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Abstract

Graph matching aims to establish correspondences between
vertices of graphs such that both the node and edge attributes
agree. Various learning-based methods were recently pro-
posed for finding correspondences between image key points
based on deep graph matching formulations. While these ap-
proaches mainly focus on learning node and edge attributes,
they completely ignore the 3D geometry of the underlying 3D
objects depicted in the 2D images. We fill this gap by propos-
ing a trainable framework that takes advantage of graph neu-
ral networks for learning a deformable 3D geometry model
from inhomogeneous image collections, i.e., a set of images
that depict different instances of objects from the same cat-
egory. Experimentally, we demonstrate that our method out-
performs recent learning-based approaches for graph match-
ing considering both accuracy and cycle-consistency error,
while we in addition obtain the underlying 3D geometry of
the objects depicted in the 2D images.

Introduction

Graph matching is a widely studied problem in computer
vision, graphics and machine learning due to its universal
nature and the broad range of applications. Intuitively, the
objective of graph matching is to establish correspondences
between the nodes of two given weighted graphs, so that the
weights of corresponding edges agree as well as possible.
Diverse visual tasks fit into the graph matching framework.
In this work we focus in particular on the task of matching
2D key points defined in images, which has a high relevance
for 3D reconstruction, tracking, deformation model learn-
ing, and many more. In this case, a graph is constructed for
each image by using the key points as graph nodes, and by
connecting neighbouring key points with edges, according
to some suitable neighbourhood criterion. The edges contain
information about geometric relations, such as the Euclidean
distance between nodes in the simplest case.

Image key point matching was traditionally addressed
based on finding nearest neighbours between feature de-
scriptors such as SIFT (Lowe 2004), SURF (Bay et al.
2008). A downside to this approach is that the geomet-
ric relation between the key points are completely ignored,
which is in particular problematic if there are repetitive
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structures that lead to similar feature descriptors. Instead,
we can use a graph matching formulation to establish cor-
respondences between key points while taking into account
geometric relations between points. Yet, the sequential na-
ture of first computing features and then bringing them
into correspondence may lead to sub-optimal results, since
both tasks are solved independently from each other — de-
spite their mutual dependence. More recently, several deep
learning-based graph matching methods have been proposed
that learn task-specific optimal features while simultane-
ously solving graph matching in an end-to-end manner (Zan-
fir and Sminchisescu 2018; Wang, Yan, and Yang 2019a;
Wang et al. 2020b; Rolinek et al. 2020). While such deep
graph matching approaches lead to state-of-the-art results in
terms of the matching accuracy, they have profound disad-
vantages, particularly in the context of 2D key point match-
ing in image collections. On the one hand, most existing
approaches only consider the matching of pairs of images,
rather than the entire collection. This has the negative side-
effect that so-obtained matchings are generally not cycle-
consistent. To circumvent this, there are approaches that use
a post-processing procedure (Wang, Yan, and Yang 2019b)
to establish cycle consistency based on permutation syn-
chronisation (Pachauri, Kondor, and Singh 2013; Bernard
et al. 2018). Yet, they do not directly obtain cycle-consistent
matchings but rather achieve it based on post-processing. On
the other hand, and perhaps more importantly, approaches
that use graph matching for 2D image key point matching
have the strong disadvantage that the underlying 3D struc-
ture of the objects whose 2D projections are depicted in the
images is not adequately considered. In particular, the spa-
tial relations in the 2D image plane are highly dependent on
the 3D geometric structure of the object, as well as on the
camera parameters. Hence, learning graph features directly
based on the image appearance and/or 2D image coordinates
is sub-optimal, at best, since the neural network implicitly
needs to learn the difficult task of reasoning about the un-
derlying 3D structure.

In this work we address these issues by proposing a deep
multi-graph matching approach that learns the 3D structure
of objects. The main contributions are as follows:

* For the first time we propose a solution for jointly consid-
ering multi-graph matching and inferring 3D geometry
from inhomogeneous 2D image collections, see Fig. 1.
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Figure 1: We consider a deep graph matching approach for bringing 2D image key points into correspondence. Left: Existing
deep graph matching methods completely ignore the underlying 3D geometry of the 3D objects depicted in the 2D images. In
addition, they lead to cycle errors, as shown by the red line. Middle: Our method obtains the underlying 3D geometry from a
collection of inhomogeneous 2D images (indicated by the coloured points and the bike sketch in the centre), while at the same
time guaranteeing cycle consistency. Right: To model nonlinear 3D object deformations, we infer coarse 3D geometry and in
addition use a 3D deformation module to refine the underlying 3D geometry based on the 2D image key point observations.

* To effectively deal with the inhomogeneity of the image
collection, in which different instances of objects of the
same category are present (e.g. different types of bikes
as shown in Fig. 1), we introduce a novel deformable 3D
model that we directly learn from the image collection
based on a graph neural network.

 Rather than performing pairwise image-to-image match-
ing, we consider an image-to-deformable-3D-model
matching formulation to guarantee cycle consistency.

e Qur approach substantially outperforms the previous
state of the art in learning-based graph matching ap-
proaches considering accuracy and cycle error.

Related Work

In the following we summarise the works that we consider
most relevant to our approach. For a more detailed back-
ground on image key point matching we refer interested
readers to the recent survey paper by Ma et al. (2021).

Feature-Based Matching. Feature descriptors extracted
from images at key point locations, e.g. based on
SIFT (Lowe 2004), SURF (Bay et al. 2008), or deep neu-
ral networks (Krizhevsky, Sutskever, and Hinton 2012), are
often used for image matching. In order to bring extracted
features into correspondence, commonly a nearest neigh-
bour strategy (Bentley 1975) or a linear assignment prob-
lem (LAP) formulation are used (Burkard, Dell’ Amico, and
Martello 2012). However, these methods suffer from the
problem that geometric relations between the key points in
the images are not taken into account.

Graph Matching and Geometric Consistency. Geomet-
ric relations can be taken into account by modelling feature
matching as graph matching problem. Here, the image key
points represent the graph nodes, and the edges in the graph
encode geometric relations between key points (e.g. spatial
distances). Mathematically, graph matching can be phrased
in terms of the quadratic assignment problem (Lawler 1963;
Pardalos, Rendl, and Wolkowitz 1994; Loiola et al. 2007,
Burkard, Dell’ Amico, and Martello 2012). There are many

existing works for addressing the graph matching problem
in visual computing, including Cour, Srinivasan, and Shi
(2006); Zhou and De la Torre (2016); Swoboda et al. (2017);
Dym, Maron, and Lipman (2017); Bernard, Theobalt, and
Moeller (2018); Swoboda et al. (2017). A drawback of these
approaches is that they mostly rely on handcrafted graph
attributes and/or respective graph matching cost functions
based on affinity scores. In Zhang et al. (2013), a learning-
based approach that directly obtains affinity scores from
data was introduced. The differentiation of the power iter-
ation method has been considered in a deep graph match-
ing approach (Zanfir and Sminchisescu 2018). A more
general blackbox differentiation approach was introduced
by Rolinek et al. (2020). Various other deep learning ap-
proaches have been proposed for graph matching (Li et al.
2019; Fey et al. 2020), and some approaches also address
image key point matching (Wang, Yan, and Yang 2019a;
Zhang and Lee 2019; Wang et al. 2020b). In this case, op-
timal graph features are directly learned from the image
appearance and/or 2D image coordinates, while simultane-
ously solving graph matching in an end-to-end manner. Al-
though these methods consider geometric consistency, they
are tailored towards matching a pair of graphs and thus lead
to cycle-inconsistent matchings when pairwise matchings of
more than two graphs are computed.

Synchronisation and  Multi-Matching.  Cycle-
consistency is often obtained as a post-processing step
after obtaining pairwise matchings. The procedure to
establish cycle consistency in the set of pairwise matchings
is commonly referred to as permutation synchronisa-
tion (Pachauri, Kondor, and Singh 2013; Zhou, Zhu, and
Daniilidis 2015; Maset, Arrigoni, and Fusiello 2017;
Bernard et al. 2018; Birdal and Simsekli 2019; Bernard,
Cremers, and Thunberg 2021). There are also methods for
directly obtaining cycle-consistent multi-matchings (Tron
et al. 2017; Wang, Zhou, and Daniilidis 2018; Bernard
et al. 2019). Recently, permutation synchronisation has
been considered in a deep graph matching framework,



where a separate permutation synchronisation module is
utilised to generalise a two-graph matching approach to the
matching of multiple graphs (Wang, Yan, and Yang 2019b).
However, when applying such multi-matching approaches
to image key point matching they have the significant
shortcoming that they ignore the underlying 3D geometry of
the 2D points. This makes it extremely difficult to establish
correct matchings across images, which after all depict 2D
projections of 3D objects in different poses, possibly even
under varying perspective projections. This also applies to
the recent method by Wang, Yan, and Yang (2020), which
simultaneously considers graph matching and clustering.

3D Reconstruction. 3D reconstruction obtains geomet-
ric information from 2D data. When relying on single-view
input only, it is generally an ill-posed problem. Reconstruc-
tion from a single image or video using a deformable 3D
prior has for example been achieved by fitting a 3D mor-
phable model of a specific object class such as humans bod-
ies, faces, or cars, and then finding the parameters of the
model that best explain the image (Tewari et al. 2017; Bogo
et al. 2016; Wang et al. 2020a). However, the availability of
a suitable 3D prior is a rather strong assumption.

An alternative to address the ill-posedness of single-view
reconstruction is to consider multiple views. Recent meth-
ods for multi-view reconstruction assume camera parame-
ters and use self-supervised learning based on a neural ren-
derer to reconstruct static and dynamic objects with novel
3D representations (Mildenhall et al. 2020; Park et al. 2020).
A downside of multi-view reconstruction methods is that
they require many different images of the same object,
which is often unavailable in existing datasets.

Contrary to existing approaches, we simultaneously solve
deep multi-graph matching and infer sparse 3D geometry
from inhomogeneous 2D image collections. Our approach
obtains cycle-consistent multi-matchings and does not rely
on a hand-crafted template or any other prior 3D model.

Problem Formulation & Preliminaries

In this section we summarise how to achieve cycle-
consistency for multiple graph matching by utilising the no-
tion of universe points. In order to explicitly construct such
universe points, we consider the sparse reconstruction of 3D
key points from multiple 2D images.

Multi-Matching and Cycle Consistency. Given is the
set {G; }évzl of N undirected graphs, where each graph
G; = (V;,&;) comprises of a total of m; nodes V; =
{v1,...,0m, } and n; edges & = {e1,...,e,,} that con-
nect pairs of nodes in V;. We assume that each node repre-
sents an image key point, and that the node v; € R? is identi-
fied with the respective 2D image coordinates. The pairwise
graph matching problem is to find a node correspondence
Xk € Pujm, between G; and Gy.. Here, Py, is the set
of (m; xmy,)-dimensional partial permutation matrices.

Let X = {Xjx € Ppyym, } 1oy be the set of pairwise
matchings between all graphs in {G; }é\le X is said to be
cycle-consistent if for all j, k,l € {1,..., N}, the following
properties hold (Huang and Guibas 2013; Tron et al. 2017,
Bernard et al. 2018):

1. Xj;; = Ly, with the m; xm; identity matrix I, .

2. Xji = Xij.

3. XXk < X (element-wise comparison).

When solving multi-graph matchings with pairwise match-
ing, cycle consistency is desirable since it is an intrinsic
property of the (typically unknown) ground truth matching.
Rather then explicitly imposing the above three constraints,
it is possible to achieve cycle consistency by representing
the pairwise matching using a universe graph (Huang and
Guibas 2013; Tron et al. 2017; Bernard et al. 2018):

Lemmal The set X of pairwise matchings is cycle-
consistent if there exists a collection {X; € Pra: Xjlg=

Ly, }é\le such that VX ji, € X it holds that X, = XijT.

Here, the X is the pairwise matching between the graph G;
and a universe graph & = (V, ) with d universe points,
where V = {uy,...,uq} denote the universe points and
€ = {e1,...,e,} the universe edges. Intuitively, the uni-
verse graph can be interpreted as assigning each point in G
to one of the d universe points in U. Therefore, rather than
modelling the cubic number of cycle consistency constraints
on {G;}}L, explicitly, we use an object-to-universe match-
ing formulation based on the {X;}% ;.

3D Reconstruction. Though thle idea of the universe
graph is a crucial ingredient for synchronisation ap-
proaches (Pachauri, Kondor, and Singh 2013; Huang and
Guibas 2013; Bernard et al. 2018), the universe graph is
never explicitly instantiated in these methods. That is be-
cause it is merely used as an abstract entity that must exist in
order to ensure cycle consistency in multi-matchings. Con-
sidering that the graphs in this work come from image col-
lections, we assume that the nodes u; € R3 of the universe
graph represent 3D points, which will allow us to address
their explicit instantiation based on multiple-view geometry.

We denote the homogeneous coordinate representation of
the universe point u; € R3 (represented in world coordi-
nates) as U; = (u;,1) € R%. Its projection onto the j-th
image plane, denoted by V;; = (v;;,1) € R?, is given by

100 0
Vij = Ay K (0 10 0) (%f Tf) U. ()
0010

|
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Here, g; is the world-to-camera space rigid-body transfor-
mation comprising of the rotation R; € R3*3 and the
translation 7; € R3, I is the canonical projection matrix,
K; ¢ R3*3 is the intrinsic camera matrix, and Aij € Ris
the scale parameter. For brevity, we define the general pro-
jection matrix IT; = K;I1og;. Let U € R**? be the stacked
universe points in homogeneous coordinates, V; € R3xd
be the respective projection onto the j-th image plane, and
A; = diag(Aij, - .., Agj) € R¥*? be the diagonal scale ma-
trix. The matrix formulation of Eq. (1) is

V; = IUA;. )

Once we have a collection of N images of different objects
from the same category (not necessarily the same object in-
stance, e.g. two images of different bicycles), reconstructing



the universe points U can be phrased as solving Eq. (2) in
the least-squares sense, which reads

N
argming »_ [[IGUA; — V|3 ©)

j=1

Note that in practice the variables U, {A;} and {II;} are
generally unknown, so that without further constraints this
is an under-constrained problem. In the next section, we will
elaborate on how we approach this.

Proposed Method

Our learning framework consists of four main components.
The first two components have the purpose to obtain 3D uni-
verse points, along with a deformation of these 3D points
representing the underlying 3D structure of the 2D key
points in the j-th image. The purpose of the other two com-
ponents is to predict the matching between the 2D points
of G; and the 3D points of Y. Thus, rather than learning
pairwise matchings between G; and Gy, we utilise an object-
to-universe matching formulation. Therefore, the underlying
3D structure and cycle-consistent multi-matchings are both
attained by our method. The whole pipeline is illustrated in
Fig. 2 and comprises the following four main components:

1. Learnable 3D Universe Points: the 2D key points
{V;}7, of all images in the collection are used to re-
construct the 3D universe points U by incorporating a
reconstruction loss that approximates Eq. (3).

2. Deformation Module: the retrieved universe points U
are static and therefore they cannot accurately model the
geometric variability present in different instances of an
object from the same category (e.g. different bicycles).
To address this, the universe points are non-linearly de-
formed by the deformation module that takes the 2D
points and the (learned) 3D universe points as input.

3. Assignment Graph Generation: by connecting the 2D
and universe points, respectively, the 2D graph and the
3D universe graph are constructed. The assignment graph
is then constructed as the product of these two graphs.

4. Graph Matching Network: a graph matching network
performs graph convolutions on the assignment graph,
and eventually performs a binary node classification on
the assignment graph representing the matching between
the 2D graph and the universe graph.

Learnable 3D Universe Points. As discussed above, the
universe points can be retrieved by minimising (3). This
problem, however, is generally under-determined, since
U,{A;} and {II;} in (3) are generally unknown in most
practical settings. Additionally, although all objects share a
similar 3D geometry, the nonlinear deformations between
different instances are disregarded in (3). Thus, instead of
an exact solution we settle for an approximation that we
later refine in our pipeline. To this end, we assume a weak
perspective projection model, i.e. all universe points are as-
sumed to have the same distance from the camera. With this
condition, the diagonal of A ; is constant and can be absorbed

into II;. This leads to the least-squares problem

N

arg ming Y ||TLU = Vj||%, )
j=1

which can be solved in an end-to-end manner during net-

work training based on ‘backpropagable’ pseudo-inverse

implementations. The variable 1I; can be expressed as II; =

V;UT, where U™ is the right pseudo-inverse that satisfies

UU™ = 1. Therefore, we solve the following problem

N
U* = argming ; IV;UTU =Vil|%. (5)

Deformation Module. The universe points retrieved in
the previous step can only reflect the coarse geometric struc-
ture of the underlying 3D object, but cannot represent finer-
scale variations between different instances within a par-
ticular object category. Thus, we introduce the deformation
module to model an additional nonlinear deformation.

This module takes the universe points U and the 2D points
V; as input. As shown in the bottom left of Fig. 2, V; is
passed to a 2D Point Encoder. The encoder first performs
a nonlinear feature transform of all input points based on
multi-layer perceptron (MLP), and then performs a max
pooling to get a global feature representing the input object.
As can be seen in the top left in Fig. 2, an MLP is utilised
to perform a nonlinear feature transform for each of the 3D
points in U. Each 3D point feature is then concatenated with
the same global feature from the 2D Point Encoder. The con-
catenated per 3D point features are fed into an MLP to com-
pute the deformation of each point. The output is a set of
per-point offsets S € R3*? that are added to U to generate
the deformed 3D universe points. The computation of the
per-point offsets is summarised as

S; = MLP (MLP(U) o Encoder(V;)), (6)

where o represents the concatenation operation.

We enforce that the projection of the deformed universe
points onto the image plane should be close to the observed
2D points, similar to the reconstruction loss in Eq. (5). Since
the static 3D universe points should reflect the rough geom-
etry of the underlying 3D object, the offset S; should be
small. Therefore, we introduce the deformed reconstruction
loss and the offset regulariser as

N
1
Laer = 5 DIV U8 (U+S5) = Vjl[E, and (7)

j=1
Lot = ||551|7- ®)

Assignment Graph Generation. To obtain graphs from
the 2D points and the deformed 3D universe points, respec-
tively, we utilise the Delaunay algorithm (Botsch et al. 2010)
to generate edges, see Fig. 2. Moreover, we define the at-
tribute of each edge as the concatenation of the coordinates
of the respective adjacent points. Note that other edge gen-
eration methods and attributes can be utilised as well.

Once the 3D universe graph ¢/ and the 2D graph G; are
generated, we construct the assignment graph G JA as the
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Figure 2: Overview of our algorithm. Given an image with 2D key points, we infer the corresponding image-specific 3D points
in terms of a deformation of 3D universe points. The universe 3D points are learned during training for a given class of objects,
while the deformations are predicted per image. We create edges and find a matching between the two graphs using a graph
matching network. Since the matchings are between universe points and images, our matchings are intrinsically cycle consistent.

product graph of ¢/ and G; following Leordeanu and Hebert
(2005). To be more specific, the nodes in G4 are defined as
the product of the two node sets V; (of G;) and V (of U),
respectively, i.e. VJA = {vjr 1 v = (vj,ux) € V; x V}
The edges in G;* are built between nodes vjx, Vmn € V;'
if and only if there is an edge between v; and vy, in &;, as
well as between uj, and u,, in £. The attribute of each node
and edge in gj‘ is again the concatenation of the attribute of
corresponding nodes and edges in G; and U, respectively.

Graph Matching Network. The graph matching problem
is converted to a binary classification problem on the assign-
ment graph G4. For example, an assignment graph is shown
on the top right of Fig. 2. Classifying nodes {1c, 2b, 3a} as
positive equals to matching point 1 to ¢, 2 to b and 3 to a,
where numeric nodes correspond to the 2D graph, and al-
phabetic nodes correspond the 3D universe graph.

The assignment graph is then passed to the graph match-
ing network (Wang et al. 2020b). A latent representation is
achieved by alternatingly applying edge convolutions and
node convolutions. The edge convolution assembles the at-
tributes of the connected nodes, while the node convolution
aggregates the information from its adjacent edges and up-
dates the attributes of each node. The overall architecture is
based on the graph network from Battaglia et al. (2018).

Loss Function. Similarly as existing deep graph match-
ing approaches, we train our network in a supervised way
based on the ground-truth matching matrix X ft between G
and Y. To this end, we use the matching loss

N
1
Lumatch = N E ||‘)(ngt _Xj“%" ©)
j=1

Furthermore, similarly as in previous work (Wang et al.
2018, 2020b), we adopt a one-to-one matching prior in terms
of a soft constraint. To this end, we first convert the pre-

dicted permutation matrix X; to a binary node label matrix
Y; € {0,1}™59%2 that we define as

Y; = (1—vec(X;), vec(X;)) . (10)

Here, vec(X) is the vectorisation of X ;. We can compute
the corresponding index vector y; € {0,1}™i¢ defined as

(yj)i = arg maxye (1 9y (Y5)ik- (11)
By leveraging the auxiliary matrix B € {0, 1}(7s+d)xm;d
and the ground-truth permutation matrix X jgt (Wang et al.
2018), the one-to-one matching regularisation is

Lieg = ||B(y — vee(X5))|I. (12)
The total loss that we minimise during training is
L= wm[fmatch+Wdcdef+w0£off+wreg£reg- (13)

Training. We train a single network that is able to handle
multiple object categories at the same time. To this end, we
learn separate 3D universe points for each category, and in
addition we introduce a separate learnable linear operator for
each category that is applied to the global feature obtained
by the 2D Point Encoder. The linear operator aims to trans-
form the global feature to a category-specific representation,
and also helps in resolving ambiguities between categories
with objects that are somewhat similar (e.g. cat and dog).

In practice, we apply a warm start to learn the universe
points U, which are randomly initialised for each category.
After retrieving U, we start training the neural network on
the total loss with w, = 1, wqg = 0.5, w, = 0.05 and
wreg = 0.1 (in all our experiments). The batch size is 16 and
the number of iterations after warm start is 150k. The learn-
ing rate is 0.008 and scheduled to decrease exponentially by
0.98 after each 3k iterations.
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Figure 3: Qualitative results of our method on the Willow and Pascal VOC Dataset. We achieve accurate results for non-
deformable objects of different types (car, bike) and reasonable results for instances of articulated objects (duck, cow).

Experiments

In the following, we evaluate our method in various settings.
We compare our method to different state-of-the-art meth-
ods on two datasets, and we evaluate our deformation mod-
ule based on a dataset of 3D objects.

Ablation Study. To confirm the importance of the indi-
vidual components of our approach we conducted an abla-
tion study. To this end we evaluate the accuracy on the Pas-
cal VOC dataset in cases where we omit individual terms
of the loss function, omit the warm start for learning the
universe points I/, and omit deformation module, see Ta-
ble 1. When we omit the one-to-one matching regulariser by
setting wreg to 0, the matching accuracy is depressed sub-
stantially. When we do not conduct a warm start for finding
initial universe points, the matching accuracy deteriorates.
Similarly, the matching accuracy lowers without the use of
our deformation module. Further, the offset regularisation
and the deformed reconstruction loss can refine the universe
points for each object, which brings a better matching ac-
curacy as shown in the last two experiments. Overall, the
accuracy is highest when using all components together.

Ablative setting Average accuracy
Wreg = 0 58.11

w/o warm start 58.49

w/o deformation module 60.33

wo =10 64.19

wqg =0 64.81

Ours 67.1

Table 1: Matching accuracy on the Pascal VOC dataset with
the variants on regularisation terms or training strategies.

Comparisons to the state of the art. For the comparison
experiments, we follow the testing protocol that was used
in CSGM (Wang et al. 2020b). While all competing meth-
ods predict pairwise matchings X;;, our approach predicts
object-to-universe matchings X;. Hence, we present the ac-
curacies for pairwise matchings (written in parentheses) in

addition to the accuracies for our object-to-universe match-
ings. Note that X;; is obtained by X;; = XZ-XJT, which
may add individual errors in X; and X; up, thereby leading
to smaller pairwise scores. In the following, we summarise
the experimental setting for each dataset and discuss our re-
sults. Parts of the matching results are visualised in Fig. 3.
Willow Dataset. We simultaneously train our model for all

Method | car duck face motor. bottle| Avg. A 3D

IPFP | 748 60.6 98.9 84.0 79.0|79.5
RRWM| 863 755 100 949 94.3|90.2
PSM |88.0 768 100 964 97.0|91.6
GNCCP| 86.4 774 100 95.6 95.7|91.0
ABPF | 884 80.1 100 962 96.7|92.3
HARG | 719 722 939 714 86.1|79.1
GMN |743 828 993 714 76.7|80.9
PCA | 840 935 100 767 96.9|90.2
CSGM | 912 862 100 99.4 97.9|94.9
BBGM |100.0 99.2 969 89.0 98.8|96.8
Ours | 98.8 903 99.9 99.8 100 | 97.8
Ours |(98.7) (86.4) (99.9) (99.8) (100)((97.0) v

N X X % X X X X X X X
NN % X X% % %X X X XXX

Table 2: Matching accuracy on Willow dataset, where ‘/\’
indicates whether the method guarantees the cycle consis-
tency, and ‘3D’ indicates that 3D geometry is obtained.
Comparing to the other algorithms, our method can achieve
the best average accuracy and guarantee cycle consistency.

categories of the Willow dataset (Cho, Alahari, and Ponce
2013). It consists of images from 5 classes. It is compiled
from Caltech-256 and Pascal VOC 2007 datasets, and con-
sists of more than 40 images per class with 10 distinctively
labelled features each.

We use the same training/testing split as in CSGM (Wang
et al. 2020b). For training, 20 images are randomly chosen
from each class and the rest are used for testing. For non-
learning based methods, the affinity matrix is constructed
using the SIFT descriptors (Lowe 2004) as done by Wang
et al. (2018), more details are described in supplementary
material. We use the 2D key point coordinates as attributes



Method  Filtering|Avg. Acc. A 3D
GMN y 55.3 X X
PCA y 63.8 X X
CSGM y 68.5 X X
Ours y 67.1  /
(Ours) y (58.9) /7
BBGM-Max n 51.9 X X
BBGM n 61.4 X X
BBGM-Multi n 62.8 locally X
Ours n 59.4 /
(Ours) n (42.9) v 7/

Table 3: Results on Pascal VOC Keypoints dataset. Note
that in terms of accuracy we achieve comparable results
to the previous state of the art methods GMN (Zanfir and
Sminchisescu 2018), PCA (Wang, Yan, and Yang 2019a),
CSGM (Wang et al. 2020b) and BBGM (Rolinek et al.
2020), while we are the only one that additionally achieves
cycle consistency (‘A’) and reconstructs 3D geometry
(‘3D’).

of nodes in G;, while the attributes of nodes in I/ are the 3D
coordinates of the (learned) universe points.

Table 2 shows the accuracy of our method, on the Wil-
low dataset, in comparison with IPFP (Leordeanu, Hebert,
and Sukthankar 2009), RRWM (Cho, Lee, and Lee 2010),
PSM (Egozi, Keller, and Guterman 2012), GNCCP (Liu
and Qiao 2013), ABPF (Wang et al. 2018), HARG (Cho,
Alahari, and Ponce 2013), GMN (Zanfir and Sminchisescu
2018), PCA (Wang, Yan, and Yang 2019a), CSGM (Wang
et al. 2020b) and BBGM (Rolinek et al. 2020). Our method
achieves an average accuracy of 97.8%, while also being
able to reconstruct the 3D structure of objects, see Fig. 1.
In the car category, our method outperforms the others no-
ticeably. Although there is non-rigid motion in the duck cat-
egory caused by articulation, our method still achieve a rea-
sonable accuracy. Further, ours is the only one that guaran-
tees cycle-consistent matchings.

Pascal VOC Keypoints Dataset. The Pascal VOC Key-
points dataset (Bourdev and Malik 2009) contains 20 cat-
egories of objects with labelled key point annotations. The
number of key points varies from 6 to 23 for each cate-
gory. Following Wang et al. (2020b), we use 7020 images
for training and 1682 for testing.

We randomly sample from the training data to train our
model. As shown in Table 3, in terms of matching accu-
racy our method is on par with the CSGM method. More-
over, the “Filtering” column denotes that keypoints missing
from one of the images are filtered out before matching. This
procedure is not used for our method because the universe
graph contains all possible key points in one category. Nev-
ertheless, to provide a fair comparison in the “Filtering” set-
ting, for our method we remove elements of the (non-binary)
matching matrices corresponding to keypoints that are not
presented, and binarize them afterwards. Furthermore, we
also report accuracies for our method without any filtering.
Besides predicting accurate matchings, our method is the

£ VAN *
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Figure 4: Illustration of 3D universe points. Examples of
coarsev3D universe points from Pascal VOC dataset. Blue
lines are handcrafted for better visualisation.

only one that achieves globally cycle-consistent matchings
and infers 3D geometry as shown in Fig. 4. We emphasise
that accuracy alone does not justifiably measure the perfor-
mance of a method. Cycle consistency among the predicted
matchings is also an important performance metric. More
detailed results are provided in supp. mat.

3D Geometry and Deformation Evaluation. The goal
of this experiment is to show that the learned 3D uni-
verse points are plausible, and the deformation module
can compensate for instance-specific nonlinear deforma-
tions. For this experiment, we use the 3D head dataset
D3DFACs (Cosker, Krumhuber, and Hilton 2011; Li et al.
2017). We use a similar pre-processing pipeline as in
i3DMM (Yenamandra et al. 2021) to obtain 8 facial land-
marks on each head in the template-registered dataset. For
training our model, we use 2D projections, with a pinhole
camera model, of the randomly transformed 3D landmarks.
During test time, we align the predicted 3D points with
ground truth using Procrustes alignment to recover 3D scale
and rigid transformation. The average L2 error between the
ground truth 3D points and the obtained 3D universe points
before and after deformations is 0.356 and 0.148, confirm-
ing the merits of the deformation module. More qualitative
results are provided in supp. mat.

Conclusion

In this work we tackle the novel problem setting of simulta-
neously solving graph matching and performing sparse 3D
reconstruction from inhomogeneous 2D image collections.
Our solution achieves several favourable properties simul-
taneously: our matchings are cycle-consistent, which is an
important property since the (unknown) ground truth match-
ings are cycle-consistent. Our approach does not rely on the
availability of an initial 3D geometry model, so that we can
train it on virtually any object category, as opposed to object-
specific 3D reconstruction approaches that are for example
tailored towards faces only. Instead, during training we learn
a (sparse) deformable 3D geometric model directly from 2D
image data. Moreover, our methods merely requires multi-
ple images of different object instances of the same cate-
gory. This is in contrast to typical multi-view reconstruction
approaches that require multiple images of the same object
instance from different views. We believe that the joint con-
sideration of deep graph matching and 3D geometry infer-
ence will open up interesting research directions and that
our approach may serve as inspiration for follow-up works
on matching, 3D reconstruction, and shape model learning.
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