(p) defines the set of all points
in the neighborhood ofp. To obtain a value between 0 and 1, the local saliency is
normalized by the maximum local saliency valuesmax

l . Intuitively, local saliency
measures how much the pointp sticks out of a plane that best fits into the local
surroundingN(p). This resembles the plane extraction techniquementionedearlier.

Points that are closer to the sensor are more likely to belongto foreground and
thus globally more salient than points that are far away fromthe sensor. We capture
this property in global saliency. Global saliencysg is defined as

sg(p) =
1

smax
g
‖pmax−p‖, (2)

wherepmax denotes the point that is farthest away from the sensor origin. As in
local saliency, global saliency is normalized to range between 0 and 1.

We define segment saliencyss for a segmentsas a weighted average of the local
and global saliency for all points which belong to the segment and multiply it by a
size penaltyα, i.e.,

ss(s) = α


1
|s|
∑

p∈s

wsl(p)+ (1−w)sg(p)

 , (3)

whereα = exp(−(|s| − |smean|)2) penalizes segments that are too big or too small
as they are likely to originate from a wall or sensor noise;|s| denotes the size (num-
ber of points) of the segments; andw weighs between local and global saliency.
The weightw depends on the amount of information contained in local and global
saliency, measured by entropy of the corresponding distributions. Interpretingsl

andsg as probability distributions, we can determine entropyhl andhg for local and
global saliency by
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hl = −
N∑

i=1

sl(pi) logsl(pi) (4)

hg = −
N∑

i=1

sg(pi) logsg(pi), (5)

whereN = 20 in this work. As a saliency distribution with lower entropy is more

informative, we set the weightw asw =
hg

hg+hl
, which is high when local saliency

has low entropy and low when it has high entropy. The weight ensures that more
informative entropy distribution contributes more to the final saliency.

Segment saliencyss(s) ranges between 0 and 1. We consider a segment salient
if its saliency is higher than 0.5 and accept it as a potentialobject part. Only these
potential object partsS are further processed for object discovery. Fig. 2 shows a
scene after salient segments are extracted.

3.2 Object Discovery for a Single Scan

Fig. 3: Result of object discovery of the scene shown in Fig. 2. Discovered objects
are colored according to their class labels. Letters indicate the parts types and num-
bers indicate object classes. Notice that not all potentialobject parts are accepted as
object parts.

Once we extract potential object partsS , next step is to reason on them to dis-
cover objects. The object discovery step on single scan is based on our previous
work [18]. The underlying idea behind our object discovery algorithm is that ob-
ject parts which belong to the same object are frequently observed together, and
hence by observing which parts occur together frequently, we can deduce object
class label for these parts. Using this idea, a brief summaryof the algorithm is as
follows. Given the potential object partsS, we extract a feature vectorfi for each
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potential object partsi. The feature vectorfi is composed of spin images [9], shape
distributions [13], and shape factors [19]. To determine which set of potential object
parts originate from the sameparts type Fi, we cluster these parts in feature space
using affinity propagation [6]. Affinity propagation implicitly estimates the number
of clustersC, resulting in clustersF1, . . . ,FC . These clusters define the discovered
object parts types.

Clustering in feature space provides parts types, but it does not define which
parts belong to the same objectinstance. To obtain the object instances, we perform
another clustering on the potential object partsS but this time in geometric space.
As object parts for the same object instance are physically close, clustering in ge-
ometric space enables us to group together potential objectparts which belong to
the same object instance. The geometric clustering algorithm connects every pair
of potential objects whose centers are closer than a threshold ϑg, and this results
in a collection of connected components. The number of connected componentsK
define the maximum number of object classes present in the scene, and each cluster
Gi of the resulting clustersG1, . . . ,GK correspond to an object instance.

Given parts typesF1, . . . ,FC and object classesG1, . . .GK , next step is to assign
a class labelGi to each potential object partsi. We determine the assignments by
reasoning on the labels at two levels. First, on a more abstract level, the statistical
dependency of class labelsG1, . . . ,GK across different parts typesF1, . . . ,FC is en-
coded in a Conditional Random Field (CRF) [10] namedparts graph. Parts graph
exploits the fact that object parts that co-occur frequently in the same object instance
are more likely to belong to the same object class. For example, back rest and seat,
both of which belong to a chair, are frequently found together while seat and shelf,
which belong to different objects, are not. The second level of reasoning propagates
parts types to object class relationship onto a finer level bycombining the class la-
bels obtained from the parts graph with the local contexual information from actual
scenes. This is encoded using another CRF calledscene graph. Performing infer-
ence on the parts graph provides the most likely object classlabelGi per parts type
Fi while inference on the scene graph leads to the object class labelGi per object
partsi. Once for all object instances, all their parts are labeled with the most likely
object class label, we accept those object instances which contains at least two parts
with the same class label as discovered objectsO1, . . . ,ON . Fig. 3 shows an example
of the outcome of the discovery algorithm.

4 Object Categorization

Object discovery algorithm of the previous section is able to find object classes for
which at least two instances occur in a given scene. It uses appearance and geom-
etry, i.e., similarity of features and structures, to find several instances of objects
that are most likely to define a class in one given scene. In this paper, we go one
step further and try to find objectcategories, i.e., object classes that are consistent
across a sequence of input scenes. This, however, is not straightforward. As the ob-
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Fig. 4: Objects found in two different scenes. Segments of the same local object
label have the same color locally.

ject discovery process is entirely unsupervised, the resulting local class labels are
not unique over a given number of input scans. This means thatan object class might
be associated with a class labelG1 when one scene is observed, but the same object
class might have a different class labelG2 if observed in a different scene. An ex-
ample of this is shown in Fig. 4. To identify object instancesof the same class from
different scenes, we need to solve thedata association problem. Unfortunately, this
problem is intractable in general as it involves a correspondence check between ev-
ery pair of object classes which are found in different scenes. One simple way to
address this correspondence problem is to join all scenes into one big scene and run
the discovery algorithm on the big scene. This approach, however, has two major
drawbacks: first, the number of connected componentsK in this big scene would
be very large. This heavily increases the computation time of the algorithm and de-
creases its detection performance because it fails to sufficiently restrict the number
of potential object classes. And second, it limits the possibility of running the ob-
ject discovery in an online framework, which is one major goal of this work. The
reason here is that the parts graph would need to be re-built every time a new scene
is observed, which decreases the efficiency of the algorithm.

This work addresses the data association problem by introducing a third level
of reasoning namedclass graph. The key idea behind the class graph is to find a
mapping from local class labels to global category labels. Unlike the parts graph
and the scene graph, the class graph models the statistical dependencies between
labels of object class instances rather than object parts. Details of the class graph is
explained in Sec. 4.2. Next section describes object feature vector for representation
of object instances, which are the building blocks of class graph.

4.1 Object Representation

Object feature vector enables a compact representation of object instances. This
work employs object feature vectoro which captures object instance’s appearance
and shape. The object feature vectoro is composed of a histogramh of visual word
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occurrences and a shape vectorv. The histogramh captures object appearance while
the shape vectorv captures object volume. To compute the histograms, we take the
bag of words approach and represent an object as a collection of visual words. Bag
of words requires visual vocabulary to be defined, and we determine the visual vo-
cabulary by clustering the object parts feature vectorf of all discovered objects.
Each clusterF ∗i is a word in the visual vocabularyF ∗1 , . . . ,F ∗C∗ , and the total num-
ber of words in the vocabularyC∗ is equal to the number of clustersC∗. With the
visual vocabulary, representing an object as a histogram simplifies to counting the
number of occurrences of each visual word in the object. In traditional bag of words
approaches, every feature makes a contribution to the bin corresponding to the vi-
sual word that best represents the feature. Such approaches, however, do not take
into account the uncertainty inherent in the assignment process. Hence, in our work,
each object part feature vectorf contributes to all bins of the corresponding his-
togramh, where the contribution to a bin is determined by the probability p(wi|f )
of the feature vectorf belonging to the visual wordwi. We compute this probability
by nearest-neighbor.

In addition to a histogramh, object feature vectoro contains a shape vectorv,
which represents object’s physical properties. The shape vectorv is composed of
three elements – size in horizontal direction, size in vertical direction, and object’s
location in vertical direction. The horizontal and vertical spans provide the bounding
volume in which the object resides. The vertical location gives an estimate on where
the object is likely to be found.

4.2 Class Graph

Fig. 5: Categorization by class graph. Local class labels, represented as mean his-
tograms, are the nodes of the graph, and the links between twosimilar nodes form
the edges. Clustering the local class labels provides the initial mapping from local
class labels to global category labels. Running inference on the class graph provides
a distribution of category labels for each local label. These distributions are then
used to determine the category label for each discovered object.
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Once the object feature vectorso1, . . . ,oN∗ are computed for all discovered ob-
jectsO1, . . . ,ON∗ , we determine the mapping from local class labelsG1, . . . ,GM to
global category labelsG∗1, . . . ,G∗K∗ usingclass graph C. Class graphC consists of
the node setV ō= {ō1, . . . , ōM} and the edge setE ō= {(ōi, ōj) | D(ōi, ōj) < ϑ ō}. The
nodes are the local class labelsG1, . . . ,GM represented as mean object feature vec-
torsō1, . . . , ōM, and the edges connect similar local class labels, where thesimilarity
between two local labels is the distance between their mean object feature vectors.
The threshold for object similarityϑ ō is set to 0.5.

To assign global category labelsG∗1, . . . ,G∗K∗ to local class labelsG1, . . . ,GM, we
need to find the number of global categoriesK∗. As mentioned earlier, Affinity Prop-
agation (AP) implicitly determines the number of clusters,and therefore, we cluster
the mean object feature vectorsō1, . . . , ōM by AP clustering. The number of clusters
K∗ resulting from AP clustering is the maximum number of globalcategories, and
the clustersG∗1, . . . ,G∗K∗ are the initial global category labels for the local class labels
G1, . . . ,GM . Smoothing this initial mapping determines the final mapping from local
class labels to global category labels. Fig. 5 shows the overall steps of categorization
by class graph.

4.3 Smoothing

Class graphC captures the dependency among the local class labelsG1, . . . ,GM,
but it does not assign a category labelG∗i to each local labelGi. To determine the
category labels, we apply probabilistic reasoning. We treat the nodes of the graph as
random variables and the edges between adjacent nodes as conditionally dependent.
That is, the global category labelG∗i of a local class labelGi depends not only on
the local evidencēoi but also on the class labelsG∗j of all neighboring labelsG j. For
example, if the local class labelGi is strongly of categoryG∗i ,, based on its evidence
ōi, then it can propagate its category labelG∗i to its neighborsG j. On the other hand,
if its category label is weak, then its category labelG∗i can be flipped to the category
labelG∗j of its neighbors. This process penalizes sudden changes of category labels,
producing a smoothed graph. We perform the smoothing again using a Conditional
Random Field (CRF).

Our CRF models the conditional distribution

p(g | ō) =
1

Z(ō)

∏

i∈Vō

ϕ(ōi,gi)
∏

(i, j)∈Eō

ψ(ōi, ōj,gi,g j), (6)

whereZ(ō) =
∑

g′
∏

i∈Vō ϕ(ōi,g′i)
∏

(i, j)∈Eō ψ(ōi, ōj,g′i ,g
′
j) is thepartition function;

Vō are the local classes; andEō are the edges between the local classes. Our for-
mulation of the CRF is slightly different from the conventional approaches in that
our feature similarity functionfn of the node potential logϕ(ōi,gi) = wn · fn(ōi,gi) is
the conditional probabilityp(gi | ōi). Likewise, the feature similarity functionfe of
the edge potential logψ(ōi,gi) = we · fe(ōi, ōj,gi,g j) is also defined as a conditional
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probability p(gi,g j | ōi, ōj). The feature functionsfn and fe hence range between 0
and 1, simplifying the weighting between node and edge potentials to scalars. In su-
pervised learning with CRFs, node weightwn and edge weightwe are learned from
training data. In this unsupervised work, however, we cannot learn these values as
there is no training data available. We therefore determinenode weightwn and edge
weight we manually using an appropriate evaluation measure on a validation set.
Fig. 8 in Sec. 5 shows the effect of setting different combinations of node weightwn

and edge weightwe.
As mentioned in Sec. 4.2, the object feature vector clustering provides the total

number of global object categoriesC∗ and the initial mapping from local class labels
G1, . . . ,GM to global category labelsG∗1, . . . ,G∗K∗ . Using the clusters, we can model
the feature similarity functionfn = p(gi | ōi) of node potentialϕ(ōi,gi) as

p(gi | ōi) =
p(ōi | gi)p(gi)∑
g′ p(ōi | g′)p(g′)

(7)

wherep(ōi | gi) = p(h̄i | gh̄
i )p(v̄i | g v̄

i ) = exp(− ‖ h̄i − h̄gi ‖)exp(− ‖ v̄i − v̄gi ‖) and
p(gi) = 1− 1

|gi |+1. p(ōi | gi) measures how well̄oi fits to the cluster centergi, and
the global category priorp(gi) reflects how likely the category exists. A cluster with
more members are more likely to be a true object category thana cluster with fewer
members, and hencep(gi) is proportional to the size| gi | of the category.

We define the edge feature as

p(gi,g j | ōi, ōj) = p(gi | ōi, ōj)p(g j | ōi, ōj), (8)

wherep(gi | ōi, ōj) = p(gi | ōi j) andp(g j | ōi, ōj) = p(g j | ōi j) are estimated by a mean
object feauter vector̄oi j. The probabilitiesp(gi | ōi j) andp(g j | ōi j) are computed by
the nearest-neighbor.

To infer the most likely labels for the nodes of the class graph C, we use max-
product loopy belief propagation. This approximate alogrithm returns the labelsG∗i
which maximizes the conditional probability of Eq. 6. For the message passing, we
take the generalized Potts model approach as commonly done and incorporate the
edges in the inference only whengi andg j are equal. This results in the propagation
of the belief only between equally-labeled nodes. The inference step continues until
convergence and provides the distribution of global category labelsG∗1, . . . ,G∗K∗ for
every local class labelGi.

To find the category labelG∗ for each discovered objectO, we compute the cat-
egory which maximizes the assignment probability

p(g | o) =
∑

ō′
p(g | ō′)p(ō′ | o). (9)

The probability of the category for a given local labelp(g | ō′) can be read directly
from the class graphC, and the probability of the local object class given an object
p(ō′ | o) = exp(− ‖ ō−o ‖) is computed as the object’s similarity to the class mean.
Discovered objects are accepted as objects when the probability of its most likely
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Fig. 6: Objects found in two different scenes. Segments of the same object label
have the same color.

category label is greater than 0.5. Fig. 6 shows the results of categorization of the
two scenes shown in Fig. 4.

5 Results

In this section, we present the results of running the algorithm on scans from real
world scenes. The data set was collected using a nodding SICKlaser with a width
of 100 degrees and a height of 60 degrees. Each set was captured at the horizontal
resolution of 0.25 degrees and the vertical resolution of 15degrees a second. All
scenes were static. The test set was a set of 60 scans from fouroffices. In total, these
data sets contained 208 objects, including chairs, couches, poster boards, trash bins,
and room dividers.

Fig. 7: The results of object discovery with (left) and without (right) saliency com-
putation. All connected segments are considered objects for categorization. Objects
are colored by their local class label.

We first tested the effect of including saliency in the discovery step. Fig. 7 quali-
tatively shows the difference in object discovery with and without saliency compu-
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tation. Including saliency improves the precision1 of discovery from 44% to 84%
while decreasing recall from 83% to 74%. That is, while including the saliency step
does eliminate some true objects, it is much more effective at eliminating none ob-
jects than the same algorithm without the saliency step.
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ϑō

The effect ofϑō on V-Measure

Fig. 8: Evaluation of our categorization step using V-measure. Left graph shows the
effect of node and edge weights on v-measure. Right graph shows the effect of the
object distance threshold on v-measure.

Quantitatively, we computed V-measure [15] of our algorithm. V-Measure is a
conditional entropy-based external cluster evaluation measure which captures the
cluster quality by homogeneity and completeness of clusters. It is defined as

Vβ =
(1+β) ∗h ∗ c

(β ∗h)+ c
, (10)

whereh captures homogeneity,c completeness, andβ the weighting between ho-
mogeneity and completeness. A perfectly homogeneous solution hash = 1, and a
perfectly complete solution hasc = 1. Fig. 8 shows the quality of clustering with
varying node and edge weights and the effect of object distance threshold on the
quality of clustering. Left graph indicates that the results of our algorithm is ro-
bust to the change of node and edge weights, but smoothing improves the overall
results over pure clustering. Right graph shows that the quality of clusters depends
on the object distance thresholdϑ ō, which indicates that the initial clustering result
influences the final categorization quality.

Fig. 9 shows precision and recall2 of the algorithm for varying object distance
thresholdϑ ō. Not suprisingly, precision drops and recall increases as the threshold
increases. This is because higher threshold results in fewer categories, which in turn
means more of the discovered objects are accepted as categorized objects.

1 A discovered object is considered true positive if it originates from a real object and false positive
if it is not a real object. False negative count is when a real object is not discovered.
2 In computing precision and recall, we did not take into consideration the correctness of the
category labels. Any real object that got categorized was considered true regardless of its label.
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The effect ofϑō on precision and recall

Fig. 9: Effect of the object distance threshold on precision and recall.

Fig. 10 shows qualitative results. Left images are the results of performing ob-
ject discovery per each scan, and right images are the corresponding images after
categorization. Discovered objects are colored accordingto their local class label,
i.e., with respect to other objects within a single scan, while categorized objects are
colored according to their global category label, i.e., with respect to all other objects
of the data set. The categorization step is able to assign thesame global category
labels to objects with different local class labels as shown in Fig. 10b while assign-
ing different global category labels to objects with the same local label as shown in
Fig. 10d. In addition, the chairs found in different scene are correctly labeled to be
the same type as shown in Fig. 10a, 10b, 10d.

6 Conclusion and Outlook

We presented a seamless approach to discover and categorizeobjects in 3D envi-
ronment without supervision. The key idea is to categorize the objects discovered
in various scenes without requiring a presegmented image orthe number of classes.
Our approach considers objects to be composed of parts and reasons on each part’s
membership to an object class. After objects are discoveredin each scan, we as-
sociate these local object labels by building a class graph and inferring on it. We
demonstrated our capability of discovering and categorizing objects on real data
and performance improvement class graph smoothing brings over pure clustering.

Our approach has several avenues for future work. First, we can use the results
of categorization for object recognition. Once the robot has discovered enough in-
stances of an object category, it can use the knowledge to detect and recognize ob-
jects, much the same way many supervised algorithms work. Our algorithm simpli-
fies creating training data to converting robotic class representation to human repre-
sentation. Another direction for future work is on-line learning. While the proposed
approach allows the robot to reason on knowledge gained overtime, the knowledge
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(a) Room 1

(b) Room 2

(c) Room 3

(d) Room 4

Fig. 10: Results of category discovery. Left images containobjects discovered
through the object discovery process, and right images are the same objects after
categorization. Objects in the left images are colored according to their local class
labels while objects in the right images are colored by theirglobal category labels.
Notice that the categorization step can correct incorrect classifications of the dis-
covery step.
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is updated in batch. This limits the availability of new information until enough data
is collected for the batch processing. A robot, which can process incoming data and
update its knowledge on-line, can utilize the new information immediately and adapt
to changing environment. Extending our work to handle categorization on-line will
thus make unsupervised discovery and categorization more useful for robotics.
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A Bayesian Approach to Learning 3D
Representations of Dynamic Environments

Ralf Kästner, Nikolas Engelhard, Rudolph Triebel, and Roland Siegwart

Abstract We propose a novel probabilistic approach to learning spatial represen-
tations of dynamic environments from 3D laser range measurements. Whilst most
of the previous techniques developed in robotics address this problem by compu-
tationally expensive tracking frameworks, our method performs in real-time even
in the presence of large amounts of dynamic objects. The computer vision commu-
nity has provided comparable methods for learning foreground activity patterns in
images. However, these methods generally do not account well for the uncertainty
involved in the sensing process. In this paper, we show that the problem of detecting
occurrences of non-stationary objects in range readings can be solved online under
the assumption of a consistent Bayesian framework. Whilst the model underlying
our framework naturally scales with the complexity and the noise characteristics
of the environment, all parameters involved in the detection process obey a clean
probabilistic interpretation. When applied to real-world urban settings, the results
produced by our approach appear promising and may directly be applied to solve
map building, localization, or robot navigation problems.

1 Introduction and Related Work

Understanding dynamic properties of the world has become an increasingly popular
research topic in mobile robotics. The motivations for this popularity are manifold.
The occurrence of moving objects in the robot’s sensor range may for example cor-
rupt the localization or map building process [12, 1, 3]. On the other hand, novel
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planning approaches aim at navigating platforms through highly dynamic environ-
ments [11, 6]. They therefore strongly rely on robust motion parameter estimates
for objects that may potentially interfere with the robot’s trajectory.

A widely common group of methods addressing motion estimation is committed
to tracking the displacement of entire point clusters [10]. Whilst such approaches
succeed in obtaining a parametric description of the cluster motion, they usually
take strong assumptions about the size or shape of objects. In the above scenarios,
however, we generally do not want to constrain ourselves with a limited number of
object classes. In fact, we seek to detect motion rather than to find explicit motion
parameters. Consider therefore a sensor reading that has been introduced by a dy-
namic object. If, at any later point in time, we acquire another reading that matches
the previous observation, we may not care to also answer the difficult question of
identity. That is, no matter if the measurement originates from a single or two dif-
ferent objects, we would still want to classify it as being dynamic.

In this paper, we propose a novel approach to the problem of learning 3D rep-
resentations of dynamic environments from range data. In strong analogy to back-
ground modeling in computer vision [8], this problem constitutes a binary classifi-
cation task. That is, for a series of range observations we seek to estimate whether
single measurements originate from a static or a dynamic object. We therefore rep-
resent correspondences between measurements and objects using Gaussian mixture
distributions [14, 13].

Where standard methods for learning Gaussian mixtures fail due to the non-
stationary nature of a dynamic world model [5], we propose an alternative on-line
solution that does not make any assumptions about the number of Gaussians in the
mixture model but efficiently scales with the complexity of the environment. Even
in highly populated settings, our approach is thus capable of distinguishing dynamic
from static objects in real-time.

The emphasis of this work strongly lies on the Bayesian formalization of all steps
involved in the learning process [8]. In fact, following techniques used in probabilis-
tic change detection [7] our method is strictly governed by the laws of probability,
and each effective parameter comes with a clear probabilistic interpretation.

We demonstrate the practicability of our approach in simulation and by experi-
ments involving several urban outdoor scenarios with a diversity of static structures
and dynamic objects.

2 Probabilistic Formulation

Our algorithm to learning dynamic environment representations operates on range
readings acquired with a nodding 2D laser range scanner that pitches up and down
during data acquisition to produce 3D point clouds. This setup has been used fre-
quently in the literature (see, e.g. [15]) and is usually known as the nodding laser
scanner configuration. Throughout this paper, we define a sensor measurement zt as
the tuple (rt,ϑt,ϕt), where rt is the measured range, and ϑt and ϕt are the pitch and
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yaw angles of the laser beam at time t of the data acquisition. We assume that rt is
affected by Gaussian noise, thus we have rt ∼N(r̂t,σr), where r̂t is the true distance
between the laser origin and the observed object.

Since we do not account for uncertainty in the acquisition angles ϑ and ϕ of our
nodding range scanner, we represent full sensor sweeps as range images. A range
image is defined by an N ×M matrix of cells ci, j, representing a discretization of
the continuous space S = [−ϑmax,ϑmax]× [−ϕmax,ϕmax], where the pitch and yaw
angles ϑ and ϕ of the laser beam range between predefined boundaries. For each zt,
we can thus compute a 3D coordinate vector z[i, j]

t , with i and j denoting the indices
of the range image cell ci, j that corresponds to rt.

To formulate our problem mathematically, we furthermore introduce a binary
state variable xt, which is true if the observation zt corresponds to a dynamic object
and false otherwise. Our aim is to estimate xt at any time step t, given the noisy
measurement zt acquired at time t. Formally, we therefore want to find p(xt | zt).
Assuming statistical independences between all range image cells, we can then esti-
mate the joint posterior probability of range measurements being caused by dynamic
objects x̄t = {x[i, j]

t } given the range image z̄t = {z[i, j]
t } as

p(x̄t | z̄t) =
∏

i, j

p(x[i, j]
t | z[i, j]

t ). (1)

To keep the following notations uncluttered, we will drop the superindices [i, j]
and perform all further computations only on the cell level. Consequently, the con-
ditional p(xt | zt) associated with each cell shall from now on be referred to as cell
posterior.

2.1 Formulation using Gaussian Mixture Models

To infer the binary states xt, we use a generative approach: we assume that each
observation zt was caused by the existence of one of K objects, which can be either
dynamic or static. The unobserved distance of each object to the laser origin is
modeled using a normal distribution N(µk,σk), with mean µk, variance σk, and
k ∈ {1, . . . ,K}. For each cell, we thus yield a set of model parameters which shall
henceforth be denoted Θ = {K,µ1, . . . ,µK ,σ1, . . . ,σK}. To express the fact that zt
corresponds to object k, we furthermore introduce binary correspondence variables
gk

t , where only one gk
t can be true for any zt.
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2.2 Decomposing the Cell Posterior

In an online process, our model changes over time. LetΘt therefore represent the set
of parameters at acquisition time t. Together with the states xt, the model parameters
are generally unknown and need to be inferred. In other words, at any given time t
we will be facing the question of how to update our latest parameter estimate Θt−1
using the most recent observation zt. We therefore want to make the Θt and Θt−1
explicit in the probabilistic formulation and rewrite the cell posterior from Eqn. (1)
as

p(xt,Θt | zt,Θt−1) = p(xt | zt,Θt,Θt−1) p(Θt | zt,Θt−1)
= p(xt | zt,Θt) p(Θt | zt,Θt−1). (2)

Here, the second equality assumes our model Θt to provide a complete description
of the underlying process.

The above equation constitutes two conditionals that are essential to finding the
cell posteriors. The first conditional describes an assignment of binary states xt to
observations zt under the assumption that all model parameters Θt are known. It
shall therefore be coined as dynamics likelihood. The second conditional implies
the sought model Θt from an observation zt and the most recent parameter set Θt−1.
Accordingly, it will be termed the update rule.

2.3 The Dynamics Likelihood

We follow the approach presented in [8] and express the dynamics likelihood by
marginalization over all correspondence variables gk

t . We thus obtain

p(xt | zt,Θt) =
p(xt,zt | Θt)

p(zt | Θt)

=

∑K
k=1 p(xk

t ,zt | gk
t ,Θ

k
t )p(gk

t | Θk
t )

∑K
k=1 p(zt | gk

t ,Θ
k
t )p(gk

t | Θk
t )

(3)

=

∑K
k=1 p(xk

t | gk
t ,Θ

k
t )p(zt | gk

t ,Θ
k
t )p(gk

t | Θk
t )

∑K
k=1 p(zt | gk

t ,Θ
k
t )p(gk

t | Θk
t )

.

Here, we introduce object parameters Θk
t = {µk

t ,σ
k
t } and individual state variables

xk
t expressing if the k-th Gaussian is dynamic or static. We furthermore assume the

probability of observing zt to be equal for both dynamic and static objects, given the
knowledge that zt was caused by object k. This results in the conditional indepen-
dence relation p(xk

t ,zt | gk
t ,Θ

k
t ) = p(xk

t | gk
t ,Θ

k
t )p(zt | gk

t ,Θ
k
t ).
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From Eqn. (3), three terms need to be specified further. Starting from the right, we
first note that p(gk

t |Θk
t ) is the prior probability for zt being caused by object k. Usu-

ally, p(gk
t | Θk

t ) is named the weight of the k-th Gaussian in the mixture and denoted
by the symbol wk

t . Second, the data likelihood p(zt | gk
t ,Θ

k
t ) is equal toN(zt;µk

t ,σ
k
t ).

And, finally, the dynamics likelihood of Gaussian k is defined as p(xk
t | gk

t ,Θ
k
t ).

2.4 The Update Rule

Just as for the dynamics likelihood, we write the update rule as a marginal over
correspondences gk

t and obtain

p(Θt | zt,Θt−1) =

K∑

k=1

p(Θk
t | zt,gk

t ,Θ
k
t−1) p(gk

t | zt,Θ
k
t−1) (4)

This provides us with two additional terms. The correspondence likelihood
p(gk

t | zt,Θ
k
t−1) constitutes a statistical law for selecting Gaussian k as an expla-

nation for the occurrence of zt, and the update rule of Gaussian k is denoted by
p(Θk

t | zt,gk
t ,Θ

k
t−1).

2.5 The Mixture Weights

As stated above, we assume that each observation zt is caused by only one possible
object. This corresponds to the hard assignment of data points to clusters known
from the k-means clustering algorithm. Using this, we can say that all t data points
acquired at the discrete time steps 1, . . . , t are each assigned to one out of K clusters
where each cluster corresponds to a Gaussian. If we denote the number of observa-
tions that correspond to cluster k at time t by nk

t , we can estimate the prior probability
of a new observation zt to be caused by object k. As this prior is equal to the weight
wk

t , we have

p(gk
t | Θk

t ) = wk
t =

nk
t

t
(5)

We note that knowing t, nk
t thus becomes an equivalent representation of the

mixture weight wk
t .
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3 Online Estimation of the Mixture Parameters

In this section, we present an online implementation for estimating our model pa-
rameters. As shown above, we can compute the posterior probability of an observa-
tion zt to be caused by a dynamic object in two stages: First, we apply the update
rule according to Eqn. (4) and reestimate the mixture parameters Θt with respect to
the latest model Θt−1. And second, we use the dynamics likelihood from Eqn. (3)
on the updated mixture models in order to infer new state variables xt.

3.1 Sequential Parameter Updates

A key contribution of this paper pertains to the central question of how to integrate
new observations with an existing cell mixture. In contrast to the approach presented
in [14], we seek to strictly govern the sequential update of our mixture models by
statistical densities and the laws of probability.

In mathematical terms, finding the optimal parameter assignment for Θt given
Θt−1 and an observation zt is equivalent to maximizing the update probability
p(Θt | zt,Θt−1). We therefore want to reconsider the probabilistic update rule for our
cell mixtures defined in Eqn. (4). It suggests that in order to maximize p(Θt | zt,Θt−1),
we first need to recover an optimal assignment for the correspondence variables gk

t .
We recall that following our above assumptions, each observation zt may only be

caused by one possible object. Put differently, we are interested in inferring whether
a sensor response zt originates from an object k ∈ {1, . . . ,K} that is already repre-
sented by our mixture or not. Following the proposal in [7], we therefore introduce
a joint probability and estimate correspondences with respect to two distinct cases.

Explained An observation zt can be explained by the k-th Gaussian in the current
mixture model. Consider therefore the range reading rt associated with zt along
with the expected measurement noiseσr. Furthermore, letΘk

t−1 be the parameters
of the Gaussian k in the mixture distribution that best explains zt. Then our ob-
servation model gives rise to the assumption that p(zt | gk

t ) ∼ N(µk
t−1,σ

k
t−1 +σr).

Note that by summing up the variances of the measurement σr and the object
representation σk

t−1, we account for the noise in both models.
Unexplained An observation cannot be explained by any of the K Gaussians in

the current mixture model. Without making any specific assumption on how un-
observed objects occur within the sensor range, we assume a uniform distribution
over the entire beam length. Hence, we define p(zt | gnew) ∼U(0,rmax) whereU
denotes the uniform distribution with support in [0,rmax], and gnew is a new Gaus-
sian explaining zt.

Given the above cases, we are able to arrive at a posterior for unexplained obser-
vations. We define pnew = p(gnew) and apply Bayes rule to relate p(gnew | zt) to the
likelihood at which observations are generated by unrepresented objects:
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p(gnew | zt) =
p(zt | gnew) · pnew

p(zt | gnew) · pnew + p(zt | gk
t ) · (1− pnew)

(6)

Then, by exploiting the assumption that p(zt | gnew) · pnew is small we can approx-
imate the logarithm of this expression

log p(gnew | zt) ≈ log
p(zt | gnew) · pnew

p(zt | gk
t ) · (1− pnew)

= log p(zt | gnew) + log pnew−
log p(zt | gk

t )− log(1− pnew) (7)

Plugging in our model assumptions with respect to the described cases conse-
quently yields

log p(gnew | zt) ≈ − logrmax + log pnew− log(1− pnew) +

1
2

log2π(σk
t−1 +σr) +

1
2

(rt −µk
t−1)2

(σk
t−1 +σr)

(8)

It appears beneficial to combine all expressions depending on the range measure-
ment rt in the above equation. This leaves us with a simple quadratic distance

dk(rt) = (rt −µk
t−1)T (σk

t−1 +σr)−1(rt −µk
t−1) (9)

Exploiting the assumption that an unexplained observation with a probability of
p(gnew | zt) > 0.5 is significant, this distance may then be compared to the following
constant threshold

dmin
k = 2log0.5 + 2logrmax −2log pnew +

2log(1− pnew)− log2π(σk
t−1 +σr) (10)

We conclude that if dk(r) < dmin
k , the k-th Gaussian is a possible explanation for

the occurrence of observation zt.
The reader may have noticed that the method presented so far only allows for

selecting a set of candidate Gaussians from the mixture. We therefore propose to
proceed as follows: If we find any Gaussian explaining zt, we will arrange a hard
assignment of zt to the candidate Gaussian k with the lowest distance dk(rt). Note
that this is equivalent to selecting the object with the highest correspondence like-
lihood p(gk

t | zt) = 1− p(gnew | zt). We then account for maximizing Eqn. (4) by
computing the maximum likelihood estimate for the k-th Gaussian. A sequential ap-
proach exists to finding the maximum likelihood solution for the parameters of a

Articles on Unsupervised Online Learning (Chapter 6)

234 Appeared in: Proc. of the 12th Intern. Symp. on Experimental Robotics (ISER), 2010
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Algorithm 1: updateMixture(Mt−1, rt)
Input: Mixture of GaussiansMt−1 = {〈n1

t−1,Θ
1
t−1〉, . . . , 〈nK

t−1,Θ
K
t−1〉}

Input: Laser reading rt
Output: Updated Mixture of GaussiansMt
Mcand ← ∅
foreach 〈nk

t−1,Θ
k
t−1〉 ∈Mt−1 do

Evaluate dk(rt) and dmin
k according to Eqs. 9 and 10

if dk(rt) < dmin
k then

Mcand ←Mcand ∪{〈nk
t−1,Θ

k
t−1〉}

end
end
if Mcand , ∅ then
〈nk

t−1,Θ
k
t−1〉 ← argmin

〈nl
t−1 ,Θ

l
t−1〉∈Mcand

dl(rt)

Mt ←Mt−1 \ {〈nk
t−1,Θ

k
t−1〉}

nk
t ← nk

t−1 + 1
Θk

t ← updateGaussian(Θk
t−1, rt)

Mt ←Mt ∪{〈nk
t ,Θ

k
t 〉}

else
nK+1

t ← 1
ΘK+1

t ← {µK+1
t ← rt,σ

K+1
t ← σr}

Mt ←Mt−1 ∪{〈nK+1
t , θK+1

t 〉}
end
collapseMixture(Mt)

Gaussian distribution that allows new observations zt to be processed one at a time.
For a detailed discussion of this approach, the interested reader may refer to [2].

In cases where no candidate Gaussian exists, we represent the observed object by
introducing a new Gaussian K +1 into the mixture. This Gaussian is then initialized
with mean rt and variance σr.

We are now ready to state Alg. 1 for sequential parameter updates. It takes the
range measurement rt associated with a new observation zt and the corresponding
cell mixture distributionMt−1 as input arguments and in return outputs the updated
densityMt.

Our algorithm makes use of two auxiliary functions. As the name suggests,
updateGaussian sequentially reestimates mean and variance of the best candidate
Gaussian with respect to rt. The second function of concern is collapseMixture.
It provides an abstract mechanism for joining Gaussians that share a significant
fraction of the state space. To see why this is necessary, the reader may consider
the very nature of the mixture density p(zt | Θt). This density actually constitutes
a noise model of the environment with the sensor uncertainty displayed by newly
added Gaussians solely acting as a prior. In fact, the variance of each Gaussian may
often grow beyond this initial uncertainty, e.g. in order for it to represent a highly
scattered surface.

Although alternative approaches exist to collapsing Gaussian mixture models
(see e.g. [9], p. 185 ff.), we propose to use a method that widely resembles our
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sequential update algorithm. Just as for associating noisy observations with the most
likely mixture candidates, we have implemented a very similar algorithm to perform
a pair-wise identification of Gaussians obeying the distance threshold from Eq. 10.
The advantage of such an implementation is clear at hand: Instead of introducing
a new parameter into the update step, we may reuse the prior probability pnew for
the occurrence of unexplained objects. Hence, the total number K of Gaussians
contained in a cell mixture is bound by our model assumptions and does not require
artificial clamping.

3.2 Computing the Dynamics Likelihood

Above, we have demonstrated how to update the parameters of a Gaussian mixture
distribution that is capable of representing observations in statistically independent
range image cells. However, our model does not yet disambiguate between obser-
vations caused by dynamic and observations caused by static objects. Or formally
speaking, we have not yet provided an estimate for the binary state variables xk

t
associated with each of the Gaussians.

From the dynamics likelihood stated in Eqn. (3), we know that the conditional
density p(xk

t | gk
t ,Θ

k
t ) defines a state labeling strategy and that, in its most general

form, this strategy constitutes a weighting of the k-th Gaussian in the mixture dis-
tribution.

To compute the dynamics likelihood of Gaussian k, we use the method described
in [14]. It is based on the observation that the majority of range readings usually
originates from static objects. This means in turn that the objects, to which the most
observed data points correspond, are more likely to be static. As we model each hy-
pothetical occurrence of an object with a Gaussian k, and as according to Eqn. (5) the
number of observations caused by the k-th object is encoded in the mixture weight
wk, we can estimate p(xk

t | gk
t ,Θ

k
t ) as follows: First, we sort all weights wk in de-

scending order. Then, we compute the number KS of Gaussians that most probably
correspond to static objects as

KS = argmin
l


l∑

k=1

ws(k) > ρ

 . (11)

Here, s(k) is the index of the weight wk after sorting and ρ ∈ [0,1] is an
environment-dependent parameter that represents a measure for the minimum por-
tion of observations that should be accounted for by static hypotheses. The last
K−KS Gaussians in the sorted mixture are consequently labeled as dynamic. Thus,
the lower the value of ρ, the more Gaussians are considered to be dynamic. For ρ= 0,
only the most evident Gaussian, i.e. the one with the highest count of observations,
remains static. Using Eqn. (11), the dynamics likelihood is approximated as
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p(xk
t | gk

t ,Θ
k
t ) =

{
1 if s(k) > KS
0 otherwise. (12)

3.3 Computational Complexity

We briefly want to discuss the expected computational costs of the proposed method.
We therefore analyze the steps taken in order to update the model parameters Θt
given a new observation zt and for recalculating the state variables xt.

Reestimating the cell mixture is largely dominated by the search for the best
candidate distribution and by the pair-wise collapsing of Gaussians. As the average
number of Gaussians K̂ contained in the cells varies with the choice of pnew, com-
plexity strongly depends on our prior expectation about the occurrence of world
dynamicity. We may however state that the update costs are bound by a recursive
collapse of the entire mixture distribution into a single Gaussian density. And hence,
Alg. 1 runs in worst-case O(K̂2 log K̂).

Estimating the states requires an additional sorting of the updated cell mixture
which takes additional effort in O(K̂ log K̂).

4 Evaluation

In order to evaluate the approach proposed in this paper, we have conducted several
experiments based on both simulated and real-world data. In this section, we present
our results and some major insights originating from the analysis of these results.

First, we want to consider the influence of the parameter pnew on the quality of
our on-line mixtures estimates. We will then discuss the performance of our method
as applied to range observations from different outdoor settings.

4.1 Simulations and the Influence of pnew

To assess the theoretical soundness of our approach, we have initially generated
various sets of sample observations from a predetermined ground truth. This ground
truth was composed of Gaussian mixture distributions of which the parameters were
known. Drawing samples from such mixtures is straightforward, and these samples
may directly serve as simulated range measurements to the estimation process.

As a similarity measure between the simulated and the estimated mixture dis-
tributions, we have chosen to adapt a variational approximation to the Kullback-
Leibler divergence for Gaussian mixture models. This approximation was first pro-
posed in [4] and provides a fairly accurate, closed-form distance function.
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Fig. 1 The influence of the prior probability pnew on the size and the quality of the learned mixture
distributions. The graphs display the number of estimated Gaussians and the approximated distance
to the ground truth.

Consider two Gaussian mixturesMa andMb with weights wk
a and wl

b, and den-
sities Nk

a and N l
b, respectively. Then, the variational approximation of the distance

dvar(Ma||Mb) betweenMa andMb is given by

dvar(Ma||Mb) =
∑

k

wk
a log

∑
k′ wk′

a e−dKL(Nk
a ||Nk′

a )

∑
l wl

b e−dKL(Nk
a ||N l

b)
(13)

where dKL(Nk ||Nl) denotes the Kullback-Leibler divergence between normal
densities Nk and Nl.

The symmetric form of the approximated distance shall then be defined as

dsym(Ma||Mb) =
dvar(Ma||Mb) + dvar(Mb||Ma)

2
(14)

One of the major objectives of this evaluation was to examine the influence of the
prior probability pnew on the resulting estimates. In the course of our analysis, we
have therefore repeatedly sampled 1000 data points from a ground truth consisting
of 4 Gaussians with varying mean and variance parameters. Each of those sample
sets was then used to infer a new mixture under the assumption of different values
for pnew. The number of Gaussians in the resulting mixtures and the approximated
distance between the ground truth and the estimates are illustrated in Fig. 1.

A deeper investigation of the graphs in this figure reveals that it can be divided
into four major parts: The Gaussians in the estimates tend to associate easily for very
small values of pnew. Under these conditions, the number of independent state hy-
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Fig. 2 The influence of pnew by example. A small prior probability causes estimates to generalize
over the ground truth. But for a wide parameter range, a fairly accurate regression of the sample
distribution is achieved.

potheses is underestimated, but the model might excellently generalize over ground
truth distribution with many individual densities. An example of this behavior is
depicted in Fig. 2.

For slightly higher values of pnew up to a probability of about 0.8, the number
of Gaussians then remains near constant, whereas the resulting mixture evidently
achieves a fairly accurate regression of the sample distribution. This insight is also
supported by Fig. 2 where we witness a tight fit between ground truth and estimate.

Assuming values above 0.8, pnew allows Gaussians to only associate if they are
very close with respect to our probabilistic distance. This consequently leads to
an overfitting behavior, resulting in a higher number of individual densities and
decreasing similarity.

If pnew converges towards a probability of 1.0, individual Gaussians cease to
associate. The scenario culminates in a trivial situation where each sample is repre-
sented by a single Gaussian. In those cases, the distance becomes negligible, but the
mixture model completely explodes in complexity.

Our analysis on the influence of pnew on learning mixtures from simulated data
advocates important insights pertaining to real-world processes. In order for the
estimator to disambiguate between static and dynamic objects, it is important to
adjust pnew according to the following criterion: If we expect very little motion
in the environment, we will choose small priors such that the model generalizes
well even for noisy readings of still surfaces. For widely dynamic environments, we
will assume higher probabilities pnew to allow for larger numbers of individual and
strongly discriminating hypotheses.
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Fig. 3 Estimation results from an urban scene with pedestrians moving in front of a building. The
approach robustly segments dynamic objects (red) from static background surfaces (green). The
gray boxes mark problematic edges that cannot be explained by the proposed model.

4.2 Outdoor Experiments

To evaluate its real-world performance, we have furthermore applied our method
to several data sets of outdoor scenarios with varying dynamic properties. Such
scenarios involved different background structures as well as a selection of dynamic
objects that usually move within urban settings. Amongst these objects, we found
pedestrians, cars, trams, and cyclists. We have fixed our nodding range sensor with
a typical pitch range of about 45 degrees in positions overlooking extensive areas.
The pitch frequency was usually adjusted to about 0.5 Hz. Hence, moving objects
appear slightly distorted.

Fig. 3 shows an exemplary outdoor scene and the learned environment represen-
tation. The data set used in order to produce these results is composed of continuous
scans over a time period of several minutes. For the purpose of visualization, we
have decided to obtain a pointcloud representation of the cell mixtures. We there-
fore depict the mean of a static Gaussian by a green point. Accordingly, dynamic
hypotheses are marked in red.

By qualitative visual investigation, we have found that the depicted outdoor re-
sults display a robust segmentation of static and dynamic objects. Unfortunately,
providing a labeled ground truth explaining our data sets is a difficult challenge
that limits the feasibility of a quantitative analysis. Instead, we show an application
of our approach to create a 3D grid-based Multi-level Surface (MLS) map [16] in
Fig. 4. As we can see, our approach to detect and remove dynamic objects reduces
the number of obstacles in the map, represented as non-traversable map cells.

Articles on Unsupervised Online Learning (Chapter 6)

240 Appeared in: Proc. of the 12th Intern. Symp. on Experimental Robotics (ISER), 2010
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Fig. 4 Multi-level Surface map created from a different urban scene. The dynamic objects have
been removed using the approach presented in this paper. Green cells are classified as traversable.
The laser readings that have been classified as dynamic are overlaid to the map as red points.

The attentive observer may have noticed that some of the static regions of our
estimates contain small numbers of outliers. The regions of concern are specifically
characterized by edges lying in the measurement plane of the range sensor. For those
edges, the laser beam has an equally distributed chance of observing a foreground
or a background surface. Problematic edges hence constitute a model discontinuity
which cannot be explained by our current noise assumptions. Adressing such dis-
continuities, we therefore propose an alternative implementation of p(xt | zt,Θt) that
takes into account the spatial neighborhood between cell models [13].

5 Conclusions

We have presented a novel approach to the difficult problem of detecting dynamic
objects from range measurements. As opposed to previous work in the field, our
method takes very few assumptions about the structure of the environment. Never-
theless, our estimation algorithm is strictly governed by statistical models and the
laws of probability. The outdoor results produced within the scope of this paper ap-
pear promising and may directly serve as input to a variety of high-level approaches,
such as map building or object tracking.
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Abstract— This paper presents a novel self-supervised on-
line learning method to discover driving behaviors from data
acquired with an inertial measurement unit (IMU) and a cam-
era. Both sensors where mounted in a car that was driven by
a human through a typical city environment with intersections,
pedestrian crossings and traffic lights. The presented system
extracts motion segments from the IMU data and relates
them to visual cues obtained from camera data. It employs
a Bayesian on-line estimation method to discover the motion
segments based on change-point detection and uses a Dirichlet
Compound Multinomial (DCM) model to represent the visual
features extracted from the camera images. By incorporating
these visual cues into the on-line estimation process, labels are
computed that are equal for similar motion segments. As a
result, typical traffic situations such as braking maneuvers in
front of a red light can be identified automatically. Furthermore,
appropriate actions in form of observed motion changes are
associated to the discovered traffic situations. The approach is
evaluated on a real data set acquired in the center of Zurich.

I. Introduction

The development of intelligent driver assistant systems has
become a very active research field in the last years. The
large spectrum of potential applications for such systems
ranges from automatic warning systems that detect obstacles
and dynamic objects over automated parking systems to fully
autonomous cars that are able to navigate in busy city envi-
ronments. One aspect that is of major importance in all these
systems is the perception part of the vehicle, i.e., the data
acquisition and semantic interpretation of the environment.
The major challenges here include the required accuracy of
the detection system, the time constraints given by the speed
of the vehicle and its implied temporal restrictions on the
decision process, as well as the large variability in which
potential objects and the environment itself may appear.
Especially this latter point poses a significant challenge on
the perception task, because standard learning techniques that
most often rely on supervised off-line classification algo-
rithms tend to give poor results when the test environment
largely differs from the acquired training data. Furthermore,
such systems are not capable of adapting to new, unseen
situations, which reduces their applicability for long-term use
cases.

In this paper, we present a self-supervised on-line learning
algorithm that recognizes driving behaviors and predicts
appropriate actions accordingly. A driving behavior in our
context is defined as a short sequence of actuation commands
to the vehicle that typically occur in certain traffic situations.

Fig. 1. Example of a traffic light scenario (label 10) detected by our
algorithm. The suggested action is a braking maneuver.

An example is the braking maneuver in front of a red traffic
light. In our system, the driving behaviors are observed using
an inertial measurement unit (IMU) and a camera while a
human is driving the vehicle. Using our approach, the system
is able to detect and classify new traffic scenarios and predict
appropriate actions based on the driving behaviors learned in
earlier stages of the data acquisition process. The principle
idea is to first segment the data stream from the IMU into
consistent sequences using change-point detection, and then
relate these motion sequences to visual features observed in
the camera data during the corresponding motion. To find
the change-points in the motion data, we use an efficient
Bayesian approach based on a Rao-Blackwellized particle
filter. The visual features are represented in a bag-of-words
approach using a Dirichlet Compound Multinomial (DCM)
model. The detected motion segments are grouped on-line
and without human intervention, according to their simi-
larities in their corresponding visual features. This enables
the system to predict new motion commands according to
the traffic situation it detects from new camera data. Thus,
it predicts a braking maneuver when it encounters enough
evidence for a red light in the camera data. Fig. 1 shows a
typical output of our algorithm.

The paper is structured as follows. Section II summarizes
the previous works related to ours. Section III introduces
our Bayesian framework. Section IV describes our motion
segmentation method. Section V shows how we model a
traffic situation. Section VI demonstrates our action model.
Section VII presents experimental results. Section VIII out-
lines our conclusions and provides some insights for future
work.
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II. RelatedWork

Existing driving behavior models in psychology are largely
subjective and based on self-report scales [1]. They are
difficult to quantify, because they include many psycho-
logical aspects like motivation, or risk assessment. Many
works in the intelligent vehicle literature [2], [3], [4], [5]
focus on modeling the driver behavior via their steering
behavior or road tracking information or desired driver’s path
as source of behavior’s information. Other works recognize
driver’s intentions via Bayesian reasoning on a complex
input including the driver’s current control actions and the
traffic environment surrounding them [6], [7]. In a previous
work [8], we were able to infer an action from a direc-
tion sign in an indoor environment with a semi-supervised
approach using vision and prerecorded robot actions. We
extend this idea to outdoor, remove any supervision, and
predict vehicle actions in an on-line fashion. Meyer et
al. [9] predicted traffic situations using Hidden Markov
Models (HMM). They however restricted their situations
space by modeling states with respect to surrounding vehicles
(distance, speed, bearing) and manually segmented image
sequences for initial estimates. In this paper, we exclude any
manual intervention in the process and use a more complete
set of variables for predicting states. Other works [10],
[11] make use of supervised off-line classification methods
for learning the relation between driving actions and visual
features. The actions are manually annotated and discretized
in the training phase. To our knowledge, there has been few
research works that combine traffic scenario recognition and
action prediction in an on-line and unsupervised fashion.

III. Problem Formulation

Given a vehicle equipped with an Inertial Measurement
Unit (IMU) and a monocular camera, we seek to learn the
relation between motion and visual data in an on-line and un-
supervised manner. We shall follow an entirely probabilistic
approach and formulate the problem as the estimation of the
joint filtering distribution

p(rt, lt, at | z1:t, c1:t), (1)

where rt represents the motion segment length at time t,
lt the image label at time t, at the predicted action at time t,
z1:t the IMU measurements up to time t, and c1:t the camera
measurements up to time t.

Assuming rt is conditionally independent of c1:t given z1:t,
lt of z1:t given c1:t, and at of c1:t given z1:t, we can decompose
(1) into

p(rt, lt, at | z1:t, c1:t) = p(rt | z1:t)p(lt | rt, c1:t)p(at | rt, lt, z1:t).
(2)

p(rt | z1:t) corresponds to the motion segmentation of
Section IV, p(lt | rt, c1:t) to the traffic situation modeling
of Section V, and p(at | rt, lt, z1:t) to the action prediction
model of Section VI.

IV. Bayesian On-line Segmentation ofMotion Data

Our motion segmentation algorithm is based on change-
point detection. A change-point is an abrupt variation in
the generative parameters of sequential data. An efficient
Bayesian on-line method for detecting change-points has
been independently proposed by Adams and MacKay [12]
and by Fearnhead and Liu [13]. In the following, we first
present this method in general and then show how we apply
it to the problem of segmenting motion data.

A. Change-Point Detection

Suppose we are given a time-dependent sequence of
observations z1, z2, . . . , zT , where the zt can be scalars or
vectors. Our goal is to find segments s1, s2, . . . , sN with
sn = [zbn , . . . , zen ], where en > bn and bn = en−1 + 1 for n =

1, . . . ,N. We assume that all data points zbn , . . . , zen of a seg-
ment sn are independently and identically distributed (i.i.d.)
according to a parameterized statistical model p(z | ηn). The
parameter vectors η1, . . . ηN are also assumed to be i.i.d. The
computation of the segments is done on-line, i.e., at each time
step t a decision is made whether zt is added to the current
segment sn = [zbn , . . . , zt−1] or a new segment is started. As
shown above, we denote the length of the current segment
as rt. Thus, after deciding on zt, we have either rt = rt−1 + 1
or rt = 0 in case we start a new segment.

To determine whether time step t is a change-point, we
analyze the posterior distribution of the segment length
conditioned on the data observed so far, i.e. p(rt | z1:t). Using
the product rule, this filtering distribution can be written as

p(rt | z1:t) ∝ p(rt, z1:t). (3)

The joint distribution in (3) can be further expressed as

p(rt, z1:t) =
∑

rt−1

p(rt, rt−1, z1:t)

=
∑

rt−1

p(rt, zt | rt−1, z1:t−1)p(rt−1, z1:t−1)

=
∑

rt−1

p(rt | rt−1)p(zt | rt−1, z1:t−1)p(rt−1, z1:t−1).(4)

The right-hand side of (4) consists of three terms: the
transition probability p(rt | rt−1) of the Markov chain formed
by r1, r2, . . . , rt, the predictive distribution p(zt | rt−1, z1:t−1),
and the posterior p(rt−1, z1:t−1) from the previous time step.
We have exploited Markov assumption for the simplifications
in (4).

As there are only two possible successor states for rt,
namely rt−1 + 1 or 0, we can model the transition probability
using statistical survival analysis, i.e., the segment length can
either “survive” or “die”. To do this, we define a survival
function S (t) as the probability that the current segment is
still alive after time step t. The complement of S is usually
named the lifetime distribution function F(t) = 1−S (t) and its
temporal derivative f (t) is denoted the event rate. Finally, the
hazard function h(t) is defined as the event rate conditioned
on the survival of the segment at time t, i.e.
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h(t) =
f (t)
S (t)

=
f (t)

1 − F(t)
. (5)

Intuitively, h(t) represents the probability that the segment
dies exactly at the current time instant t. We can use h(t) to
model the transition probability as

p(rt | rt−1) =



h(rt−1 + 1) if rt = 0
1 − h(rt−1 + 1) if rt = rt−1 + 1
0 otherwise.

(6)

A common approach is to model S (t) as an exponential
function S (t) = exp(−λt) with some given rate parameter λ.
Then, the hazard function turns into

h(t) =
λ exp(−λt)
exp(−λt)

= λ. (7)

Thus, the hazard rate is constant and the process is
“memoryless”.

For the computation of the predictive distribution, we
can make it dependent only on the last data point zt−1
since we are doing a sequential update of the parameters.
Thus, it can be expressed as p(zt | rt−1, zt−1). We finally
introduce the model parameters ηrt−1 that are learned on the
current segment and compute the predictive distribution by
marginalizing them out, i.e.

p(zt | rt−1, zt−1,ψ
rt−1 ) =

∫

ηrt−1

p(zt | ηrt−1 )p(ηrt−1 | rt−1, zt−1,ψ
rt−1 )dηrt−1 . (8)

Here, we have added the prior hyperparameters ψrt−1 for
completeness. The integral in (8) can be solved analytically
if we model the prior of the parameter vector ηrt−1 as a
conjugate to the probability density function p(zt | ηrt−1 ).
Otherwise, this leads to expensive numerical computations.
When the terms inside the integral are conjugate models, the
marginal distribution is usually a function of the hyperparam-
eters ψrt−1 which can be updated iteratively as data arrives.

B. Complexity and Approximate Inference

In order to exactly infer the positions of all change-points
until time t, we need to compute and store p(rt | z1:t) for t
and all previous time steps. We can then get the Maximum
A Posteriori (MAP) estimate of the sequence of segment
lengths using the on-line Viterbi algorithm of [13].

Regarding complexity, if we have processed n data points,
the storage of the full posterior distribution has a memory
cost of O(n2) and O(n) computational cost. This might be
prohibitive for huge datasets. For this reason, the distribution
has to be approximated. A simple way sketched in [12]
is to discard values where the distribution is significantly
low, i.e., lower than a given threshold. However, as we
want to accurately estimate our distribution and control the
computational costs, we use a particle filter. The state-space
of rt being discrete and the number of successor states being
small, we can evaluate all the possible descendants of rt.

Indeed, if rt takes k possible values, rt+1 will take k + 1
possible values. At each time step t, we approximate the
posterior distribution with a set {r(i)

t ,ψ
rt−1,(i)}Mi=1 of M particles

weighted by {w(i)
t }Mi=1 with

w(i)
t ∝ p(zt | r(i)

t−1, zt−1,ψ
rt−1,(i)). (9)

In order to limit the number of particles at each time step,
we use the Stratified Optimal Re-sampling (SOR) presented
in [13], whenever M gets bigger than our particles number
limit P.

Using this method reduces the memory costs to O(n) and
the computational costs to O(1), i.e. constant run-time. We
also notice that this particle filter is Rao-Blackwellized [14]
and has thus a lower variance since the sampling space of
the state is reduced to rt and the rest is marginalized out.

C. Application to Motion Data Segmentation

In our particular case, data comes from an IMU and we
consider accelerations in the x, y axes and the yaw rate, with
x pointing forward, y on the left, and z upward. We can
safely assume that an IMU measurement zt arises from a
multivariate normal distribution with mean µn and covariance
matrix Σn for segment sn. The parameter vector for segment
rt is thus ηrt = {µrt ,Σrt }. In order to solve the integral in
(8) analytically, we model the parameter prior as a normal-
Wishart distribution which is conjugate to the multivariate
Gaussian. This distribution has four hyperparameters ψrt =

{κrt , ρrt , νrt ,Λrt } that can be updated iteratively as a new data
point zt arrives with:

κrt = κrt−1 + 1

ρrt =
κrt−1 ρrt−1 + zt

κrt−1 + 1
νrt = νrt−1 + 1

Λrt = Λrt−1 +
κrt−1

κrt−1 + 1
(zt − ρrt−1 )(zt − ρrt−1 )ᵀ. (10)

In case we start a new segment and rt = 0, the hyperpa-
rameters are fixed to some prior values ψ0 = {κ0, ρ0, ν0,Λ0}.

From (10), we can express the parameters of the resulting
multivariate normal distribution in (8) as

µrt = ρrt

Σrt = (Λrt )−1/κrt . (11)

Finally, for the computation of the predictive distribution
in (8), we approximate the multivariate normal distribution
with a Student’s t-distribution which is known to be more
robust to outliers in case of few data points. This distribution
converges to the Gaussian when its degrees of freedom go
to infinity. We use the number of processed points as the
degrees of freedom for the distribution, so as to have a bigger
variance at the beginning.
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V. Labeling of Traffic Situations

Our aim is to find a label for each segmented motion
pattern. This label represents a traffic situation, e.g., a stop
or turn condition. Moreover, we are interested in associating
two different motion segments to the same label whenever
they depict the same traffic situation. In the following, we
show how we can integrate this labeling into the on-line
framework of Section IV.

A. Traffic Situation Model

As shown above, we denote the label of a segment rt as
lt. This label can take values in {1, 2, . . . ,N} corresponding
to N parametric models M1,M2, . . . ,MN . Each of the Mi

is a generative model p(ct | ηi) for a particular traffic
situation with parameter vector ηi. At time t, we estimate
the distribution over the known models conditioned on the
data seen so far and the segment we are in with Bayes law
as

p(lt | rt, c1:t) ∝ p(ct | lt, rt, c1:t−1)p(lt | rt, c1:t−1)
= p(ct | lt, rt, ct−1)p(lt | rt, c1:t−1). (12)

For the prior part in (12), we use the posterior of the
previous time step, that is p(lt | rt, c1:t−1) = p(lt−1 |
rt−1, c1:t−1). If we are in a new segment with rt = 0, we set
the prior to a uniform distribution over the known models,
i.e., p(lt = 1 : N | rt, c1:t−1) = 1

N . The likelihood part in
(12) is computed with the model probability density function
p(ct | ηi) in the same fashion as in (8), i.e., using a conjugate
prior with hyperparameters ψi as will be detailed below.
Furthermore, we have only kept the dependency on the last
data point ct−1 since we update the parameters iteratively.

As we want to be able to discover new traffic situations on-
line, we have to state if the current data ct is unlikely to come
from any of the N known models so far. We use Bayesian
hypothesis testing and compute the Bayes factor [15] for all
the models Mi against an alternative model:

B =
p(ct | lt = i,ψi)

p(ct | lt, rt, ct−1,ψ
rt−1 )

, (13)

where ψrt−1 are the hyperparameters learned over the
current segment rt−1.

The value B in (13) indicates our confidence in the model
Mi and we compare it to a threshold ξ for the decision.
In case all models are rejected, we create a new instance
MN+1 with hyperparameter vector ψrt−1 , set p(lt = N + 1 |
rt, c1:t) = pnew, and p(lt = 1 : N | rt, c1:t) = (1 − pnew)/N. We
finally update the hyperparameters ψi of model Mi, such that
i = arg max j=1:N p(lt = j | rt, c1:t), with ct.

From an implementation point of view, we attach the dis-
tribution (12), the hyperparameters ψrt−1 , and the incremental
set of known models Mi to each particle. Thus, our system
is able to learn new traffic situations on-line and refine its
knowledge over previously visited scenes.

B. Measurements Representation

We represent images using the widely adopted bag-of-
words model [16]. In the document modeling formulation,
text documents are represented as histograms of word counts
from a given dictionary. This model can be easily applied to
computer vision tasks, words being replaced by features and
text documents by images.

We use Scale-Invariant Feature Transform (SIFT) [17]
descriptors computed at Difference of Gaussians (DoG)
keypoints. SIFT descriptors have been shown to be highly
discriminative for object recognition. Although some authors
claim that they obtain significantly better results with dense
grid representations [18], DoG interest points are more
suitable for our purpose. Indeed, we are not interested in
capturing uniform regions such as sky, but rather focused
on objects. N images are randomly selected from the entire
dataset to build a codebook or dictionary of features using K-
means clustering. Each feature of an image is then assigned
to the nearest codeword of the dictionary and we can
therefore build a convenient histogram representation.

The link between bag-of-features models in computer
vision and bag-of-words models in text document modeling
is intuitive. We can therefore use the generative model of [19]
to represent an image in a probabilistic manner as was
already proposed in [20]. Image histograms are modeled
with a Dirichlet Compound Multinomial (DCM), also known
as multivariate Polya distribution. The DCM combines a
multinomial model and a Dirichlet prior, and provides an
analytical solution to the marginalization of the multinomial
parameters [21]. The multinomial distribution p(ct | θ) has
parameters θ = [θ1, θ2, . . . , θK], corresponding to η above.
The Dirichlet prior p(θ | α) has hyperparameters α =

[α1, α2, . . . , αK], corresponding to ψ above. The likelihood
part of (12) can now be formulated as

p(ct | lt, rt, ct−1,α
rt−1 ) =∫

θrt−1

p(ct | θrt−1 )p(θrt−1 | lt, rt, ct−1,α
rt−1 )dθrt−1 =

n!
∏K

k=1 nk!
Γ(αrt−1 )

Γ(n + αrt−1 )

K∏

k=1

Γ(nk + αrt−1
k )

Γ(αrt−1
k )

, (14)

where Γ(.) is the Gamma function, nk = ct (k), n =
∑K

k=1 nk,
αrt−1 =

∑K
k=1 α

rt−1
k , and we have added the hyperparameters

αrt−1 in the conditional.
For the iterative update of the hyperparameters αrt , we can

use the simple rule

αrt = αrt−1 + ct. (15)

In case we start a new segment and rt = 0, the hyperpa-
rameters are fixed to some prior values ψ0 = {α0}.

VI. ActionModel

We want to estimate the posterior probability distribution
over actions conditioned on the current traffic situation and
segment. To this end, we closely follow the strategy of
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Section V. To each of the traffic situation model Mi is
associated an action model Ai, which we fit with a Gaussian
Mixture Model (GMM). For the same traffic situation Mi, we
are able to model several possible behaviors corresponding
to the different Gaussian components. For instance, when we
reach a traffic light, we might brake when the light is red
and continue when it is green. Moreover, a driver does not
always brake or accelerate exactly the same manner every
time. Finally, our system can adapt to new drivers. We can
thus formulate the following model that we estimate and
update at each time step:

p(at | rt, lt, z1:t,ψ
xt ) =

∑

xt

p(xt)p(at | xt, rt, lt, z1:t,ψ
xt ), (16)

where xt is a K-dimensional vector with a single one
at the position k encoding for the k-th Gaussian and zeros
elsewhere, p(xt) is the prior for selecting a particular Gaus-
sian component xt, and p(at | xt, rt, lt, z1:t,ψ

xt ) is a Gaussian
distribution with hyperparameters ψxt . In a similar fashion
as in Section IV, we have marginalized out the parameters
of the Gaussian and are thus able to iteratively update the
hyperparameters. The prior distribution p(xt) is defined as

p(xt(i) = 1) ∝ ni
t, (17)

where ni
t is the sum of the points assigned to Gaussian

component i.
Upon reception of a new data point zt, we compute the

Bayes factor for all the Gaussian components xt−1 of the
model lt and compare it to ε. If all the components are
rejected, a new Gaussian is created with hyperparameters
ψ0. We update the hyperparameters of the most likely Gaus-
sian component with the rule from (10) and increment the
corresponding ni

t.
From an implementation point of view, the distribu-

tion (16) and the learned GMM Ai are attached to the particle
filter of Section IV.

VII. Experiments

In order to evaluate the approach proposed in this paper,
we have collected a dataset with a car in an urban setting. Our
car is equipped with a Sony XCD-SX910 camera recording
1280x960 images at 3.75 frames per second and an XSens
MTi IMU running at 100 Hz with x pointing forward, y to
the right, and z upward. The sequence contains 8218 images
and lasts around 40 minutes. We have encountered different
scenes comprising of traffic lights, crosswalks, or changes of
speed limit. We have driven in a loop so as to come several
times in the same situation and thus have an estimation of
the quality of our solution.

A. Simulation

Since it is easier to have a ground truth on simulated
data and hence validate our approach, we first display an
experiment of the whole algorithm on synthetic data. For
visualization purposes, we have simulated IMU data with an
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Fig. 2. Simulation results of the algorithm. From top to bottom, the plots
display the simulated IMU data zt , the inferred segment lengths rt , the
inferred labels lt (blue circle) with ground truth (red square), and the MAP
estimate for the action at .

univariate normal distribution and have introduced change-
points every 50 data points. We have randomly generated 3
different αi with K = 256 coding for the traffic situations.
Although the algorithm starts with no prior knowledge, we
could also start with previously learned models Mi and Ai.

Fig. 2 depicts the output of the simulation and demon-
strates the pertinence of our method. We display the MAP
solution for (16) on the bottom plot and thus the prediction
reflects the Gaussian with the maximum number of data
points. At time step 100, a new Gaussian with mean 10 is
created for label 2. It becomes the MAP only at time step 300
after accumulating enough evidence. Even though the label
numbers lt differ from the ground truth, they are actually
correctly estimated since the induced partition is equivalent.

B. Motion Segmentation

We have estimated the quality of our motion segmentation
algorithm from Section IV on real-world data and performed
inference on the final posterior distribution (4) to get the
optimal sequence of segment lengths which represents our
motion segments. We set the hazard rate to λ = 1/10, the
number of particles to P = 100, and the prior hyperparame-
ters of the normal-Wishart to κ0 = 1, ρ0 = 0, ν0 = 3,Λ0 = I.
We only considered IMU data at 10 Hz.

Fig. 3 shows the extracted motion segments along with
the corresponding IMU data. Our algorithm identified 165
segments which are validated by visual inspection of the
IMU data. Furthermore, the segmentation has been compared
to a manual annotation of our image sequence and exhibited
an accuracy of approximatively 92%. For the labeling of the
change-points, we have watched the video and noted down
where we would expect a change of driving behavior. The
parameter λ controls the false positives/negatives rates.

C. Traffic Situation Labeling and Recognition

We have evaluated the technique presented in Section V
and performed inference on (12) to obtain the most likely
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Fig. 3. Optimal motion segmentation from IMU data. The three top plots
are the IMU raw values over time. The bottom plot depicts the motion
segments discovered by our algorithm.

label for a scene. In a first phase, we have collected a subset
of images from traffic lights, yield signs, and pedestrian
crossings. Models Mi were learned on these images using
(15) and frozen during the evaluation. In a second phase,
we have started the algorithm with no prior models. The
dictionary was created from a set of N = 400 randomly
picked images and the SIFT features quantized into K = 256
visual words. The prior hyperparameters of the Dirichlet
distribution were set to α0 = 1.

In the supervised case, we have manually annotated the
image sequence and compared the resulting labeling to the
ground truth. We obtained an accuracy of 93% for traffic
light scenes, 99% for yield scenes, and 91% for pedestrian
crossings scenes. We except these results to drop slightly
in a previously unseen environment. In the unsupervised
case, ξ acts as a concentration parameter, i.e., it controls
the tendency to create new classes. The final labeling is
challenging to evaluate. Two traffic lights scenes might for
instance get different labels without interfering into the final
action prediction. With ξ = 200, our algorithm discovered
15 different traffic situations and was able to re-associate
correctly to the same labels in the different runs of our
driving loop.

D. Action Prediction

The strategy presented in Section VI is relatively straight-
forward to evaluate, since predictions can be compared to
incoming IMU data. We set the threshold for creating a
new Gaussian to ε = 5 and inferred on (16). Our algorithm
performed accurately in predicting the driving actions.

VIII. Conclusion
In this paper, we have presented a novel approach for

on-line learning of driving behaviors in an unsupervised
fashion. To this end, we have developed an entire Bayesian
framework that is able to learn and adapt to new traffic situ-
ations and drivers. Visual traffic situations models have been
modeled probabilistically from image streams and associated

to motion segments from IMU data. Potential actions related
to a particular traffic scene are jointly learned, providing
predictions in unseen environments. Our system is suitable
for lifelong learning since it is able to continuously update
its models. We quantified the usefulness and the performance
of this approach on a challenging urban dataset.

In a further work, we aim at improving our image rep-
resentation with a more sophisticated model in order to
determine which object in the scene induces an action.
Action modeling at a higher level could be represented with
a Hidden Markov Model (HMM).

Acknowledgment
This work has partly been supported by the EC under

FP7-231888-EUROPA and by the DFG under SFB/TR-8.

References
[1] T. A. Ranney, “Models of driving behavior: A review of their evolu-

tion,” Accident Analysis & Prevention, vol. 26, no. 6, pp. 733–750,
Dec. 1994.

[2] E. Donges, “A two-level model of driver steering behavior,” J. Human
Factors and Ergonomics Soc., vol. 20, no. 6, pp. 691–707, Dec. 1978.

[3] D. T. McRuer, “Human dynamics in man-machine systems,” Automat-
ica, vol. 16, no. 3, pp. 237–253, May 1980.

[4] R. A. Hess and A. Modjtahedzadeh, “A control theoretic model of
driver steering behavior,” IEEE Control. Syst. Mag., vol. 10, no. 5,
pp. 3–8, 1990.

[5] C. C. MacAdam, “Application of an optimal preview control for
simulation of closed-loop automobile driving,” IEEE Trans. Syst. Man
Cybern., vol. 11, no. 6, pp. 393–399, Jun. 1981.

[6] N. Oliver and A. P. Pentland, “Graphical models for driver behavior
recognition in a smart car,” in Proc. IEEE Intel. Veh. Symp., 2000.

[7] A. Liu and D. Salvucci, “Modeling and prediction of human driver
behavior,” in Proc. 9th Int. Conf. Human-Comput. Interaction, 2001.

[8] J. Maye, L. Spinello, R. Triebel, and R. Siegwart, “Inferring the
semantics of direction signs in public places,” in Proc. IEEE Int. Conf.
Robot. Automat., 2010.

[9] D. Meyer-Delius, C. Plagemann, and W. Burgard, “Probabilistic sit-
uation recognition for vehicular traffic scenarios,” in Proc. IEEE Int.
Conf. Robot. Automat., 2009.

[10] M. Heracles, F. Martinelli, and J. Fritsch, “Vision-based behavior
prediction in urban traffic environments by scene categorization,” in
Proc. Brit. Mach. Vis. Conf., 2010.

[11] N. Pugeault and R. Bowden, “Learning pre-attentive driving behaviour
from holistic visual features,” in Proc. Europ. Conf. Comput. Vis.,
2010.

[12] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detec-
tion,” University of Cambridge, Cambridge, UK, Tech. Rep., 2007.

[13] P. Fearnhead and Z. Liu, “On-line inference for multiple changepoint
problems,” J. Roy. Stat. Soc. Series B, vol. 69, no. 4, pp. 589–605,
Apr. 2007.

[14] G. Casella and C. P. Robert, “Rao-Blackwellisation of sampling
schemes,” Biometrika, vol. 83, no. 1, pp. 81–94, Jan. 1996.

[15] R. E. Kass and A. E. Raftery, “Bayes factors,” J. Americ. Stat. Assoc.,
1995.

[16] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach
to object matching in videos,” in Proc. IEEE Int. Conf. Comput. Vis.,
2003.

[17] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[18] L. Fei-Fei and P. Perona, “A Bayesian hierarchical model for learning
natural scene categories,” in Proc. IEEE Conf. Comput. Vis. Pat.
Recog., 2005.

[19] R. E. Madsen, D. Kauchak, and C. Elkan, “Modeling word burstiness
using the Dirichlet distribution,” in Proc. Int. Conf. Mach. Learn.,
2005.

[20] A. Ranganathan and F. Dellaert, “Bayesian surprise and landmark
detection,” in Proc. IEEE Int. Conf. Robot. Automat., 2009.

[21] T. P. Minka, “Estimating a Dirichlet distribution,” Microsoft Research,
Tech. Rep., 2003.

Articles on Unsupervised Online Learning (Chapter 6)

248 Appeared in: Proc. of the Intern. Conf. on Robotics and Automation (ICRA), 2011



Parsing Outdoor Scenes from Streamed 3D Laser Data Using
Online Clustering and Incremental Belief Updates

Rudolph Triebela Rohan Paula Daniela Rusb Paul Newmana

a Mobile Robotics Group, Oxford University, UK
{rudi, rohanp, pnewman}@robots.ox.ac.uk

b Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, USA

rus@csail.mit.edu

Abstract

In this paper, we address the problem of continually
parsing a stream of 3D point cloud data acquired from a
laser sensor mounted on a road vehicle. We leverage an
online star clustering algorithm coupled with an incre-
mental belief update in an evolving undirected graph-
ical model. The fusion of these techniques allows the
robot to parse streamed data and to continually improve
its understanding of the world. The core competency
produced is an ability to infer object classes from simi-
larities based on appearance and shape features, and to
concurrently combine that with a spatial smoothing al-
gorithm incorporating geometric consistency. This for-
mulation of feature-space star clustering modulating the
potentials of a spatial graphical model is entirely novel.
In our method, the two sources of information: feature
similarity and geometrical consistency are fed continu-
ally into the system, improving the belief over the class
distributions as new data arrives. The algorithm obviates
the need for hand-labeled training data and makes no a-
priori assumptions on the number or characteristics of
object categories. Rather, they are learnt incrementally
over time from streamed input data. In experiments per-
formed on real 3D laser data from an outdoor scene, we
show that our approach is capable of obtaining an ever-
improving unsupervised scene categorization.

Introduction
Obtaining semantic knowledge about the environment from
a stream of data is a key component in any mobile robotic
system. Despite the availability of many useful and e�cient
methods aiming to solve the robot perception task, at least
two main challenges still remain: to relieve the requirement
of vast amounts of human-labeled training data and to build
a system that performs the learning task in an ever ongoing
way instead of once before system deployment. The latter
is often referred to as life-long learning, and the former is
known as unsupervised learning. In this paper, we present a
solution to both problems by means of an algorithm that con-
tinuously interprets a stream of 3D point cloud data acquired
from a laser sensor that is mounted on a mobile robot plat-
form. The two major components of our system are an on-
line clustering algorithm and a spatial smoothing algorithm

Copyright c� 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example result of our scene parsing algorithm.
Colours represent object categories discovered by the algo-
rithm in a 3D laser scan scene of a car park with a building,
trees, a hedge in the front, and ground plane. The algorithm
started with a comparably poor categorization using a sin-
gle point cloud and improved its performance incrementally
(result after 17 point clouds is shown).

based on an ever growing undirected graphical model: while
the former groups observed parts of the environment accord-
ing to their similarity and refines that grouping as new data is
observed, the latter enforces geometric consistency by prob-
abilistically reasoning on cluster memberships of parts that
are physically close to each other. Both algorithms are on-
line in the sense that their internal representations grow and
their results are refined with every new data input obtained
from the sensors, and these representations are not rebuilt at
every time step. Although this is substantially di↵erent from
the claim that the system runs in real-time – which we ex-
plicitly do not make here, the concept of an unsupervised
online learning perception algorithm is a novel contribution
in the field of life-long learning for robot perception. In our
experiments we show that the core computation can be done
with comparably few update operations while still obtaining
good performance in terms of semantic interpretation of the
observed environment.
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(a) Mesh segmentation (b) Online clustering (c) Scene graph construction (d) Scene graph inference

Figure 2: Processing pipeline key steps. (a) Result after segmenting the triangle mesh. Each color represents a di↵erent segment.
(b) Result after online clustering in feature space. Each color represents a di↵erent feature cluster. (c) Construction of the scene
graph. Nodes are centers of oriented bounding boxes (OBBs) around each segment. Edges connect segments with overlapping
OBBs. (d) Result after inference in the scene graph. The class label distribution is smoother compared to (b), as can be seen,
e.g., in the upper left corner of the building.

Related work
Some approaches for unsupervised object discovery have
been presented earlier [Endres, Plagemann, and Stachniss,
2009; Ruhnke et al., 2009; Bagon et al., 2010]. However,
these techniques either assume a pre-segmentation of the
objects, one object class per image, or a known number of
objects and their classes. In contrast, Spinello et al. [2010]
proposed an unsupervised discovery algorithm that does not
require such assumptions, but instead utilizes the regularity
of patterns in which the objects appear. However, in general
regular patterns such as the locations of windows on a facade
are not available, which is why this technique is not appro-
priate in our case. Cho, Shin, and Lee [2010] developed a
method to detect and segment similar objects from a sin-
gle image by growing and merging feature matches. Triebel,
Shin, and Siegwart [2010] presented a method to discover
objects in indoor scenes without hand-labeled training data.
Similar to that approach, we also use clustering and prob-
abilistic reasoning, but our approach is conceptually an on-
line learner, where both the clustering and the reasoning part
are performed using incremental update steps rather than
batch processing at every point in time. Furthermore, Maye
et al. [2011] use online unsupervised change-detection and
Bayes filtering to discover driving behaviours from streamed
IMU and camera data.

Algorithm Overview
Given a sequence of 3D range scans, our task is to auto-
matically label the scenes without prior training and with
a model representation that is refined and improved during
operation. We note that in our unsupervised learning frame-
work, instances of classes cannot be detected, because no
class model is given explicitly. The existence and type of
an instance must be discovered or inferred by accumulat-
ing evidence via appearance similarity and spatial coherence
patterns from data. Therefore, we propose a framework that
combines online feature-space clustering with an incremen-
tal version of a spatial smoothing algorithm to obtain and
improve geometric consistency as new data is observed. At
each time step, when a new 3D range scan is available, our
system repeats the following major three stages (see also
Fig. 2) which are then described in detail in the next section.

• First, the obtained point cloud is converted into a tri-
angle mesh, and a low-level segmentation is applied to
the mesh. The resulting segments contain more infor-
mation than single scan points or triangles.

• Next, each segment is described by a set of features
such as shape and orientation, and the feature vectors
are fed into an online clustering algorithm which ac-
cumulates information about the segments’ similarities
over time by refining and extending the current cluster-
ing based on the new observations.

• An undirected graphical model named the scene graph
is refined and extended with the new observations. The
scene graph poses geometrical constraints on the dis-
covered class labels and reduces inconsistencies caused
by di↵erent labelings for overlapping segments.

Online Preprocessing Steps
The processing pipeline begins by creating a triangular mesh
for the incoming 3D point cloud according to the scan mani-
fold order, followed by a segmentation using a variant of the
algorithm of Felzenszwalb and Huttenlocher [2004], where
the dot product of the normal vectors corresponding to two
adjacent triangles is used as a dissimilarity measure. This
results in segments with a consistent distribution of normal
vectors, representing for example consistently flat or round-
shaped surface patches. Then, for each resulting mesh seg-
ment, a number of feature vectors based on samples on the
surface is computed and then stacked together into one long
feature vector. In particular, we compute spin images [John-
son, 1997] per segment and use the mean spin image as
one feature vector. Furthermore, we compute three kinds of
shape distributions [Osada et al., 2002], i.e. histograms over
unary or binary functions applied to the samples on the mesh
surface. For the first kind, we use the Euclidean distance be-
tween the two samples, for the second we use the dot product
of the corresponding normal vectors, and for the last we use
the unary function of the elevation angle of the normal vec-
tor. Finally, we compute shape factors [Westin et al., 1997]
for each mesh segment, i.e. the fractions e1

e2
, e1

e3
, and e2

e3
of the

three eigenvalues e1, e2, e3 of the scatter matrix computed for
the segment. As mentioned, all feature vectors use samples
on the surface of the mesh segment. To obtain invariance
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to the sensor’s variable sample density, we re-sample points
uniformly on the mesh surface and use them for the feature
extraction.

In addition to the feature vectors, we compute an Ori-
ented Bounding Box (OBB) Bi around each mesh segment.
The three main axes of Bi are determined by the eigen vec-
tors of the segment’s scatter matrix, and the dimensions of
the box are chosen such that the segment fits tightly into it.
The OBBs will be used later to find mesh segments that are
close to each other. We do this by defining a distance mea-
sure based on the amount of overlap between the two cor-
responding OBBs. An e�cient way to compute this overlap
is to draw uniform samples in one OBB and determine the
fraction of samples that are contained in the other OBB.

Star Clustering and Online Organization
We use the star clustering algorithm [Aslam, Pelekhov, and
Rus, 2004] to cluster segments obtained from the low-level
segmentation based on the shape and appearance features.
This algorithm organizes a data corpus into star-shaped clus-
ters based on a given similarity metric. Using the cosine dis-
tance metric between feature vectors, the star clustering al-
gorithm guarantees a minimum similarity between any pair
of points associated with a cluster. Unlike the k-means al-
gorithm and many other clustering methods, the star cluster-
ing algorithm does not require the number k of final clus-
ters as an input. Instead, it discovers this number depending
on the desired minimum similarity between the elements in
the cluster. The star clustering algorithm is computationally
very e�cient and can be run online. The ability to cluster
incrementally makes it especially suitable for our problem
setting, where data collection is incremental in nature. This
allows the feature space clustering to improve continually as
more information about new or existing object categories is
encountered by an exploring robot.

Formally, the data corpus is represented as a similarity
graph, G = (V,E,w) where the vertices V correspond to
feature vectors f from laser segments, and weights w as-
signed to the edges E represent feature similarity. Normal-
ized cosine distance d(fi, f j) =

fi·f j

kfikkf jk measures the similar-
ity between features fi and f j. The similarity graph G can
be studied at various pair-wise similarity thresholds �. The
thresholded graphG� is obtained fromG by removing edges
with pairwise similarity less than �, Fig. 3(a). A star-shaped
subgraph on m + 1 vertices consists of a star center and m
satellite vertices, where edges exist between the star center
and each of the satellite vertices, Fig. 3(b).

The clustering algorithm covers the thresholded graph G�
with a minimal cover of maximal star-shaped subgraphs,
Fig. 3(c). The number of clusters is naturally induced by the
dense cover. The expected size of the star cover on n ver-
tices is O(log(n)). In the star cover obtained, each vertex is
adjacent to at least one center of equal or larger degree and
no two centers can be adjacent, Fig. 3(c). Satellite segments
similar to multiple categories can be associated with multi-
ple star clusters. Each node maps to a vector space with a
cosine similarity metric. By examining the geometry of the
star-subgraphs in the implied vector space, Fig. 3(b) the ex-

pected similarity between satellite vertices can be obtained
as Eq. (1). Here, the center-satellite similarities for any two
satellites in the star are represented by cos↵1 and cos↵2
and cos� represents the expected satellite-satellite similar-
ity. The expected pairwise similarities are high and implying
dense accurate clustering in feature space.

cos� > cos↵1cos↵2 +
�

� + 1
sin↵1sin↵2 (1)

The algorithm is asymptotically linear in the size of
the input graph and can be obtained incrementally by re-
arranging star centers in the presence of new data points and
maintaining the correct star cover, Fig. 4. The number of
re-arrangement operations required is usually small, which
we verified experimentally. Further, we used an optimized
version of the algorithm that saves operations by predicting
the future status of a satellite vertex or other star-satellite
changes induced by the inserted vertex.

The clustering thus obtained represents initial evidence
for object categories based on feature space similarity. Fur-
ther, since the clusters evolve incrementally with each new
input scan, the object categorization improves continually
and incrementally with acquired data. Note that categoriza-
tion obtained till this stage is based on shape and appearance
similarity only. Next, we describe a probabilistic graphical
model that incorporates the geometric context information
and refines online the object categories obtained through
feature space star clustering.

Graph-based Smoothing
As we will show in the experiments, the online star cluster-
ing method presented in the previous section yields a mesh
segmentation that is fairly good in comparison with a human
labelling. However, as it is based on features only, it fails
where objects can have di↵erent appearances, for example
due to occlusions. Therefore, we additionally leverage infor-
mation obtained from geometric constraints by constructing
a simplified Conditional Random Field (CRF), where each
node corresponds to a mesh segment and each edge con-
nects segments that are su�ciently close to each other in a
geometric sense. The reasoning behind this is that segments
that are physically close to each other are more likely to have
the same label. Mathematically, for the given set of feature
vectors f = f1, . . . , fN we aim to find a set of segment labels
l = l1, . . . , lN that maximise the conditional probability:

p(l | f) =
1

Z(f)

Y

V
'(fi, li)

Y

(i, j2E)

 (fi, f j, li, l j), (2)

where Z(f) is the partition function, and the node and edge
potentials are defined as:

log'(fi, li,wn) = wn · fn(fi, li) (3)
log (fi, f j, li, l j,we) = we · fe(fi, f j, li, l j). (4)

Here, wn and we are the node and edge weights. The CRF
we use is simplified in that the edge feature function does
not depend on the node labels and both feature functions are
scalars between 0 and 1. As node feature function fn we use:
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Figure 3: Star Clustering. (a) Similarity graph G� where each feature vector fi is a node and edges indicate similarities exceeding
threshold �. (b) Star-shaped subgraph with center C (red) and five satellite vertices (blue). Each node maps to a vector space
with a cosine similarity metric. (c) The graph organized into clusters via a minimal covering with maximal star sub-graphs.

(a) Vertex insertion (b) Re-arranged star clusters

Figure 4: (a) A new data point may introduce additional links in the similarity graph (green) a↵ecting adjacency and hence
the validity of the current minimal star cover. (b) Inconsistent stars are re-arranged (green circles). The number of broken stars
largely determine the running time. On real graphs, the avg. number of stars broken is usually small (experimentally verified)
yielding an e�cient incremental approach.

fn(fi, li) =

8>>>><>>>>:

1 if fi = cli
d(fi,cli )P

�:fi$c� d(fi,c�) if fi $ cli

0 else,
(5)

where ck denotes the cluster center of cluster k in G and$
represents a connection by an edge in G. The advantage of
this node feature function is that in most cases, namely when
fi is only connected to one cluster center, a change of cluster
membership only a↵ects one node potential. This is impor-
tant for an e�cient online belief update. The simplified edge
feature function is defined as fe(fi, f j) = do(Bi, Bj), where do
is an estimate of the overlap between the bounding boxes Bi
and Bj around the mesh segments corresponding to fi and f j.

Usually, the node and edge weights wn and we are ob-
tained by maximising Eq.(2) for a given training data set
with ground-truth labels l⇤ for each feature vector fi. How-
ever, our approach is totally unsupervised, thus a hand-
labeled training set is not available. Instead, we fix wn to 1
and determine we empirically using an evaluation set. This is
possible because the feature functions are particularly sim-
ple and only the ratio of we and wn is important. In the ex-
perimental section, we give more details on choosing we.

Inference
To perform the inference step in the CRF, we use loopy
belief propagation (LBP), [Yedidia, Freeman, and Weiss,
2005]. In general, LBP iteratively computes messages de-
fined as label distributions between the nodes in the CRF.
First, each message mi j from node i to node j is initialised
with the uniform distribution. Then, in each iteration ⌘, the

messages are recomputed based on the node and edge poten-
tials and the messages from the previous iteration ⌘ � 1. In
our case, we are only interested in the maximum likelihood
labelling, and we consider messages to be in log-space for
numerical stability. Therefore, we use the max-sum rule to
compute the messages:

m(⌘)
i j (l j) max

li
log'i + log i j +

X

k2N(i)\ j

m(⌘�1)
ki (li). (6)

Here, we used a short-hand notation for the potentials and
N(i) denotes all the nodes connected to node i. Eq. (6) is
repeatedly computed until a convergence criterion is met. A
good choice is to compute the amount of change of the mes-
sage and stop iterating when a minimal change ⇠ is reached.
Then, the belief bi at each node is computed as

bi(li) ⌫(log'i +
X

j2N(i)

mji(li)), (7)

where ⌫ normalizes the belief so that it is a valid distribution.

Online Belief Update
Using standard LBP for the inference requires a re-
initialization of all messages every time a new scan is ob-
served. Thus, the number of message updates grows at least
linearly with the number of totally observed mesh segments.
To avoid this, we perform the message update online, i.e.
we only update messages that got a↵ected by a change in
the cluster graph G and the messages that depend on them.
First, we note that in the CRF, nodes are never removed, and
a change in G can a↵ect nodes from earlier points in time.

Articles on Unsupervised Online Learning (Chapter 6)

252 Appeared in: Proc. of the Conf. on Artificial Intelligence (AAAI), 2012



Thus, we need to provide two kinds of update operations:
inserting a new node into the CRF, and changing the feature
function of an existing node. In the first one, new messages
are added, in the second, existing messages need to be re-
computed, which is essentially the same as removing the old
message and adding a new one. The major problem here is
however, that a newly inserted and initialised message has
maximal entropy and can not propagate the same amount
of information as the existing messages obtained after LBP
convergence earlier. This leads to an ”over-voting” of the
potentials of the new nodes from the existing nodes.

To overcome this problem, we store all messages com-
puted in each LBP iteration in a message history mi j =

m(1)
i j ,m

(2)
i j , . . . . Then, before computing (6), we determine the

minimal history length µ of all message histories mki where
k 2 N(i) \ j, and the max-sum-rule turns into

m(µ+1)
i j (l j) max

li
log'i + log i j +

X

k2N(i)\ j

m(µ)
ki (li). (8)

Some care has to be taken here: to avoid inconsistencies, all
messages in the history mi j later than µ need to be removed.
Also, all message histories that depend on mi j need to be
updated as well. However, the amount of change caused by
these updates decreases with every set of successor mes-
sages to be updated. To avoid an entire update of all message
histories, we determine a threshold ✏ and stop updating mes-
sage histories when the change drops below ✏. Note that this
is di↵erent from the convergence criterion using ⇠: while ✏
determines the number of messages updated after an online
update – and thus the performance di↵erence between online
and o✏ine processing, ⇠ influences the amount of smooth-
ing. By changing ✏ gradually towards 0, the online LBP al-
gorithm turns into its standard o✏ine version. A discussion
on ✏ is provided in the experimental section.

Cluster Assignment
To be able to perform the online belief update, we need
to find all nodes in the CRF, for which the potential 'i
changes after inserting new nodes into G. As ' directly de-
pends on the cluster membership of a node, we need to solve
the data association between the previous clustering Ct�1 =
Ct�1

1 , . . . ,C
t�1
m and the current clustering Ct = Ct

1, . . .C
t
n at

every time step and find the elements that changed cluster.
Here, we need to consider only those nodes which have been
removed from a cluster Ct�1

i , because the others have either
been removed themselves from another cluster Ct�1

j or they
were added newly to Ct�1

i while growing the cluster graph G
(in the latter case, no message histories exist, and the update
is done as in regular LBP). To assign previous clusters Ct�1

i
to current clusters Ct

j, we therefore define a cost function c
based on the number of removed cluster elements:

c(Ct�1
i ,C

t
j) = L(&(Ct�1

i ), &(Ct
j)) � I(&(Ct�1

i ), &(Ct
j)). (9)

Here, & sorts the elements of a cluster with respect to their
global element indices, L is the Levenshtein (edit) distance
of two sequences, i.e. the minimal number of deletions, re-
placements and insertions I required to change the first se-

quence into the second. Thus, c computes the minimal num-
ber of deletions and replacements of elements in Ct�1

i . The
data association between Ct�1 and Ct is then done by min-
imizing the total association cost between all cluster pairs
using an algorithm by Edmonds and Karp [1972].

Then, once a cluster assignment is obtained, all messages
that are sent from a node in the CRF, for which the feature
vector fi has changed cluster membership, are removed, and
new message histories are computed as in Eq. (8).

Results
To evaluate our approach, we ran experiments on streamed
3D laser range data acquired with an autonomous car. The
sensor consists of three SICK LMS-151 laser scanners
mounted vertically on a turn table. The rotation frequency
was set to 0.1Hz. We drove the car slowly (⇡ 15km/h)
around our research site. The obtained point cloud data is
comparably dense: each point cloud consists of 100,000 to
160,000 points, resulting in a data rate of 10,000 to 16,000
points per second. For evaluation we use qualitative and
quantitative measures. The qualitative evaluation is done by
visualizing the discovery results with di↵erent colors for
each category, as already shown in Fig. 1. The quantitative
measures are: number of resulting categories, number of up-
date steps, and the entropy-based v-measure [Rosenberg and
Hirschberg, 2007], which is defined as the harmonic mean
of homogeneity and completeness of the obtained labelling
compared to a human-labeled ground-truth.

Qualitative Evaluation
Fig. 5 shows the results of our scene parsing algorithm over
a sequence of time. In the figure, time evolves from the top
image row to the bottom row. Each row of images shows the
result as it was obtained at a particular time step. For an im-
proved visibility, we visualize the results in two ways: First,
we show each clustering result as a colored mesh represen-
tation with each color corresponding to a di↵erent cluster
in the left image of each row. In addition to that, we show
meshes for each obtained cluster where the particular cluster
is highlighted in red (remaining images of each row). In the
example, we used a similarity threshold � of 0.7 for clus-
tering. This results in a smaller number of clusters and in a
slightly worse overall performance of the algorithm com-
pared to the result shown in Fig. 1 (see next section for
details). However, it also gives the opportunity to highlight
the algorithm’s ability to improve its performance over time:
As we can see, the number of obtained clusters is very low
when the first couple of point clouds are processed. As a re-
sult, the labelling is comparably poor, assigning for example
the trees and the building to the same category. However,
as the algorithm obtains more information about its environ-
ment, it increases the number of categories and improves its
scene parsing performance: in the bottom image row, a clear
distinction between the ground plane, the building and the
trees can be seen. To visualize the e↵ect of the graph-based
smoothing we show two examples of labelings before and
after smoothing in Fig. 9. We can see that the labeling after
smoothing is clearly more consistent, visible for example in
the hedge (left images) and the building (right images).
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Figure 5: Scene parsing results (best viewed in color). Each row shows the result after processing a di↵erent number of point
clouds: from the top to the bottom, results are shown after 2, 4, 6, 10, and 17 point clouds. The left image in each row visualizes
the obtained scene parsing result with one color for each discovered category. The other images in each row highlight each
of the categories with the most elements in red. Note that initially, only two categories are discovered, and the categorization
is incorrect (e.g. the tree and the building are assigned the same label). However, as the algorithm evolves over time, the
categorization improves, and the number of classes is increased.

Table 1: Statistics for online star clustering.
Data set A Data set B

Threshold, � 0.7 0.8 0.9 0.7 0.8 0.9

Num. of clusters 107 580 2699 8 14 84
Graph edges (x105) 220.48 98.08 23.40 19.32 13.29 4.02

Insertion/iter (msec) 122.14 85.72 19.98 19.53 31.59 4.54
Insertion/scan (sec) 4.15 2.91 0.67 1.09 1.76 0.25
Insertion time (sec) 1450.85 1018.28 237.44 44.72 72.35 10.41

Stars broken/iter 0.23 0.60 0.55 0.02 0.08 0.21
Stars broken/scan 7.68 20.40 18.60 1.07 4.48 11.75
Total stars broken 2688 7141 6511 44 184 482

Quantitative Evaluation

To evaluate online star clustering quantitatively, we used two
di↵erent data sets: data set A consisted of 350 point clouds
and resulted in a total of 11879 segments. It was collected
on roads surrounding the test site with a vehicle speed v of
about 40km/h and a scanner rotation frequency of 1Hz. Data
set B is the one mentioned earlier with v ⇡ 15km/h and
fr = 0.1Hz, consisting of 41 scans.
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Figure 8: Left: V-Measure compared to ground truth for each time step with di↵erent values of we (all o✏ine). In the beginning,
smoothing makes the result worse, as the number of clusters is reduced too much. Later, smoothing improves the result. The
amount of smoothing has not a strong influence. Middle: Comparison between online and o✏ine LBP. With decreasing value of
✏, online performance approaches the o✏ine quality, with some random e↵ects. Right: Number of messages updated in online
and o✏ine LBP. The red line shows the number of new messages introduced at each time step, which is the minimum number
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Figure 9: E↵ect of smoothing (best viewed in color) on two examples. Left image for each case shows the result using only
online star clustering, the right image is the result after applying graph-based smoothing. As can be seen, class labels are clearer
and distributed more precisely within each object.
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Figure 6: Left: cluster growth. Middle: number of aggregate
stars broken for data set A with varying thresholds. This
number grows linearly with iterations. The growth rate is
small compared to the number of nodes inserted in the graph.
Right: number of stars broken in each scan for � = 0.8. On
average this number is low and larger peaks are rare.

Table 1 shows e�ciency results for the star clustering al-
gorithm for � 2 {0.7, 0.8, 0.9}. Higher values of � reduce the
number of edges in the graph, resulting in an increase of the
number of clusters N. For data set A, the value of N varied
between 107 and 2699, while for data set B it was between
8 and 84. The average number of stars broken during inser-
tion indicates the work done to re-arrange the existing graph.
Note that this number is very small. As an example, a to-
tal of 2688 stars were broken while incrementally clustering
11897 segments (0.23 stars broken per insertion). The aver-
age insertion time per scan ranged from 0.67sec to 4.15sec
for data set A and from 0.25sec to 1.76sec for data set B.
The insertion time is a function of the graph size, number
of stars broken per iteration and the underlying similarity
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Figure 7: Probability histograms (plotted vertically) for all
pair-wise similarities between satellite vertices for each
cluster obtained at � = 0.8 (left) and � = 0.9 (right) for
Data set B. Red line indicates threshold. The expected simi-
larity values were found higher than or close to � indicating
that star clusters are reasonably dense.

distribution for the data set. The cosine similarity computa-
tion time grows linearly with the number of vertices and was
123.34 sec for data set A and 4.46sec for data set B.

Fig. 6 (left) plots the cluster count after each insertion
for data set A (results were similar for data set B). Overall,
the number of clusters N increases over time as new seg-
ments are added. As the robot explores new environment,
N grows rapidly with newly acquired information. Later,
the clusters become increasingly representative of the en-
vironment, stabilize, and hence the growth rate shows a de-
cline. For smaller values of � the saturation e↵ect is more
prominent and lies always below the graph with a higher �.
Fig. 6(middle) plots the aggregate number of stars broken
during insertion, showing an approximately linear growth
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over time with a small growth rate compared to the number
of vertices in the graph. It also shows instants when many
stars are broken (when the graph re-structures), more com-
monly observed for the run with the higher value of � = 0.8,
where N is high compared to lower values of �. Fig. 6(right)
plots the number of stars broken for each scan. On average
this number is low and larger peaks are less common.

Fig. 7 illustrates the clustering quality at a specified
threshold � for data set B. For each cluster, the similar-
ity distribution for all pair-wise satellite vertices was plot-
ted along y-axis (bin size 0.0125). Probability histograms
were smoothened to account for variable cluster sizes and
sampling error as suggested by Cussens [1993]. Clustering
at threshold � ensures that the center-satellite similarities
within the star-subgraph are at least � (by construction). Us-
ing Eq. (1) we obtain the expected satellite-satellite similar-
ity as �, plotted as a horizontal line in Fig. 7. The figure
shows that the expected similarity values for clusters was
found to be above or close to �. This indicates that star clus-
ters are reasonably dense and yield clusters with high ex-
pected pair-wise satellite similarities. The results were simi-
lar for data set A and not included in the interest of space.

Fig. 8 shows a performance comparison with respect to
di↵erent edge weight parameters we and online message up-
date thresholds ✏. The left and middle figure show the V-
measure compared to a hand-labeled ground truth over time.
We can see that the performance increases over time and that
the online LBP version for ✏ = 0.2 is only slightly worse
than the o✏ine version. However, as shown in Fig. 8(right),
there is a significant reduction in the number of updated
messages compared to the o✏ine LBP. A smaller ✏ improves
the V-measure performance, but it also increases the mes-
sage passing horizon causing more message updates and
thus a longer computation time.

Conclusions
In this paper, we presented an unsupervised scene parsing al-
gorithm that improves its performance during operation time
as more information becomes available. We achieve this by
combining an online clustering algorithm with an undirected
graphical model that grows continually over time. As a re-
sult, for each new data frame our algorithm refines its inter-
nal representation with only a few update steps as opposed to
a complete recomputation required by an o✏ine learner. Ad-
ditionally, its quantitative performance quickly approaches
that of the o✏ine counterpart as new data arrives. We be-
lieve that this competency, applied in outdoor environments,
constitutes an important step towards life-long autonomy.
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Driven Learning for Driving:
How Introspection Improves Semantic Mapping

Rudolph Triebel, Hugo Grimmett, Rohan Paul, and Ingmar Posner

Abstract This paper explores the suitability of commonly employed classification
methods to action-selection tasks in robotics, and argues that a classifier’s introspec-
tive capacity is a vital but as yet largely under-appreciated attribute. As illustration
we propose an active learning framework for semantic mapping in mobile robotics
and demonstrate it in the context of autonomous driving. In this framework, data
are selected for label disambiguation by a human supervisor using uncertainty sam-
pling. Intuitively, an introspective classification framework – i.e. one which mod-
erates its predictions by an estimate of how well it is placed to make a call in a
particular situation – is particularly well suited to this task. To achieve an e�cient
implementation we extend the notion of introspection to a particular sparse Gaussian
Process Classifier, the Informative Vector Machine (IVM). Furthermore, we lever-
age the information-theoretic nature of the IVM to formulate a principled mecha-
nism for forgetting stale data, thereby bounding memory use and resulting in a truly
life-long learning system. Our evaluation on a publicly available dataset shows that
an introspective active learner asks more informative questions compared to a more
traditional non-introspective approach like a Support Vector Machine (SVM) and in
so doing, outperforms the SVM in terms of learning rate while retaining e�ciency
for practical use.

1 Introduction

In answering the question ‘where am I?’ roboticists have gone to great lengths to
model, manage and, indeed, exploit uncertainty. This, however, is not as yet the
case when it comes to asking ‘what is this?’. As we aspire to robust, long-term
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autonomous operation our systems have to contend with vast amounts of continu-
ally evolving, non-i.i.d. data from which information needs to be assimilated. This
presents a challenge and an opportunity particularly to the robotics community as
here the real cost of failure can be significant. We believe that realistic estimates of
uncertainty are pivotal to achieving robust and e�cient decision making in robotics.
In particular, classification as a precursor to action-selection seems to be largely
disregarded by the community.

We frame our argument in the context of o✏ine semantic mapping. Significant
progress in autonomous driving in recent years has inspired a view that success-
ful autonomous operation in complex, dynamic environments critically depends on
a-priori available semantic maps representing ostensibly permanent aspects of the
environment such as lane markings, tra�c light positions and road sign informa-
tion (see, for example, [3, 22]). Owing to their safety-critical nature, these maps are
typically created manually for particular routes [5]. This is, of course, an expen-
sive process which scales badly with the number of routes for which autonomous
operation is to be provided. Much, therefore, can be gained by reducing human in-
volvement in this process and thus providing a robust and scalable solution.

A prominent approach to tackling such a challenge is that of active learning,
where classification results are iteratively refined by asking a human supervisor for
ground-truth labels in ambiguous cases and incorporating the added information
into classifier training. To the best of our knowledge this paper is the first in robotics
to present an e�cient and scalable active learning framework for the task of o✏ine
semantic mapping. Crucially, however, our work is also set apart from the vast ma-
jority of the related works in active learning by the unusual stance we take with
regards to uncertainty estimates in the system. Commonly, active learning relies on
selecting data for human labelling using a variant of uncertainty sampling, by which
data are selected according to how confident a classifier is in individual predictions
(see, for example, [17]).

However, Grimmett et al. [7] show that several of the classification frameworks
commonly used in robotics are unrealistically overconfident in their assessment of
class membership. To characterise this attribute, the authors introduce the notion
of the introspective capacity of a classification framework: the ability to estimate
a classification confidence which realistically reflects how qualified the classifier is
to make a particular class decision in each individual test instance. In this paper we
show that introspective classification harbours significant benefits for active learning
as compared to more traditional, non-introspective approaches. In particular, our
contributions are

• the application of an active learning framework to semantic mapping in robotics,
• the application of the notion of introspection to the Informative Vector Machine

(IVM) [10] as an e�cient extension to [7],
• the application of the IVM specifically to achieve introspective active learning,

which is demonstrated to lead to more e↵ective information extraction over more
traditional approaches, and

• the introduction of a principled mechanism for the IVM to forget less important
data to provide for scalable, life-long active learning on a mobile robot.
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Epoch&0& Epoch&2&Passive&detector& Ac3ve&detector& Epoch&9&

Fig. 1: Active learning in a semantic mapping context. This figure shows semantic maps indicating
the positions of tra�c lights along a street in Paris. Circles denote the locations of ground-truth
tra�c lights. The shading encodes the correctness of the classification output as provided by a
probabilistic classifier: red denotes a recall of 0 (no detections), and green denotes a recall of 1 for
that particular tra�c light (all views of that object correctly detected). False positives are shown
as grey squares. From left to right, we first see a typical passive detector, followed by our active-
learning framework at epochs 0, 2, and 9 respectively. Note that in the active learning setting
the shading of the circles progresses from red to green as a greater proportion of tra�c lights
are correctly detected with increasing confidence. Similarly the number of false positives reduces
dramatically. By epoch 2 the active learning framework already outperforms the passive detector.
In this paper we show that our formulation of an introspective active learning approach provides for
more e�cient information extraction – and thus a higher learning rate – over conventional active
learning approaches. (This figure is best viewed in colour.)

The work presented here first appeared as a workshop paper by the same authors
[21]. However, here we o↵er a more detailed treatment as well as the following
significant extensions:

• the introspective capacity of the IVM is established, including the e↵ects of vary-
ing the sparsity factor,

• qualitative results are included of when the IVM is confident (correctly and in-
correctly) in its classifications, and

• timing information is provided regarding the training of an IVM.

We apply our framework to the detection of tra�c lights in a real, third-party vi-
sion dataset and demonstrate iteratively improved semantic mapping, which makes
e�cient use of available label information. A typical qualitative example of our
system output is shown in Fig. 1.

2 Related Works

Active learning is an established and vibrant field of research spanning a significant
number of application domains. Consequently, a variety of methods have been pro-
posed for selecting informative measurements for labelling and/or for incrementally
training a learning algorithm. For example, Freund et al. [6] propose disagreement
among a committee of classifiers as a criterion for active data selection. McCul-
lum and Nigam [12] apply this to text classification using high label inconsistency
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as a query criterion coupled with expectation maximisation (EM) for online learn-
ing. More recently, Joshi et al. [8] address multi-class image classification using
SVMs and propose criteria based on entropy and best-versus-second-best (BvSB)
measures based on the hyperplane-margin for determining uncertain points. Tong
and Koller [19] pick unlabelled data for query based on minimising the version
space within a margin-based SVM formulation. Kapoor et al. [9] propose an active
learning system for object categorization using a GP classifier where data points
possessing large uncertainty (using posterior mean and variance) are queried for
labels and used to improve classification.

Within the robotics community, active learning and directed information acqui-
sition has received attention in recognition, planning and mapping tasks. For exam-
ple, Dima et al. [4] present unlabelled data filtering for outdoor terrain classification
tasks with the aim of reducing the amount of training data to be human-labelled. The
approach relies on kernel density estimation over unlabelled data and estimating a
“surprise” score for image patches, hence only querying the least likely samples
given the density estimate for human labelling. In [14] the authors present a learning
approach for continually improving place recognition perfomance by actively learn-
ing an appearance model of a robot’s operating environment. The method uses prob-
abilistic topic models and a measure of perplexity to identify least explained images
which further drives retrieval of thematically linked samples leading to an improved
workspace representation. Recent work by Tellex et al. [18] explores active infor-
mation gathering for human-robot dialog. The authors formulate an information-
theoretic strategy for asking clarifying questions to disambiguate the robot’s belief
over the mapping between phrases and aspects of the workspace.

While, to the best of our knowledge, this is the first work in robotics apply-
ing active learning to a semantic mapping task, our work is also set apart signif-
icantly from prior art in active learning in that we introduce and demonstrate the
benefits of e�cient introspective active learning. In this respect, the work most
closely related to ours is that of [9] above, in which an inherently introspec-
tive classifier is used but its use is not motivated by its introspective qualities.

3 Introspective Classification

The introspective capacity of a classifier characterises its ability to realistically es-
timate the uncertainty in its predictions. Grimmett et al. [7] define the introspective
capacity as a classifier’s ability to moderate its output by an appropriate measure as
to how ‘qualified’ it is to make a call given its own prior experience, usually in the
form of training data. The intuition is that test data, which are in some form ‘simi-
lar’ to that seen in training, are classified with higher certainty than data which are
more dissimilar. This points towards non-parametric approaches potentially being
more introspective than parametric ones, as all the training data are available for
inference in the former, whereas inference in the latter is based on parametric mod-
els learned from the data. Grimmett et al. [7] investigated several commonly used

Articles on Active Learning (Chapter 7)

260 Appeared in: Int. Symposium on Robotics Research (ISRR), 2013



Driven Learning for Driving: How Introspection Improves Semantic Mapping 5

classification frameworks providing probabilistic output and found that a Gaussian
Process classifier (GPC) [16] indeed is significantly more introspective than, for ex-
ample, the more commonly used Support Vector Machine (see, for example, [1])
with a probabilistic calibration (such as, for example, provided by Platt et al. [15]).

In [7], this quality is attributed to a GPC’s Bayesian treatment of predictive vari-
ance. Consider a set of training data {X,y}, where X = {x1, . . . ,x|X|} denotes the set
of feature vectors and y denotes the set of corresponding class labels. Probabilistic
predictions for a test point, x⇤, are obtained in two steps. First, the distribution over
the latent variable corresponding to the test input is obtained by

p( f⇤ | X,y,x⇤) =
Z

p( f⇤ | X,x⇤, f )p( f | X,y)d f , (1)

where p( f | X,y) is the posterior distribution over latent variables. This is followed
by applying a sigmoid function �(·), which in our implementation is the cumulative
Gaussian, and marginalising over the latent f⇤ to yield the class likelihood p(y⇤ |
X,y,x⇤) as

p(y⇤ | X,y,x⇤) =
Z
�( f⇤)p( f⇤ | X,y,x⇤)d f⇤. (2)

It is this marginalisation over all models induced by the training set, as opposed to
relying on a single minimisation-based estimate, which accounts for a more accurate
estimate of the inherent uncertainty in class distribution, and therefore endows GP
classification with a high introspective capacity.

3.1 E�ciency by Sparsification

A key drawback of a GPC is its significant computational demand in terms of mem-
ory and run time. This is due to the fact that the GPC maintains a mean µ, as well
as a covariance matrix ⌃, which is computed from a kernel function and has size
|y|2. A number of sparsification methods have been proposed in order to mitigate
this computational burden. For e�ciency, in this work we adopt one such sparsifi-
cation method: the Informative Vector Machine (IVM) [10]. The main idea of this
algorithm is to only use a subset of the training points denoted the active set, I,
from which an approximation q( f | X,y) = N( f | µ,⌃) of the posterior distribution
p( f | X,y) is computed. The IVM algorithm computes µ and ⌃ incrementally, and
at every iteration j selects the training point (xk,yk) which maximizes the entropy
di↵erence �H jk between q j�1 and q j for inclusion into the active set. Because q is
Gaussian, �H jk can be computed by

�H jk = �1
2

log|⌃ jk |+1
2

log|⌃ j�1|. (3)

The details of the implementation can be found in Lawrence et al. [11]. The algo-
rithm stops when the active set has reached a desired size. In our implementation,
we choose this size to be a fixed fraction � of the training set q.

Articles on Active Learning (Chapter 7)

Appeared in: Int. Symposium on Robotics Research (ISRR), 2013 261



6 Rudolph Triebel, Hugo Grimmett, Rohan Paul, and Ingmar Posner

To find the kernel hyper-parameters ✓ of an IVM, two steps are iterated a given
number of times: the estimation of I given ✓, and minimising the marginal like-
lihood q(y | X) given I. Although there are no convergence guarantees, in prac-
tice already a small number of iterations are su�cient to find good kernel hyper-
parameters.

Importantly for our work, since inference with the IVM is similar to that with a
GPC, the IVM retains the model averaging described in Eq. (2). We argue therefore,
that the IVM provides a significant and well-established improvement in processing
speed over a GPC while maintaining its introspective properties (see Sec. 5 and 5.4
for details).

4 Scalable Active Learning: Drive, Ask, Improve

The power of an active learning framework lies in its ability to select a suitable train-
ing set in an application-oriented way. It thus inherently allows the system to adapt
naturally to the non-stationarity of the data often encountered in long-term robotics
applications. The active learning framework considered here is a supervised learning
process by which a human operator provides class labels for machine-selected test
data, which are then fed back into classifier training to improve the classification re-
sult of the next round. We examine performance over successive epochs, which each
consist of (re-)training, classification, and user-feedback. The implementation of a
scalable active learning framework requires two problems to be addressed: firstly, a
subset of test data has to be selected for re-training such that classification perfor-
mance increases in the next epoch. Secondly, measures have to be taken that guaran-
tee that the training set is bounded in size, since otherwise the algorithm will sooner
or later exhaust the resources of a finite-memory, real robotic system. We compare
this active learning approach with a more conventional “passive” alternative, that is,
training a classifier once without any subsequent human-feedback improvement.

We now outline the specific active learning algorithm employed in this work,
before providing details of both our data selection strategy and our approach to
forgetting (bounding the training set size).

4.1 The Active Learning Algorithm

Algorithm 1 describes our active learning framework which, for reasons given in
Sec. 3, uses an IVM as the underlying classifier. It requires five di↵erent input pa-
rameters: the initial hyper-parameters ✓0 used for training the IVM, the fraction �
of training points that are used for sparsification, the batch size b, the normalised
entropy (NE) threshold # that a test point needs to exceed to be considered for re-
training, and the maximum number of questions r that the algorithm may ask. The
last is intended to minimise nuisance to a human operator due to being asked too
many questions. The sub-routines in the algorithm are explained as follows.
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Algorithm 1: Active Learning with an IVM
Data: training dataD = (X,y), stream of test data X⇤
Input: initial kernel parameters ✓0, batch size b, active set size fraction �, minimal retraining

score #, maximum number of questions r
Output: stream of output labels y⇤
i 0
while X⇤ , ; do

(✓i+1,Ii+1) TrainIVM(X,y,�,✓0)
move next b test points from X⇤ into X⇤i
P ;
forall the x⇤ 2 X⇤i do

z IVMPrediction(Ii+1,✓i+1,x⇤)
s ComputeRetrainingScore(z)
if s > # then P P[{(x⇤, s)}

sort P by decreasing values of s
D+ ;
for j 1 to MIN(r, |P|) do

(x+j , s j) element j of P
y+j  AskLabelFromUser (x+j )
D+ D+ [ (x+j ,y

+
j )

D D[D+, i i+1

TrainIVM uses the current training set, the active set fraction �, and the initial
kernel parameters to find optimal kernel parameters ✓i+1 and an active set Ii+1 as
described in Sec. 3.1. Throughout this work we employ a squared exponential kernel
(which is the same as the Radial Basis Function kernel) with additive white noise:

k(xi,x j) = �2
f e�

(xi�x j)
2

2l2 +�2
n�i j, (4)

where �i j is the Kronecker delta, and ✓= {�2
f , l,�

2
n} are the signal variance, the length

scale, and the noise variance.
IVMPrediction returns an estimate of the probability z that the next test datum

x⇤ has a particular class label, as given in Eq. (2). Based on this probability, the
normalised entropy measure is then computed. The top ranked r test data exceeding
the retraining threshold # are labelled by the user and added to the training set for
the next epoch.

4.2 Data Selection Strategy: What Questions to Ask?

The key element of an active learning algorithm is the strategy by which a new
test point x⇤ is considered for re-training. In Algorithm 1, this is done in the sub-
routine ComputeRetrainingScore. An intuitive and well-explored indicator of
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which data might be suitable for inclusion is the classification uncertainty associated
with x⇤. To characterise the uncertainty of the classification from the given class pre-
diction z = p(y⇤ | X,y,x⇤), we adopt the measure of normalised entropy H(z), such
that for the binary case,

H(z) = �z · log2(z)� (1� z) · log2(1� z), (5)

where H(z) 2 [0,1], with high values representing high uncertainty.
This, indeed is central to our work. While, in principle, any classification frame-

work which provides a distribution over class labels as output can be used in our
active learning framework, intuitively we expect those with more realistic estimates
of these probabilities to be more e↵ective for active learning. Thus, we expect more
introspective classifiers to perform better in the sense that they will ask more infor-
mative questions, leading to a higher learning rate. In Sec. 5, we will show that this
is indeed the case when comparing the proposed framework based on an IVM with
one based on a more commonly used, probabilistically calibrated SVM.

4.3 Forgetting Uninformative Data to Bound Memory Use

The main problem with the active learning framework as we presented it so far is
that in theory the training set can grow indefinitely, because there are no guaran-
tees that the algorithm will stop asking new questions. This makes the algorithm
less flexible, especially if the input data can not be guaranteed to be within certain
locality bounds, for example in a life-long learning application. Therefore, and for
run time e�ciency, we bound the size of the training set by removing points from
it when it exceeds a given target size nt. To decide which points to remove, we
leverage the information-theoretic instruments that the IVM already provides. After
each training round, we keep the entropy di↵erences given in Eq. (3) for all training
points and sort them in increasing order. Those training data which correspond to
the first ni � nt values, where ni is the current training set size, are then removed
before training in the next epoch. Intuitively, this method discards the data that were
least informative during the last training round. One caveat with this method is that
it assumes independence between the training data, which is not generally given. For
example, two data may both have small individual �H values, but when removing
both of them the entropy could change significantly. In this work we acknowledge
but do not explore this phenomenon. Instead, we note that in our experiments we
did not observe a deterioration in classification performance when we applied our
method for forgetting.
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5 Experimental Results

In this section we investigate the performance of our introspective active learning
approach in terms of learning rate, data selection strategy, classification performance
and tractability. We compare and contrast our approach with one based on the much
more commonly used SVM classifier (calibrated to provide probabilistic output).
The task we set both learners is to detect tra�c lights in a third-party image dataset.
Specifically, we use the publicly available Tra�c Lights Recognition (TLR) data
set [13], which comprises 11,179 colour images taken at 25 Hz from a car driven
through central Paris at speeds under 31 mph. It has ground-truth labels for tra�c
light positions and subtype labels ‘green’, ‘orange’, ‘red’, ‘ambiguous’ (though here
we are only concerned with the detection of tra�c lights, irrespective of their state).
As recommended by the authors of the dataset, we disregard labels of type ‘ambigu-
ous’ and exclude sections where the vehicle was stationary for long periods of time.
We use data from the first 5,800 frames for training and the remainder for testing.
We compute a template-based feature set inspired by Torralba et al. [20] which has
a successful track record in the detection of tra�c lights [7]. Each training or test
window is represented by a feature vector of length 200.

When training the IVM we used an active set fraction � of 0.2, which means that
informative points will be added to the active set until its size is 20% of the training
set size. We use a Squared Exponential (SE) with white noise kernel. Training such
a classifier takes approximately 1.5 seconds on a single 3.4GHz core.

The SVMs used here are trained using libsvm [2], and use the isotropic Radial
Basis Function (RBF) kernel, which is equivalent to the SE kernel used by the IVM.
They are trained using 10-fold cross-validation on top of a grid-search over the pa-
rameters C (the penalty parameter for the error term) and � (the inverse of the length
scale for the isotropic RBF kernel), both in the space 2k where k = {�7,�6, . . . ,+4}.
Training takes approximately 10 minutes.

5.1 Does Introspection Improve Active Learning?

One of the central claims of this paper is that the use of an introspective classifier
will lead to more informative questions being asked of the human expert. In order
to test this claim we perform a cross-over experiment (see Fig. 2) which starts with
both an IVM and an SVM are initially trained on the same data, 200 tra�c lights
(positive) and 200 background patches (negative). Then, 1,000 new data (with a
class fraction of 1:1, the same as during training) are shown to both classifiers for
testing. Each chooses up to 50 data points (providing their normalised entropies are
over a threshold empirically set to be # = 0.97) to add to their own training set for
the next round, resulting in two new and di↵erent training sets: the ‘IVM set’ and
the ‘SVM set’. A new IVM and SVM are now trained on each of the two new sets
and evaluated on a further 1,000 new data points. This process thus gives rise to four
classifiers: two IVMs trained on data selected by an IVM and a SVM respectively,
and two equivalent SVMs. We compute precision and recall for all four classifiers.
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The results after 100 repetitions of this experiment are shown in Fig. 3. As expected,
both the IVM and the SVM perform better when trained on the dataset chosen by
the initial IVM, suggesting that the questions asked by the IVM tend to be more
informative. An unpaired t-test shows this result to be significant to a level of over
95%.

The overall e↵ect of introspection in an active learning setting seems to be an
increased learning rate, a claim which we support with the following active learning
experiment, performed over 11 epochs. As described in Sec. 4, our active learning
algorithm is retrained after having seen a batch of test points, as opposed to running
the training algorithm after every new datum encountered. Every epoch consists of
a training phase, a classification phase, and a feedback phase. At the very start of
epoch 0, the classifiers are trained on 50 positive (tra�c light) windows and 500
negative (background) windows extracted at random from the training frames. We
choose this class fraction disparity to reflect the fact that in real data sets, negative
examples are much more prevalent than positive examples. During each classifica-
tion phase, the classifiers are then tested on a batch of 1,000 windows extracted
from the test frames. The class fraction for these test windows is 1:10, the same as
for training. Next, the 50 points with the highest normalised entropy (providing they
are over # = 0.97) are added to the training set, ready for retraining at the start of
the next epoch. Note that each classifier (IVM and SVM) makes its own choices
regarding which points to add for the next epoch.

The results are shown in Fig. 4, where the IVM learner starts o↵ with a worse f1
measure at epoch 0 but has already exceeded the SVM by epoch 2, and is better (with
non-overlapping 95% confidence bounds) in the steady state from then onwards.
The gradient of the plot in Fig. 4 is shown in Fig. 5, and shows that the rate of
increase of f1 measure (the learning rate) for the IVM is better than that of the SVM
over the first few epochs, and then always at least as good subsequently.

Fig. 4 further serves to justify empirically our choice of normalised entropy as a
valid criterion for data selection, by comparing it to randomly selecting new training
data. Intuitively, both methods should improve classification by virtue of the fact
that they increase the training set size. However, the results indicate that for both
the IVM and the SVM, using normalised entropy leads to more rapidly improving
classification performance.

5.2 Does Forgetting A↵ect the Performance?

Our work aims to contribute an introspective active learning algorithm that is e�-
cient in terms of computational e↵ort and scalable with respect to its memory re-
quirements. In this section we investigate the e�cacy of the mechanism we have put
in place to provide this tractability: forgetting. In experiments thus far, new training
data were added in each epoch. The IVM active set size is a fixed proportion of the
training set size, which has the benefit of increasing classification performance, but
is detrimental to processing time. In the context of a life-long-learner, this is not a
scalable solution.
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Fig. 2: Here we show the procedure for the cross-over experiment, designed to test whether one
classifier chooses points which do not only benefit itself in the next round, but are consistently
more useful for the other type of classifier as well. We compare an IVM and an SVM, and choose
the test points with highest normalised entropy to be labelled to augment the original training set.
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Fig. 3: Data selected by the IVM lead to an improved learning rate in terms of precision and recall
for both an IVM and SVM over those selected by the SVM. Results are shown for 100 experimental
runs, and increases are significant to the 95% level. See text and Fig. 2 for more details.
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Fig. 4: Classification performance for both IVM and SVM variants as indicated by the f1-measure
after each epoch. Measurements are averaged over 100 runs. Error bars indicate the 95% confidence
region of the mean. The IVM using a normalised entropy-based data selection strategy (IVM-
active) consistently outperforms all other active learning variants in terms of learning rate and final
classification performance.
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Fig. 5: The gradient of the f1 measure of the active learners from Fig. 4

We therefore elect to cap the size of the training set at nt = 550 data, which makes
the computational e↵ort constant. This ‘IVM with forgetting’ learner can add new
data, but only by simultaneously discarding enough data to reduce the training set
size to the target size nt. Fig. 6 (left) shows the training set size for the normal
IVM with unbounded training set,and an IVM with forgetting, capped at 550 data
(the initial training amount). Fig. 6 (right) shows the corresponding classification
performance as characterised by the f1 measure. It indicates that in this scenario,
the IVM with forgetting mechanism has the same performance as the unbounded
IVM. We note that this is likely to be dataset dependent.

5.3 What Does the Active Learner Ask?

In Fig. 7 we show the 27 most certain and 27 least certain test cases for an IVM
at epochs 0, 3, and 10, and whether they were correctly classified or not. Firstly, it
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Fig. 6: Forgetting results in commensurate classification performance while successfully bounding
the active set size of the classifier. Each datum represents the mean (and associated 95% con-
fidence interval) over 100 experimental runs. Left: The evolution of the training set size. The
IVM+forgetting learner has a target training set size nt = 550, the initial training set size. Right:
Classification performance with and without forgetting. For corresponding SVM results, see Fig. 5.

is reassuring to confirm that the certain classifications are always correct. At epoch
0 we see that the confident classifications are all of the background class, almost
entirely of fairly uniformly textured surfaces like tarmac, and that the unconfident
classifications are all regarding tra�c lights. As the learners gather more data, the
tra�c lights which at epoch 0 were uncertain, are now very confident at epoch 3.
At epoch 10, the uncertain group are more balanced in terms of tra�c lights and
background, and we see that although there is a little more variation in terms of the
confident patches, they are very similar to the confidence classifications at epoch 3.
This is consistent with the learning algorithm having reached an equilibrium after
epoch 3 in Fig. 4.
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Fig. 7: The 27 most certain and 27 least uncertain test classifications of an IVM at epochs 0, 3, and
10 during the active learning experiment. A green border indicates a correct classification, and a
red border indicates an incorrect classification.
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5.4 The E↵ects of Sparsity

In [7] we showed that the GPC is more introspective than other more commonly
used classification frameworks. In this paper we have argued the necessity of using
a sparse formulation for the sake of computational complexity, however, it is neces-
sary to ensure that the IVM is introspective in its own right. The useful characteristic
of an introspective classifier is that it tends to be confident when it is making true
predictions, and uncertain when it may be making false predictions. In addition, we
would like to see whether the introspective quality changes with the active set size;
intuitively, a truly introspective classifier will be more confident if it is exposed to
more data, and vice versa.

Similarly to the approach in [7] we have plotted the cumulative true and false
classifications against uncertainty in Fig. 8 for a single round of training and test-
ing. In the legend, “IVM � = 0.4” indicates an IVM with an active set fraction of 0.4,
such that the active set contains 40% of the training set. These particular IVMs have
been trained on 550 data and tested on 11000, with the ratio 1:10 positive:negative.
There are several things to notice from the graph. Firstly, we can see that by looking
at the curves for the IVMs with � = {0.2,0.4,0.6,0.8,1.0}, indeed as we would hope,
having a larger active set results in a more confident classifier; however it is interest-
ing to see that there are diminishing returns: very little confidence is gained between
an active set fraction of 0.6 and 1.0. Secondly and most importantly, the IVM is in-
trospective: the incorrect classifications occur with high uncertainty, whereas the
majority of the correct classifications occur with low uncertainty. Thirdly, we would
expect that as the level of sparsity decreases, we approach the behaviour of the GPC,
which is indeed what happens; the full GPC is commensurate with the IVMs with
� = {0.6,0.8,1.0}.

6 Conclusion

The contributions of this paper are three-fold: firstly, the notion of introspective
classification introduced earlier shows promise in the context of active learning,
where a reliable estimate of the classification uncertainty is required. We do this
by showing an improvement in both classification performance and learning rate
over a non-introspective classifier (Sec. 5.1). Secondly, an e�cient version of the
Gaussian Process Classifier, namely the Informative Vector Machine is used, which
makes the approach particularly useful for robotics applications with large amounts
of data. We show visual examples of where it is confused and where it is confident
(Sec. 5.3), and use it to create the first o✏ine semantic mapping algorithm via ac-
tive learning. Finally, we present an information-theoretic solution to the problem
of increasing memory requirements by forgetting the least informative data, which
maintains a high classification performance in our experiments, but more extensive
experimentation is required to confirm the success of this approach for the wider
scope of mobile robotics applications.
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Fig. 8: The introspective capacity of the IVM. We show the number of true (top) and false (bottom)
classifications (positive and negative classes together) which are made with a normalised entropy
lower than a chosen value. For instance, if we were to threshold at NE = 0.5, we would have 6000
correct classifications with the IVM � = 0.2 and < 10 incorrect classifications.
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Abstract. We present an active learning framework for image segmen-
tation with user interaction. Our system uses a sparse Gaussian Process
classifier (GPC) trained on manually labeled image pixels (user scrib-
bles) and refined in every active learning round. As a special feature, our
method uses a very efficient online update rule to compute the class pre-
dictions in every round. The final segmentation of the image is computed
via convex optimization. Results on a standard benchmark data set show
that our algorithm is better than a recent state-of-the-art method. We
also show that the queries made by the algorithm are more informative
compared to randomly increasing the training data, and that our online
version is much faster than the standard offline GPC inference.

1 Introduction

Automatic image segmentation is one of the most important problems in com-
puter vision. Its attractiveness stems from its very large range of applications,
including medical imaging and robotics. However, in general the image segmen-
tation problem is ill-posed, because a correct segmentation depends strongly on
the application. Therefore, we focus on the interactive segmentation problem,
where the user provides information about the regions to be segmented, e.g. by
manually sampling image pixels and assigning them to a predefined region class.
These user scribbles are used as ground truth information, and the aim is to
infer a good segmentation using these scribbles as constraints on the labelling.
To do this, many approaches have been presented in the literature with impres-
sive results. However, current methods can reach high classification rates only
by requiring comparably many user scribbles, and the number of user scribbles
needed usually grows very fast as the segmentation quality approaches 100%.

In this paper, we present a method that asks for user input more intelligently
by actively querying pixels to be labeled where the classification was made with
high uncertainty. This way, only a few user scribbles are needed to obtain a high
quality segmentation. Our method uses an efficient sparse Gaussian Process clas-
sifier (GPC) to learn background and foreground models, providing an accurate
estimation of the classification uncertainty. We also present a very efficient way
to compute the class predictions on every round using an online update rule.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 1: Comparison between the Parzen window estimator [8] and our sparse GP clas-
sifier for foreground classification. From the initial scribble image (a) both approaches
learn a model for the foreground. As none of the scribble pixels for the foreground
class is white, both approaches fail to classify the white neck of the cat correctly (b, e).
However, in the next active learning round, the GP manages to query this part from
the user based on its accurate estimation of the predictive uncertainty (c). In contrast,
the Parzen window estimator does not query this part, because its uncertainty is low
despite its incorrect classification, i.e. it is over-confident (f). After 6 rounds the GP
achieves a very good segmentation (d), while the Parzen window estimator still gives
a lower-quality segmentation (g).

1.1 Related Work

Many previous works use energy minimization for image segmentation, and since
the work of Boykov et al. [1], intensive research, e.g. [13, 7], has been done on
embedding the input image onto a discrete lattice and computing a segmentation
using the min-cut framework. Another line of work [16, 8] models segmentation
in the continuous domain and is based on the convex relaxation technique of
Nikolova et al. [9]. Both discrete and continuous approaches impose spatial con-
sistency as a prior on the image labelling. Our work is related to [8] where the
data term describing the pixel class probabilities includes spatial information
while estimating the colour distribution using a Parzen window estimator. How-
ever, we use an Informative Vector Machine (IVM) [5], a sparse version of the
Gaussian Process Classifier, and employ active learning, which improves the seg-
mentation result quickly after only a few training rounds (see Fig. 1). In contrast
to the sparse GP algorithm of Csató and Opper [2], the IVM has advantages in
the context of active learning, mainly due to the information-theoretic criterion
used to select the subset of the training points.

In the field of active learning, Kapoor et al.[4] address object categorization
using a GP classifier (GPC) where data points possessing large uncertainty (using
posterior mean and variance) are queried for labels and used to improve classifi-
cation. Triebel et al. [15] use an IVM to actively learn traffic lights in urban traffic
images. Here, we use a similar approach, but with a very efficient online update
method for the classification step of the GPC. Vezhnevets et al. [17], as well as

Articles on Active Learning (Chapter 7)

274 Appeared in: German Conference on Pattern Recognition (GCPR), 2014



Active Online Learning for Interactive Segmentation 3

(a) (b) (c) (d) (e) (f)

Fig. 2: Example sequence of our proposed active learning framework. The algorithm
starts with initial user scribbles as shown in (a). It then learns a sparse GP classifier
and segments the image using the GP prediction and a regularization term (b). Then,
candidate regions for new, informative user scribbles are computed (c). These are based
on the normalized entropy of the GP prediction, i.e. bright regions represent a higher
classification uncertainty than darker regions. In this case, a segment at the upper
right border is chosen. A label is queried for these pixels (here it is background), and
a sub-set of uniformly sampeled pixels together with the class labels is added to the
training data (d). In the next round, the classification is improved and the result is
refined (e). After a few rounds (here 4 in total), the final segmentation is obtained (f).

Wang et al. [18] also use active learning for interactive image segmentation, but
either with a CRF+NaiveBayes [17] or a Gaussian Mixture Model (GMM) [18]
as an underlying classifier. We use a GPC, because it is non-parametric, i.e. it
does not assume a functional model for the data, and it was shown to provide
very accurate uncertainty estimates, which is crucial in active learning.

2 Algorithm Overview

Fig. 2 shows an example sequence of our active learning framework for interactive
image segmentation. From a set of initial user scribbles from both foreground
and background regions (Fig 2a), our algorithm learns a sparse Gaussian Process
Classifier (GPC) and classifies the remaining pixels. Then, a segmentation is ob-
tained using regularization (Fig. 2b), and an uncertainty measure is computed
from the predictive variance returned by the GPC. We use a GPC, because its
uncertainty estimates are more reliable than those produced by other learning
methods such as Support Vector Machines, where reliable refers to a strong
correlation between uncertain and incorrectly classified samples (see, e.g., [10]).
Then, we perform an over-segmentation of the original image based on super-
pixels [3] and compute the average classification uncertainty (entropy) for each
segment (see Fig. 2c). In the next step, the algorithm selects the segment with
the highest uncertainty to query a ground truth label from the user, samples
pixels uniformly from the segment, and adds the samples with the obtained la-
bels to the training data set (see Fig. 2d). Note that, due to imperfections in the
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segmentation, some segments can contain both foreground and background pix-
els. In that case, the user can select a “don’t know” option, and the next segment
is chosen in the order of decreasing entropies. This however, occurs only rarely
when the segmentation is done sufficiently fine-grained. The whole learning and
classification process is then repeated for a fixed number of times or until an
appropriate stopping criterion is met (Fig. 2e and 2f).

3 Gaussian Process Classification

Every round of our active learning algorithm starts by training a Gaussian
Process Classifier (GPC) on the current set of user scribbles. If we denote
the scribbles as pairs (x1, y1), . . . , (xN , yN ), where xi are feature vectors1 and
yi ∈ {−1, 1} are binary labels denoting background or foreground, then the task
is to compute a predictive distribution p(y∗ = 1 | X ,y,x∗). Here, (x∗, y∗) is
an unseen pixel/label pair, X the set of all training pixels, and y the training
labels. To compute the predictive distribution, the GPC first estimates a dis-
tribution p(f | X ,y) over the latent variables f ∈ IRN , approximating it with
a multivariate normal distribution with mean µ and covariance matrix Σ, i.e.:
p(f | X ,y) ≈ N (f | µ, Σ). This is done using Bayes’ rule:

p(f | X ,y) = p(y | f)p(f | X )∫
p(y | f)p(f | X )df , (3.1)

where p(f | X ) = N (f | 0,K) is the prior of the latent variables, and

p(y | f) =
∏

i

p(yi | fi) (3.2)

are the likelihoods, which are conditionally independent. These likelihoods are
determined using a sigmoid function Φ, i.e. p(yi | fi) = Φ(yifi), which has
the effect that Eq. (3.1) cannot be computed in closed form. Here, Expectation
Propagation (EP) and Assumed Density Filtering (ADF) are commonly used
approximations based on a Gaussian q(yi | fi) that minimises the Kullback-
Leibler (KL) divergence between q(y | f)p(f | X ) and the numerator of Eq. (3.1).

Then, for a given new test data point x∗, the GP classifier computes the
mean µ∗ and the variance σ2

∗ of the latent variable distribution

p(f∗ | X ,y,x∗) =
∫
p(f∗ | X ,x∗, f)p(f | X ,y)df (3.3)

and uses that to compute the predictive distribution

p(y∗ = 1 | X ,y,x∗) =
∫
Φ(f∗)p(f∗ | X ,y,x∗)df∗. (3.4)

1 These can be either RGB pixel values or a combination of image coordinates and
RGB values of the pixels. In our implementation, we use the latter, because it also
provides locality information about background and foreground.
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If Φ is the cumulative Gaussian function this can be done in closed form using

p(y∗ = 1 | X ,y,x∗) = Φ

(
µ∗√
1 + σ2∗

)
. (3.5)

3.1 Information-theoretic Sparsification

One problem with the GPC is its huge demand of memory and run time, because
it maintains an N×N covariance matrix, and the number of training samples N
can be very large. Therefore, we use a sparsification known as the Informative
Vector Machine (IVM) [6]. The main idea here is to only use a sub-set of training
points denoted the active set ID, from which an approximation q of the posterior
is computed. As above, q is Gaussian, i.e. q(f | X ,y) = N (f | µ, Σ). The IVM
computes µ and Σ incrementally, i.e. in step j a new µj and Σj are computed:

µj = µj−1 +Σj−1gj (3.6)
Σj = Σj−1 −Σj−1(gjgTj − 2Γj)Σj−1 (3.7)

where
gj =

∂ logZj
∂µj−1

, Γj =
∂ logZj
∂Σj−1

, (3.8)

and Zj is the approximation to the normalizer in Eq. (3.1) using the estimate qj .
Initially, µ0 = 0, and Σ0 = K, whereK is the prior GP covariance matrix. Then,
at iteration j the training point (xk, yk) that maximizes the entropy difference
between qj−1 and qj is selected into the active set. The algorithm stops when
the active set has reached a desired size D. In our implementation, we choose D
as a fixed fraction of N .

Due to a circular dependence between ID and the kernel hyper parameters θ,
the IVM training algorithm loops a given number of times over two steps: esti-
mation of ID from θ and minimizing the marginal likelihood ZD using ∂ZD/∂θ,
thereby keeping ID fixed. Although there are no convergence guarantees, in
practice a few iterations are sufficient to find good kernel hyper-parameters.

4 Online Update of the IVM

In addition to its sparsity, the IVM differs from the standard GP also by its
ability to compute the posterior distribution p(f | X ,y) incrementally. Thus, the
algorithm loops over all active points and updates mean vector µ and covariance
matrix Σ by increasing their lengths in every iteration. In particular, it keeps the
lower triangular matrix Ld of a Cholesky decompositon in memory and updates it
using rank-1 Cholesky updates, where Ld is of size d×d and d = 1, . . . , D. Further
details of this procedure are given in Algorithm 1 of Lawrence et al.[6]. For our
purpose, this incremental scheme is particularly useful, because it avoids the
complete re-computation of the GP parameters in every training round and adds
only a fixed number of rows and columns to Ld. This decreases the training time
substantially, as we show below. For an efficient class prediction, we furthermore
propose a novel online update rule, as described next.
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4.1 Online Computation of the Class Prediction

To predict a class label y∗ for a new test data point x∗, the IVM computes the
mean µ∗ and the covariance σ∗ of the approximation to the predictive distribu-
tion given in Eq. (3.3), and uses them to obtain the class probability (Eq. (3.5)).
With the notation of Rasmussen and Williams [12], this can be expressed as

µ∗ = kT∗ (K + Σ̃)−1µ̃ (4.1)
σ∗ = k(x∗,x∗)− kT∗ (K + Σ̃)−1k∗, (4.2)

where µ̃ and Σ̃ are the site parameters of the approximate Gaussian likelihood
q(y | f), K is the prior covariance matrix, i.e. the kernel function k applied to
all pairs of training points x1, . . . ,xN , and k∗ = (k(x∗,x1), . . . , k(x∗,xN )). Note
that k∗, µ̃, and B := K+ Σ̃ are only computed for D active points with D < N .

In general, Eqs. (4.1) and (4.2) have to be computed completely anew for
every new test point x∗, and it is usually unlikely to observe the same test point
again. In active learning, this means that the complexity of making predictions
increases quadratically with the training rounds, because in every training round
the matrix B is larger due to the additional active points in the training data.
However, for interactive image segmentation, we can use the fact that class
predictions are made on the same pixels (i.e. test points) in every round. This
means that k∗,t from round t can be obtained from k∗,t−1 of the previous round
by appending the covariances k(x∗,xDt−1+1), . . . , k(x∗,xDt

) between x∗ and the
new active points, where Dt is the total number of active points in round t. This
can be used to compute µ∗,t and σ∗,t incrementally from µ∗,t−1 and σ∗,t−1. To
do this, we note that Bt is given by its Cholesky decomposition LtLTt , and

Lt :=

(
Lt−1 0
A L+

)
, (4.3)

where L+ is lower-triangular. To compute B−1t , we use

B−1t =

(
Lt−1LTt−1 Lt−1AT

ALTt−1 AAT + L+L
T
+

)−1
, (4.4)

and compute the Schur complement as

S = AAT + L+L
T
+ −ALTt−1(Lt−1LTt−1)−1Lt−1AT = L+L

T
+.

With this, we obtain

B−1t =

(
C −L−Tt−1ATS−1

−S−1AL−1t−1 S−1

)
, (4.5)

where C = (Lt−1LTt−1)
−1 + L−Tt−1A

TS−1AL−1t−1. We now formulate Eq. (4.2) as:

σ∗ = k(x∗,x∗)−
(
k∗,t−1 k∗,+

)
B−1t

(
k∗,t−1
k∗,+

)
, (4.6)
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where k∗,+ is the vector of newly added covariances in round t. Plugging Eq. (4.5)
into Eq. (4.6) we obtain for the rightmost term r of Eq (4.6):

r = k̂Tt−1k̂t−1 + k̂Tt−1A
TS−1Ak̂t−1 − 2k̂Tt−1A

TS−1k∗,+ + kT∗,+S
−1k∗,+ (4.7)

where k̂t−1 = L−1t−1k∗,t−1. It follows that the first term of r in Eq. (4.7) and the
first term in Eq. (4.6) define the predictive variance of the previous round σ∗,t−1

σ∗,t−1 = k(x∗,x∗)− k̂Tt−1k̂t−1, (4.8)

whereas the remaining terms of r can be subsumed into

(L−1+ k∗,+ − L−1+ Ak̂t−1)
T (L−1+ k∗,+ − L−1+ Ak̂t−1), (4.9)

which simplifies into
(L−1+ ∆k)T (L−1+ ∆k) (4.10)

where ∆k = k∗,+ − Ak̂t−1. This results in an efficient way to compute σ∗,t:
We store k̂t−1 from the previous round and compute ∆k and L−1+ ∆k. Then we
multiply the result with itself (Eq. (4.10)) and substract it from σ∗,t−1. Similarly,
we can compute µ∗,t from µ∗,t−1 of the previous round using the difference vector
∆µ := µ∗,+ −Aµ̂t−1, where µ̂t−1 = L−1t−1µ̃t−1. To summarize, we have

µ∗,t = µ∗,t−1 + (L−1+ ∆µ)T (L−1+ ∆k) (4.11)

σ∗,t = σ∗,t−1 − (L−1+ ∆k)T (L−1+ ∆k). (4.12)

4.2 The Kernel Hyper-Parameters

As mentioned before, finding optimal hyper parameters for the kernel function
involves several iterations over active set determination and gradient-descent on
the marginal likelihood. However, doing this in every training round has several
disadvantages: first, it requires a large computational effort, and second it makes
the formulation of the online computation developed in the previous section in-
valid. The reason for the latter is that the online formulation relies on the fact
that the active set does not change across the learning rounds, because other-
wise k∗ would have to be recomputed completely in every round. Fortunately, it
turns out that the kernel hyper parameters do not change significantly across the
training rounds, and, even when they do change, they only have a minor impact
on the classification results of the GPC. This is another strength of the GPC
framework, because essentially it represents a non-parametric model. In our im-
plementation, we obtain the kernel hyper-parameters using cross-validation on a
hold-out set. Compared to the usual gradient-descent based maximization of the
log marginal, this has the advantage that the kernel parameters are optimized
across a number of images, and not for each individual image. Especially, as we
use locality and color features in combination with an Automatic Relevance De-
termination (ARD) kernel, the obtained length scales represent a general weight-
ing between position and color. This turned out to achieve much better results
than a per-image training of the ARD kernel parameters.
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5 Segmentation

The class predictions from the IVM are only local estimates, and they disre-
gard global properties of the image I. Therefore, we formulate the segmentation
problem on the image domain Ω ⊂ IR2 as finding a foreground region Ω̂F so that

Ω̂F =argmin
ΩF

λ

∫

ΩF

− log p(y∗ = 1 | X ,y,x∗) dx

+ λ

∫

Ω\ΩF

− log p(y∗ = −1 | X ,y,x∗) dx+ Perα(ΩF ), (5.1)

where Perα is the perimeter of ΩF , weighted by a local metric α(x) = e−γ|∇I|

that depends on the image gradient, and λ is the weight of the dataterm. This
functional favours spatial regularity by penalizing the boundary length of the
foreground region. First, we define an indicator function u(x) that is 1 for x ∈ ΩF
and 0 otherwise. Then, the segmentation problem can be written in a variational
formulation:

min
u∈[0,1]

∫

Ω

%(x)u(x) dx+
1

λ

∫

Ω

α(x)|∇u(x)| dx, (5.2)

where the first term encodes the cost of a pixel to belong to the foreground and
%(x) = log p (u (x) = 0) − log p (u (x) = 1) . The second term of Eq. (5.2) is the
total variation (TV) of the indicator function u which penalizes the perimeter of
the foreground region. Since the TV is not differentiable everywhere, we rewrite
Eq. (5.2) as a saddle point problem:

min
u∈[0,1]

max
|v|≤α(x)

∫

Ω

%(x)u(x) +

∫

Ω

u(x) div v(x). (5.3)

This can be efficiently minimized using a first-order primal-dual method [11].

6 Experimental Results

We evaluate our active learning approach on the benchmark data set from the
University of Graz [14]. It consists of images with ground truth segmentations
and user scribbles. As our method applies for foreground and background seg-
mentation we chose a subset of 44 images from the dataset which contain only
two object classes. As performance measure for this benchmark we use the f1
measure, which is defined as the harmonic mean of precision and recall.

6.1 Benefits of the GP classifier

We compare our approach with the method of Nieuwenhuis and Cremers [8].
There, the data term is computed using a Parzen window (PW) estimator, and
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Fig. 3: (a) Average f-measure over 8 active learning rounds. The GPC steadily
improves the segmentation, because its label queries are more informative for
classification. In contrast, the Parzen window only improves slighty and then
remains at a lower performance level. We also show GPC results where new user
scribbles are chosen randomly and not based on the entropy. This also improves
the segmentation, as it increases the training data, but it is worse than the
entropy-based method. (b) Run time of online and offline inference, averaged
over all images. Note that in batch 0, the online and the offline method take the
same time, because they both build up the initial covariance matrix. However,
in later steps the online computation time drops down significantly.

the training data consists of color information and positions of user scribbles.
We use the same idea, but employ a GPC instead of the PW. Our benefit is
the ability to detect misclassifications using the predictive uncertainty, which is
more strongly correlated to incorrect classifications than for the PW. As a result,
in active learning the GPC generates more informed questions (see Fig. 1). For
a quantitative evaluation, we ran active learning with the GPC and the PW on
the Graz data set (Fig. 3a). Both approaches perform equally well in the first
rounds, but then the GPC (red curve) outperforms the PW (blue curve), because
it asks more informed label queries, while the PW tends to be overconfident. We
also show the results for randomly selected scribbles (magenta curve) instead of
those with the highest uncertainty. We see that random sampling also improves
the classification, as it provides more training data in every round, but the
improvement is smaller compared to selecting the most uncertain segments. This
is because the GP requests the more informative user scribbles.

Some results from the Graz data set are shown in Fig. 4. The left column
shows the images with the inital user scribbles. Columns two and three show
the uncertainties of the GPC (brighter is more uncertain) and the segmenta-
tion after the first learning round. The general segmentation is good, but small
miclassifications occur. However, these often correspond to locations of high un-
certainty, e.g. the lower right corner of the helicopter image or the third peg on
the wardrobe: here the classification is incorrect, but the uncertainty is also high.
This enables the classifier to correct the error in subsequent training rounds.
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Fig. 4: Examples from the Graz benchmark. First column: original images with
initial user scribbles. Second column: classification uncertainties after the first
learning round. Third column: resulting segmentation after the first round.
Note how the algorithm misclassifies some small areas, but the classification in
those same areas is often very uncertain (see, e.g., the third peg on the wardrobe).
Thus, the errors can be corrected by querying more useful, i.e. informative user
scribbles. Last column: final results, obtained after a few further active learning
rounds (between 1 and 5). Here, a high-quality segmentation is obtained.

6.2 Advantage of the Online Inference Algorithm

As mentioned in Sec. 4.1, we use a very efficient online class prediction step. Note
that this is different from an online training step: while the latter is inherently
provided by the IVM approach, the former is a novel contribution. In Fig. 3b,
we show its benefit over the standard offline technique in every active learning
round. Observe that for all but the first learning round the average run time
drops from the order of minutes to the order of seconds. Also note that the
increase in run time over the learning rounds is super-linear in the offline case,
where for the online method it is roughly linear. In the first round, the online
and the offline method perform the same steps, because every pixel is compared
to all training points. Currently, we compute this in parallel on 8 CPU threads,
but we expect a substantial speed-up when using a GPU implementation.

7 Conclusions

We present an efficient active learning approach and show its application to inter-
active segmentation. Our method learns models for background and foreground
adaptively by informed questions based on the classification uncertainty and uses
a regularizer that favors regions with smooth contours. To make the classification
process efficient, we use an online update method that incrementally estimates
the class posteriors. This reduces computation time substantially, without re-
ducing the high segmentation performance of the active learning method.
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Abstract. In this paper, we propose a method to combine unsuper-
vised and semi-supervised learning (SSL) into a system that is able to
adaptively learn objects in a given environment with very little user in-
teraction. The main idea of our approach is that clustering methods can
help to reduce the number of required label queries from user interac-
tion, and at the same time provide the potential to select useful data
to learn from. In contrast to standard methods, we train our classifier
only on data from the actual environment and only if the clustering gives
enough evidence that the data is relevant. We apply our method to the
problem of object detection in indoor environments, for which we use a
region-of-interest detector before learning. In experiments we show that
our adaptive SSL method can outperform the standard non-adaptive
supervised approach on an indoor office data set.

Keywords: Semi-supervised learning, active learning

1 Introduction

Current machine perception systems often rely on their capabilities to automat-
ically learn a mapping from the set of potential observations to a set of semantic
annotations, for example class labels from a natural language. The biggest chal-
lenges for the employed learning algorithms are the large amount of labelled data
they usually require, and their potential to adapt to new, unseen environments
and situations. In many applications, and particularly in mobile robotics, this
adaptability is an important requirement, because it is impossible to anticipate
all situations that the robot might encounter before deployment. Therefore, we
investigate learning mechanisms that are capable of adapting to new observa-
tions by updating their internal representation as new information arrives. This
implies that the learning step is performed during operation of the system and
not beforehand, and that the data used for training is acquired online. However,
the main question is: what are good data to train on? A good answer to this
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question directly leads to a shorter training time and in a reduced amount of
required human data annotations.

In this paper, we address this question using a simple, but effective idea:
Before asking the human supervisor for a semantic label, we group the observed
data into clusters using unsupervised learning. Then, our algorithm queries one
common label for each cluster from the supervisor and uses the so obtained
training data in a semi-supervised learning step. This approach has two major
advantages: first, it further reduces the amount of human intervention signifi-
cantly by asking labels for multiple instances at the same time. And second, it
gives us the potential to pre-select interesting data to train on, for example by
asking labels only for clusters that are significantly represented. We apply our
method to the problem of object detection in indoor office environments, and we
show in experiments that this adaptive way of learning can outperform the stan-
dard approach, where a purely supervised classifier is learned before observing
the actual test data.

2 Related Work

Our work is mostly related to the area of semi-supervised learning (SSL) and
transductive learning methods, which have become very popular in the last
decade. A good overview of this field is given by Zhu [1,2], who also proposed
a graph-based SSL method named Label Propagation. Other methods include
the sparse Gaussian Process classifier with null category noise model [3], semi-
supervised boosting [4] and the transductive Support Vector Machine (tSVM)
[5]. In our work, we also use unsupervised learning as in [6] and combine it with
a tSVM to reduce the required interaction with the human supervisor even fur-
ther. Example applications of SSL in computer vision include image classification
from labelled and unlabelled, but tagged images [7], object recognition [8], and
video segmentation [9].

Furthermore, our work is also related to the area of active learning, because
it involves a user interaction step, for which queries for class labels are actively
generated. A good overview on the active learning literature is given by Settles
[10]. One interesting example of active learning is the work of Kapoor et al.
[11] on object categorization using a GP classifier (GPC), where data points
possessing large uncertainty (using posterior mean and variance) are queried for
labels and used to improve the classification. Triebel et al. [12] use active learning
for semantic mapping where a sparse GP classifier actively learns to distinguish
traffic lights from background. In contrast to classical active learning methods,
our approach chooses the data to be asked for labelling based on a relevance
criterion rather than, e.g. based on the entropy of the underlying classifier.

3 Combined Unsupervised and Semi-Supervised Learning

Fig. 1 gives an overview of our proposed semi-supervised learning method. We
start with a sequence of input images and determine first an appropriate set of
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Fig. 1. Flow chart of our proposed system. From a sequence of images, regions of
interest are detected using super pixel segmentation and by comparing the segments
based on SIFT features. Then the resulting patches are clustered. From each cluster, a
subset of patches is used to query object labels from a human supervisor. The resulting
hand-labelled data together with some unlabelled samples is then used to train a semi-
supervised classifier.

rectangular regions of interest named patches. From these patches, we extract
SIFT features (“Scale-invariant feature transform”, [13]) and use them to define
a similarity measure between patches. Based on these similarities, we cluster the
patches using spectral clustering. Then, we select a subset of appropriate patches
from each cluster and query object labels from a human supervisor as described
below. The resulting labelled patches, together with the remaining unlabelled
ones are then passed into a multi-class transductive SVM, which then returns
predicted labels for the unlabelled patches. In the following sections we describe
each step in more detail and give motivations for our algorithm design.

3.1 Region of Interest Detection

Object detection for a given image of a scene is much harder than pure object
recognition, because it is not even known to the algorithm if the object to be
recognized exists in the scene and where it is. The common approach to this
problem is to determine small sub-windows within the image which potentially
contain the object(s) to be classified. In the simplest case, these so-called regions
of interest (ROI) are obtained using a sliding-window approach. However, to re-
duce the number of potential ROIs, we use a different method: Given an image
sequence, we first compute a superpixel segmentation for each image based on
the SLIC algorithm [14]. Then, we compute the bounding box for each segment in
every image. For each such resulting candidate patch, we extract SIFT features
[13] and compare the patches across the image sequence using a similarity mea-
sure s. The motivation for the choice of SIFT descriptor is their high expressive
power and their ability to find good matches even under changes of illumination,
orientation and scale. In our application, object instances do not vary much in
color or texture, which is an ideal condition for the SIFT descriptor. Of course,
in a more general setting, where the appearance between the objects of a class
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Fig. 2. Example result of our ROI detector. From left to right: 1. Original image 2.
SLIC superpixels with boundaries in red, 3. Bounding boxes of the super pixels, 4.
Detected ROIs after threshold.

may vary more, other descriptors, for example based on the geometry may be
more appropriate.

To compute the similarity measure s, we first define a distance function d
between two patches A and B as:

d(A,B) =
1

n

n∑

i=1

‖x̃i − ỹi‖2 , (1)

where n is the number of matches found by the SIFT algorithm and i iterates over
all these matches. The vectors x̃i and ỹi denote the 128-dimensional descriptor
values computed at the key points found by the SIFT method in patches A and
B, respectively. From this distance measure, we define the similarity s between
two patches as:

s(A,B) = 1− d(A,B)

max
A′,B′

d(A′, B′)
, (2)

thus, s gives values between 0 and 1, where 1 corresponds to maximal similar-
ity. To find patches that contain potentially interesting objects, we compute a
similarity score p for patch A as follows:

p(A) =
∑

B 6=A

s(A,B), (3)

i.e. the score is defined by the sum of similarities to all other patches. The intu-
ition here is that patches that are very similar to many others more likely contain
objects of interest, because they give evidence that there are many instances of
the same object class. Note that our formulation implicitly deals with the prob-
lem that background patches containing walls, the floor, etc., despite occurring
very often will not give a high score, because their appearance is usually much
more uniform, which means that much less SIFT key points are detected on
them.

Using these score values, an ROI is then detected as the patches A for which
p(A) exceeds the average score over an entire image. This simple statistical
method finds patches that stick out in terms of their similarities and has the
advantage that it does not require to introduce a threshold parameter. In our
experiments, this gave good results (see Fig. 2 for an example sequence of our
detector), but of course other methods could be used here.
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3.2 Clustering of Patches

The main contribution of our work is the idea of using unsupervised learning
before employing a semi-supervised method for classification. The motivation
of this approach is two-fold: first, the number of required user interactions, i.e.
label queries, is further reduced compared to standard semi-supervised learning,
because we query only one common label for an entire group (cluster) of data
instances. And second, the clustering step gives us the opportunity to pre-select
interesting data to train on, because typically some clusters can be easily iden-
tified as more relevant for the learning task based on simple characteristics such
as cluster size or similarities of elements within a cluster. The intuition here
is that only those data instances should be learned by the classifier, for which
there is enough evidence that they correspond to a meaningful object class. For
example, in an office environment, usually there are many instances of classes
like telephone, chair or monitor, and the mere fact that there are many very
similar instances makes them highly relevant, for example for a mobile robotic
system operating in the environment. In contrast, in a home environment, there
might be other types of relevant objects, and our approach particularly aims at
finding such relevant classes adaptively.

To perform the clustering step, we use the same SIFT descriptors computed
earlier for each patch and rely on the same similarity measure s to cluster the
patches. We ran experiments with two different standard clustering methods:
k-means clustering and spectral clustering. Both methods have been used very
successfully in many different kinds of applications, and we found that the dif-
ference in performance is not very substantial. We evaluated both methods on
our data using the V-measure [15], which is defined as the harmonic mean of
homogeneity and completeness of the clustering algorithm. In these experiments,
the spectral clustering was slightly better, and it has the further advantage that
it does not necessarily require the number of clusters specified as a parameter.
The reason is that it is based on the eigen decomposition of the graph Laplacian
of the data, and that a method called the eigen gap heuristic can be used to
determine a good value for the number of clusters. For more details on spectral
clustering, we refer to the work of Luxburg [16].

3.3 Querying Object Labels

The next step in our proposed method is to receive class label information from
a human supervisor for the patches that have been clustered beforehand. To
perform this label query, some important considerations need to be taken into
account: On one side, the algorithm should ask the user as few times as possible
to give a label input, because this is one of the main motivations of this work.
Thus, we want to ask only once for each cluster. On the other side, we need to
make sure that the data we provide as training samples to the semi-supervised
learning method is as pure as possible, i.e. ideally there should be no instances
of different objects labelled by the human with the same label. Unfortunately,
no clustering algorithm can guarantee complete purity, neglecting of course the
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trivial clustering that assigns every data point to its own cluster. Therefore, we
propose to use a quality measure q for all patches within a cluster, which is based
on the similarities s computed earlier. Concretely, for every patch A of a given
cluster C, we compute q as the sum of similarities within the cluster :

q(A) =
∑

B∈C
s(A,B). (4)

Note that this is different from the scores computed in Eq. (3), because here, our
goal is to find the best cluster representatives. After computing the q-values, we
sort all elements within a cluster in descending order of q and ask one common
label from the user for the first m such elements of each cluster. This policy
gives a good trade-off between the two opposing objectives of generating few
label queries and providing pure training data. Of course, this method does not
guarantee that there are no instances of different object classes that receive the
same label from the supervisor. However, from our experience, the number of
cases where queried data points are inconsistent can be reduced substantially
using this method.

To illustrate this step, Fig. 3 shows an example result of the clustering step,
where each row corresponds to a different cluster and only the first 3 elements
according to the quality measure q are shown. As we can see, in two out of
four cases the first three cluster elements only contain objects of the same class,
and in the other two cases the mistakes made by the algorithm are completely
comprehensible. We also note that the clustering result yields more clusters than
there are actual classes, i.e. we have an over-clustering. This is only a problem in
the sense that it requires the user to give more class labels than actually needed,
but this effect was only minor in our experiments.

3.4 Training a Classifier

As a final step in our approach, we use the labelled data obtained from the
previous step to learn a classifier for the objects discovered in the environment.
Here, we considered three different strategies. First, we investigated the use of
a standard supervised learning method using a linear Support Vector Machine
(SVM). Then, we evaluated two semi-supervised learning techniques, where the
first was a simple nearest neighbour rule, i.e. each unlabelled sample was assigned
the label of the closest labelled sample according to our similarity measure. And
finally, we used a transductive SVM [5] with an RBF kernel. Thus, in addition
to the labelled training set D of size l, the algorithm is also given an unlabelled
set D? = {x?

i ∈ Rp}ki=1 of test examples to be classified. Formally, a transductive
SVM is defined by the following primal optimization problem:

Find (y?
1, y?

2, . . . , y?
n, w, b) so that

min
1

2
‖w‖2

subject to yi[w · xi − b] ≥ 1, y?j [w · x?
j − b] ≥ 1, (5)

y?j ∈ {−1, 1} ∀i = 1, . . . l, ∀j = 1, . . . , k
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Fig. 3. Examples of clusters obtained from the clustering algorithm (every row cor-
responds to a different cluster). For each cluster, we show the first three elements
according to the quality measure defined in (4).

where (xi,yi) are the training examples, y?
i are the predicted labels for the

unlabelled test example and w is the weight vector. This means, that the trans-
ductive SVM learns from both the labelled and the unlabelled examples, and it
returns label predictions for the unlabelled ones. In that sense, the training and
the inference step are contained within the same common procedure.

From these three methods the worst in our experiments was the standard
supervised SVM, and we did not consider this further. The highest classification
performance was obtained with the transductive SVM, and we give more details
in the experimental section. As feature vectors for training, we compute for
every patch the Hierarchical Matching Pursuit (HMP) descriptor introduced
by Bo et al. [17]. The HMP features are calculated in a multi-layer process
where each layer is computed on a different scale, containing the same three
steps: Matching Pursuit, Pyramid Max Pooling and Contrast Normalization.
The key element in this process is the Matching Pursuit step, which is based
on a sparse coding algorithm known as K-SVD. Given a set of h-dimensional
observations Y = [y1, ..., yn] ∈ Rh×n (image patches in our case), K-SVD learns
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a dictionary D = [d1, ..., dn] ∈ Rh×m, and an associate sparse code matrix
X = [x1, ..., xn] ∈ Rm×n by minimizing the following reconstruction error,

min
xi

‖yi −Dxi‖2 s.t. ‖xi‖0 ≤ K, (6)

where xi are the columns of X, the zero-norm ‖xi‖0 counts the non-zero entries
in the sparse code xi, and K is the sparsity level, which bounds the number of
the non-zero entries. The Matching Pursuit step finds an approximate solution
to the optimization problem mentioned above using a greedy approach. Pyramid
Max Pooling is a non-linear operator that generates higher level representations
from sparse codes of local patches which are spatially close. And Contrast Nor-
malization turns out to be essential for good recognition performance, since the
magnitude of sparse codes varies over a wide range due to local variations in
illumination and foreground-background contrast. Bo et al. [17] used a linear
SVM in combination with HMP features and reported very good classification
results. We verified these results using data from the Caltech 101 benchmark,
and we show them in the results section. From this, we conclude that HMP
features exhibit a high amount of expressiveness, because they give very good
classification results for a comparably simple classifier such as the linear SVM.

In practice, the use of HMP features consists of two phases: one where the
dictionaries are learned from some given training data, and one where feature
vectors are computed for new test data based on the sparse codes with respect
to the learned dictionaries. While the first phase can require huge computation
time, as it usually uses a large training data set, the online phase is comparably
fast, as it only requires the computation of a sparse representation for a given
dictionary. We note however, that the dictionary learning step is completely
unsupervised, as it does not require any human-labelled data.

4 Experiments and Results

To measure the performance of our approach, we performed several experiments.
First, we evaluated our method to detect regions of interest. Then, we evaluated
two different semi-supervised learning methods on a benchmark and on our own
data. And finally, we verified experimentally the benefits of using our adaptive,
semi-supervised learning method over a standard non-adaptive supervised strat-
egy. More details about all experiments are given in the following.

4.1 Evaluating the ROI Detector

As mentioned above, our ROI detector finds patches that occur often with high
similarity across images. Therefore, to assess this method quantitatively, we first
created ground truth data for the objects that occurred most frequently in our
data. Concretely, we labelled those ROIs as correct detections, which contained
chairs, monitors or telephones. Results on 7 different images in terms of precision
and recall are given in table 1. We see that our detector tends to find more
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Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7

Actual ROIs 2 3 2 1 1 2 2

Predicted ROIs 4 4 2 3 3 4 4

Recall 1 0.67 1 1 1 1 1

Precision 0.5 0.5 1 0.33 0.33 0.5 0.5

Table 1. Evaluation of the ROI detector on 7 input images. While the precision is
comparably low, recall is good, which is the main purpose of this step.

ROIs than there actually are, and the recall is much better than the precision.
However, for ROI detection we are actually more interested in recall than in
precision, because missing a candidate for classification is worse than reporting
a background patch as a ROI, as the latter can be handled by the classifier.

For a qualitative evaluation, we show an example result of the ROI detector
in Fig. 4. As we can see here, the detector found the two regions of actual interest,
i.e. the chair and the monitor, and it only returned one false positive.

4.2 Comparison of Adaptive Semi-Supervised Learning and
Standard Supervised Learning

To measure the performance of our adaptive semi-supervised learning method,
we ran experiments on a subset of the standard benchmark data set Caltech
101, and on our own data. The subset consisted of 10 classes (see Fig. 5), for the
Caltech 101 and 3 classes for our data. For both experiments, we used dictionar-
ies for the HMP features that were learned from 10 images per class from the
benchmark set. For the Caltech 101 we did not employ the ROI detector, be-
cause these images already contain one major object and not much background.
Thus, we only clustered the data, computed HMP features for each image and
trained a semi-supervised learner on a mixture of labeled and unlabeled images,
where the labels were obtained from querying the best 3 representatives of each
cluster. The results for the k-nn method and the transductive SVM with RBF
kernel are given in the left column of Table 2. As we can see, the transductive
SVM performs much better than the k-nn approach, and the final accuracy is

Fig. 4. Example result of our ROI detector. The ground-truth ROIs are shown on the
left and the predicted ROIs on the right.
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Fig. 5. Examples from each of the 10 classes in the Caltech 101 data set which were
used for the experiments.

comparably high, given that only very few data samples used for training were
actually labeled.

The same conclusion we can draw for our indoor office data set (see right
column of Table 2). Here, we used 25 ROIs for evaluation, consisting of 6 chairs,
13 monitors and 6 telephones. Again, the transductive SVM performs better than
the naive k-nn approach. Also, it is interesting to see that supervised learning
works well when trained and tested on the same kind of data, but when tested
on data from a different environment, it may fail as in our example. To overcome
such problems our adaptive SSL method seems to be an appropriate approach.

Note that our adaptive TSVM approach gives somewhat worse results than
the standard SVM method on Caltech101. This is because the clustering step for
this data set had to be done using the HMP features and not SIFT, as for our
own data: the appearances of the objects in Caltech 101 are simply too diverse
to compare them using SIFT. However, we experienced that spectral clustering
works worse on HMP features, which means that for Caltech 101 the training
data provided to TSVM was of less quality than if we had chosen standard
supervised learning. For our evaluation, this is however of little importance, as
our method anyhow aims at adapting to a given environment with no previously
labelled data where objects of the same class are not very diverse. An application
of our method to an environment-independent, pre-labelled data set such as
Caltech101 is therefore not very meaningful.

4.3 Number of Generated Label Queries

In another experiment, we investigated the correspondence of the number of
label queries made by the algorithm and the classification accuracy. There are
two parameters that can be set: the number of clusters c and the number m of
patches per cluster, which receive a label after the query (see above). On one
side, we want to have few clusters, i.e. c should be low. However, if there are
more clusters, then the clusters are smaller and therefore purer, i.e. there are
more elements that agree on the true class label. Purer clusters means that we
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Learning method Caltech 101 Our data

standard SVM 95.25% 52.00%

adaptive k-nn SSL 55.86% 58.00%

adaptive TSVM 81.43% 88.00%

Table 2. Classification accuracy of standard SVM learning and adaptive SSL methods
on different data sets. The standard SVM was trained on a subset of Caltech 101 in
both cases. Thus, while standard supervised learning gives good results when training
and test data are similar, it can perform badly when they are dissimilar. However, our
adaptive SSL performs much better, because it queries the relevant class labels from
the data before learning the classifier. From the two considered methods, transductive
SVMs perform better than the k-nearest neighbour method.

can increase m, without assigning wrong labels to patches, thus we obtain better
training data. This relationship is shown in Fig. 6. If the number of clusters is
small, we get the best accuracy for m = 1. But for more clusters, m = 2 is better,
because by assigning the same label to the first m elements of each cluster, we
get fewer wrong labels. In general we found that having less labels for training
is better than having more, but wrong labels.

Fig. 6. Accuracy vs. number of clusters and number m (m = 1, 2, 3) of patches receiving
a label from the query. More clusters lead to a higher cluster purity. Then, higher values
of m are more effective, because the tSVM receives better training data.

5 Discussion and Conclusions

Our proposed approach for adaptive semi-supervised learning for object detec-
tion in indoor environments has two major advantages over standard super-
vised learning methods: first, it is able to select informative data to learn from
and to adapt to a given environment by only querying labels for currently ob-
served, situation-relevant data and using them to train a classifier. And second,
it reduces the number of required user interactions by making more informed
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questions about the data based on a pre-clustering step. Our experiments show
that the proposed approach can outperform standard non-adaptive supervised
learning when applied to environment-dependent data.
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